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a b s t r a c t 

This paper addresses the problem of decentralized event-triggered H ∞ 

control for neu- 

ral networks subject to limited network-bandwidth and cyber-attacks. In order to alleviate 

the network transmission burden, a decentralized event-triggered scheme is employed to 

determine whether the sensor measurements should be sent out or not. Each sensor can 

decide the transmitted sensor measurements locally according to the corresponding event- 

triggered condition. It is assumed that the network transmissions may be modified by the 

occurrence of the random cyber-attacks. A Bernoulli distributed variable is employed to re- 

flect the success ration of the launched cyber-attacks. The Lyapunov method is employed 

to derive a sufficient condition such that the closed-loop system is asymptotically stable 

and achieves the prescribed H ∞ 

level. Moreover, the desired H ∞ 

controller gains are de- 

rived provided that the sufficient condition is satisfied. Finally, illustrative examples are 

utilized to show the usefulness of the obtained results. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Due to the successful applications in signal processing, combinatorial pattern recognition and so on, neural networks have

been an hot topic and received much attention in the last few decades [29,34,36] . An important issue on an unstable neural

network is to design a suitable controller to stabilize it. Up to date, a number of notable results on this issue are available in

the literature. To mention a few, network-based H ∞ 

quantized control is considered in [14] for a class of neural networks;

The finite stabilization problem for delayed neural networks is investigated in [30] ; and the guaranteed cost control is

concerned with [31] for Markov jump neural networks with distributed delay, fading channel and event-triggered scheme. 

In many network-based industrial systems, transmission resources such as communication network-bandwidth and

sensor energy are limited [15,20,23,32,35,37] . It is significant to execute only necessary transmission tasks so that limited

communication resources can be reasonably used. Recently, increasing attention has been paid to designing proper trans-

mission strategies in order to save the precious network resources [7,8,11,19,28,38] . There are a number of methods available

in the literature [9,10,17,39,40] . A useful one is called a time-triggered mechanism, under which the signal transmission
∗ Corresponding author. 
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is executed in a periodic way. This mechanism definitely produces unnecessary or redundant signals to be transmitted,

leading to a congested network traffic. As a result, system performance is degraded. To overcome the drawback of the

time-triggered mechanism, several event-triggered schemes are proposed to stop those unnecessary signals transmitted, 

and thus the quality of service of a communication network is improved. For example, in [33] , an event-triggered scheme

is proposed, which is dependent on the sampled-data error between the current sampled state and the latest transmitted

one. In [41] , an event-triggered communication scheme is introduced to design output tracking controllers for networked

T–S fuzzy system. Asynchronous event-triggered control is considered in [12] for decentralized networked systems. 

The security problems in networked control systems have attracted much attention in the control community [6,16,22] ,

due to the fact that large amount of data need to be transferred through networked communication channel which is

exposed to cyber-attacks. The cyber-attacks aim to exploit the vulnerabilities in communication links and send incorrect

control actions to the operators in control centers. Recently, some efficient methods have been proposed to defend against

cyber-attacks and make perfect attacks impossible. For instance, in [2] , the deception attacks are considered in dealing with

consensus via an event-triggered control scheme; The coordinated cyber-attacks in hybrid state estimation are discussed in

[1] . In [24] , a resilient event-triggered communication scheme is introduced for a muti-area power system with bandwidth-

limited communication channel; and H ∞ 

filter design for neural networks with a hybrid triggered scheme and deception

attacks is investigated in [18] . However, for the stabilization problem of a neural network, few results have been reported to

investigate the cyber-attacks when a decentralized event-triggered scheme is employed. This motivates the current study. 

Based on the above discussions, this paper aims to investigate the problem of event-triggered H ∞ 

control for neural

networks subject to cyber-attacks. The main contributions of this paper include: (1) A closed-loop system model is proposed

by considering the limited network resources and randomly occurring cyber-attacks; (2) A decentralized event-triggered-

scheme is employed to reduce the utilization of the network resources. With this scheme, all transmitted nodes needn’t to

be synchronous and each sensor can determine its transmitted signals locally; (3) The randomly occurring cyber-attacks,

governed by a Bernoulli distributed variable, are modeled as a nonlinear function satisfying a restraining condition. (4) A

new effective control method is presented to stabilize the studied system. 

Notation: R 

n and R 

n ×m denote the n -dimensional Euclidean space and the set of n × m real matrices; Prob{ X } stands for

the occurrence probability of event X ; E denotes the expectation operator; the superscript T stands for matrix transposition;

the notation X > 0, for X ∈ R 

n ×n means that the matrix X is real symmetric positive definite; I is the identity matrix of

appropriate dimension; for a matrix B and two symmetric matrices A and C , 

[ 
A ∗
B C 

] 
denotes a symmetric matrix, where ∗

denotes the entries implied by symmetry. 

2. Preliminaries 

In this paper, the neural network model addressed is described as follows: {
˙ x (t) = Ax (t) + Bu (t) + Eg(x (t − η(t))) + Dω(t) 

z(t) = Cx (t) 
(1) 

where x (t) = [ x 1 (t) x 2 (t ) · · · x n (t )] T is the state variable with n neurons; u (t) ∈ R 

m is the control input; and z ( t ) is

the controlled output variable; g(x (t)) = [ g 1 (x 1 (t)) g 2 (x 2 (t)) · · · g n (x n (t))] T denotes the neuron activation function; η( t )

represents the time-varying delay satisfying 0 ≤η( t ) ≤ηM 

, where ηM 

is a constant; A = diag{ a 1 , a 2 , . . . , a n } is a diagonal

matrix; B, E, D and C are known real matrices with appropriate dimensions. 

Throughout this paper, the neuron active function g ( x ) is assumed to satisfy the following assumption: 

Assumption 1. For i ∈ { 1 , 2 , . . . , n } , the activation function g i ( x ) satisfies g i (0) = 0 and ∀ s 1 � = s 2 

φ−
gi 

≤ g i (s 1 ) − g i (s 2 ) 

s 1 − s 2 
≤ φ+ 

gi 
(2) 

where φ−
gi 

and φ+ 
gi 

are known constants. 

Assumption 2. The communication network delay at sampled instant t i 
k 

in the i th sensor is denoted by τ
t i 
k 
. It is assumed

that 0 < τ
t i 
k 

< τ̄ i , τ̄ = max i ∈{ 1 , 2 , ... ,n } { ̄τ i } . 
The diagram of the controlled neural network is shown in Fig. 1 . The sensors and the corresponding controllers exchange

information via a communication network subject to time-delay and cyber-attacks. Particularly, with consideration of the

limited network-bandwidth, the event-generators are employed at each sensor side to reduce the unnecessary network

transmissions. The newly sampled signals are carried to the corresponding event generators directly. Only the sampled

signals, which violate the event-triggered condition, can gain access to the network transmission. It is assumed that the

cyber-attacks occur randomly which aim to make the communication signals dishonest. 

The objective of this paper is to stabilize the neuron sates based on the neural network (1) . Considering the limited

network resources and the randomly occurring cyber-attacks, the closed-loop system model will be established step by step

in the following. 
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Fig. 1. The structure of decentralized event-triggered neural networks with cyber-attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to avoid redundant network transmissions, a decentralized event-triggered scheme is introduced to determine

whether local sampled measurements in each sensor should be sent out to the communication network or not. The

event-triggered condition in the i th sensor is predefined as follows: 

e T i (t)�i e i (t) < σi x 
T 
i (t i k h + j i h )�i x i (t i k h + j i h ) (3)

where σ i ∈ [0, 1), �i > 0 is a weighting matrix, i ∈ { 1 , 2 , . . . , n } , h is the sampling interval, j i h is the sampling instant in the

i th sensor, e i (t) = x i (t i 
k 
h ) − x i (t i 

k 
h + j i h ) , x i (t i 

k 
h ) and x i (t i 

k 
h + j i h ) represent the latest transmitted signal and current sampled

signal, respectively. 

Remark 1. In the i th event generator, the latest released instant is t i 
k 
h, the current sampled instant is t i 

k 
h + j i h . It should be

noted that { t i 
1 
, t i 

2 
, . . . , } ⊆ { h, 2 h, . . . , j i h, . . . } , i ∈ { 1 , 2 , . . . , n } . 

The holding interval [ t i 
k 
h, t i 

k +1 
h ) of ZOH can be partitioned into several subsets 

⋃ j i 
M 

j i =0 
ϒ j i , ϒ j i = [ t i 

k 
h + j i h + τ

t i 
k 
+ j i , t 

i 
k 
h +

j i h + h + τ
t i 
k 
+ j i +1 

) , j i = 0 , 1 , . . . , j i 
M 

, j i 
M 

= t i 
k +1 

− t i 
k 

− 1 . 

Similar to [26] , at the actuator side, we set a series of buffers which aim to store the controller outputs with

time-stamps. The actuators can update the controlled inputs by selecting the controller outputs with the same time-

stamp from the buffers. Thus, the set of update time t k h for the input of the actuators is as follows: t k +1 h = t k h + jh,

jh = argmin i ∈{ 1 , 2 , ... ,n } { j i h } which can be obtained from (3) . 

Define τ (t) = t − t k h − jh, it is easy to know that 0 ≤ τt k 
≤ τ (t) ≤ τM 

, τM 

= h + τt k + j+1 , based on (3) , the following

inequalities can be derived for n channels: 

e T (t)�e (t) < σ x T (t − τ (t))�x (t − τ (t)) (4)

where e (t) = x (t k h ) − x (t k +1 h + jh ) , σ = diag { σ1 , σ2 , . . . , σn } , � = diag { �1 , �2 , . . . , �n } , 
In this paper, we assume the data is transmitted via a vulnerable communication network, which can be an objective

of a hacker to alter the transmitted information. Considering the limited access to the network resources for a hacker, the

controller input can be destroyed or modified by the malicious cyber-attacks randomly. A new model of controller design

method reflecting the decentralized event-triggered scheme and cyber-attacks is proposed as follows: 

u (t) = α(t k ) Kx (t k h ) + (1 − α(t k )) K f (x (t − d(t))) , (5)

where α( t k ) ∈ {0, 1} with the following statistical properties: Prob { α(t k ) = 1 } = ᾱ, Prob { α(t k ) = 0 } = 1 − ᾱ,

K is the controller gain to be designed later, f (x (t − d(t))) is the function of cyber-attacks, f (x (t)) =
[ f 1 (x 1 (t)) f 2 (x 2 (t)) , . . . , f n (x n (t)) ] 

T 
, d ( t ) ∈ (0, d M 

], d M 

is a positive constant. 

Remark 2. Notice that the communication link between event generators and controllers is vulnerable to cyber-attacks.

The real triggered measurements may be attacked by the randomly occurring cyber-attacks when transmitted through the

communication network. Thus, the operator in the control center maybe send out wrong control actions. 
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Combining (1) and (5) , we obtain 

˙ x (t) = Ax (t) + α(t k ) BKx (t k h ) + (1 − α(t k )) BK f (x (t − d(t))) + Eg(x (t − η(t))) + Dω(t) , (6) 

t ∈ [ t k h + τt k , t k +1 h + τt k +1 
) 

Recalling the definition of τ ( t ) and the characteristics of α( t k ), (6) can be written as follows: 

˙ x (t) = Ax (t) + ᾱBK[ x (t − τ (t)) + e (t)] + (1 − ᾱ) BK f (x (t − d(t))) + Eg(x (t − η(t))) 

+ Dω(t) + (α(t k ) − ᾱ) BK[ x (t − τ (t)) + e (t) − f (x (t − d(t)))] , (7) 

t ∈ [ t k h + τt k , t k +1 h + τt k +1 
) 

Remark 3. In this paper, the success of the launched cyber-attack is assumed to obey Bernoulli distribution. α(t k ) = 1 means

the real sensor measurements are received by the controllers, α(t k ) = 0 means the sensor measurements which have access

to the communication network are attacked. 

The following assumption and lemmas are presented which is useful in deriving our main results. 

Assumption 3. The cyber-attack function f i ( x ) satisfies f i (0) = 0 and ∀ i ∈ { 1 , 2 , . . . , n } , s 1 � = s 2 

φ−
f i 

≤ f i (s 1 ) − f i (s 2 ) 

s 1 − s 2 
≤ φ+ 

f i 
(8) 

where φ−
f i 

and φ+ 
f i 

are known constants. 

Lemma 1. [25] Assume τ (t) ∈ [0 , τ̄ ] , for any matrices X ∈ R 

n ×n and U ∈ R 

n ×n that satisfy 

[ 
X U 

U T X 

] 
≥ 0 , the following inequality

holds: 

−τ̄

∫ t 

t−τ̄
˙ x T (s ) X 

˙ x (s ) ≤
[ 

x (t) 
x (t − τ (t)) 

x (t − τ̄ ) 

] T [ −X ∗ ∗
X 

T − U 

T −2 X + U + U 

T ∗
U 

T X 

T − U 

T −X 

] [ 

x (t) 
x (t − τ (t)) 

x (t − τ̄ ) 

] 

(9) 

Lemma 2. [14] For a full column rank matrix M ∈ R 

n ×m , the singular decomposition is M = U
V T , in which U and V are

orthogonal matrices, 
 ∈ R 

m ×n is a rectangular diagonal matrix with positive real numbers. Let S is matrix of the form

S = U diag { R 1 , R 2 } U 

T , then, there exists X ∈ R 

m ×m such that SM = MX. 

Lemma 3. [21] For x ( t ) and g ( x ( t )) in Assumption 1 , and x ( t ) and f ( x ( t )) in Assumption 3 , one has the following inequalities for

positive semi-definite diagonal matrices U and V [
x (t) 

g(x (t)) 

]T [−U�−
g U�+ 

g 

�+ 
g U −U 

][
x (t) 

g(x (t)) 

]
≥ 0 (10) 

[
x (t) 

f (x (t)) 

]T [−V �−
f 

V �+ 
f 

�+ 
f 
V −V 

][
x (t) 

f (x (t)) 

]
≥ 0 (11) 

where 

�−
g = diag{ φ−

g1 φ
+ 
g1 , φ

−
g2 φ

+ 
g2 , · · · , φ−

gn φ
+ 
gn } , �+ 

g = diag 

{
φ−

g1 
+ φ+ 

g1 

2 

, 
φ−

g2 
+ φ+ 

g2 

2 

, · · · , 
φ−

gn + φ+ 
gn 

2 

}

�−
h 

= diag{ φ−
h 1 

φ+ 
h 1 

, φ−
h 2 

φ+ 
h 2 

, · · · , φ−
hn 

φ+ 
hn 

} , �+ 
h 

= diag 

{
φ−

h 1 
+ φ+ 

h 1 

2 

, 
φ−

h 2 
+ φ+ 

h 2 

2 

, · · · , 
φ−

hn 
+ φ+ 

hn 

2 

}

3. Main results 

The following Theorem 1 presents a sufficient condition to ensure the asymptotical stability of the closed-loop system (7) .

Theorem 1. Let the following parameters ηM 

, τM 

, d M 

, ᾱ, γ , ε r , r = 1 , 2 , 3 , σ and matrix K be given, the closed-loop system

(7) is asymptotically stable if there exist positive matrices P, Q 1 , Q 2 , Q 3 , R 1 , R 2 , R 3 , and appropriate dimensioned matrices M l (l =
1 , 2 , 3) , diagonal matrices �, U and V such that [ 

�11 ∗ ∗
�21 R ∗
�31 0 R 

] 

< 0 (12) 

[
R l ∗
M l R l 

]
> 0 , l = 1 , 2 , 3 (13) 
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where 

�11 = 

[ 


11 ∗ ∗

21 
22 ∗

31 
32 
33 

] 

, 
11 = 

[ 

�1 ∗ ∗
R 1 − M 1 −2 R 1 + M 1 + M 

T 
1 − U�−

g ∗
M 1 R 1 − M 1 −Q 1 − R 1 

] 

, 

�1 = PA + A 

T P + Q 1 + Q 2 + Q 3 − R 1 − R 2 − R 3 + C T C, 


21 = 

⎡ 

⎢ ⎣ 

ᾱK 

T B 

T P + R 2 − M 2 0 0 

M 2 0 0 

R 3 − M 3 0 0 

M 3 0 0 

⎤ 

⎥ ⎦ 

, 
22 = 

⎡ 

⎢ ⎣ 

�2 ∗ ∗ ∗
R 2 − M 2 −Q 2 − R 2 ∗ ∗

0 0 �3 ∗
0 0 R 3 − M 3 −Q 3 − R 3 

⎤ 

⎥ ⎦ 

, 

�2 = −2 R 2 + M 2 + M 

T 
2 + σ�, �3 = −2 R 3 + M 3 + M 

T 
3 − V �−

f 


31 = 

⎡ 

⎢ ⎣ 

E T P �+ 
g U 0 

(1 − ᾱ) K 

T B 

T P 0 0 

αK 

T B 

T P 0 0 

D 

T P 0 0 

⎤ 

⎥ ⎦ 

, 
32 = 

⎡ 

⎢ ⎣ 

0 0 0 0 

0 0 �+ 
f 
V 0 

0 0 0 0 

0 0 0 0 

⎤ 

⎥ ⎦ 


33 = diag{−U, −V, −�, γ 2 I} , �21 = 

[
ηM 

�T 
4 τM 

�T 
4 d M 

�T 
4 

]T 
, 

�31 = 

[
ηM 

�T 
5 τM 

�T 
5 d M 

�T 
5 

]T 
, �4 = 

[
�41 �42 

]
�5 = 

[
0 1 ×3 δP BK 0 1 ×4 −δP BK δP BK 0 

]
, δ = 

√ 

ᾱ(1 − ᾱ) 

�41 = 

[
PA 0 0 ᾱP BK 0 0 0 

]
, �42 = 

[
P E (1 − ᾱ) P BK ᾱP BK P D 

]
R = diag{−P R 

−1 
1 P, −P R 

−1 
2 P, −P R 

−1 
3 P } 

Proof. Choose the following Lyapunov–Krasovskii functional for the closed-loop system (7) : 

V (x (t)) = x T (t) P x (t) + 

∫ t 

t−ηM 

x T (s ) R 1 x (s ) ds + 

∫ t 

t−τM 

x T (s ) R 2 x (s ) ds + 

∫ t 

t−d M 

x T (s ) R 3 x (s ) ds 

+ ηM 

∫ t 

t−ηM 

∫ t 

s 

˙ x T (v ) R 1 ̇ x (v ) d v d s + τM 

∫ t 

t−τM 

∫ t 

s 

˙ x T (v ) R 2 ̇ x (v ) dv s + d M 

∫ t 

t−d M 

∫ t 

s 

˙ x T (v ) R 3 ̇ x (v ) d v d s (14)

Taking mathematical expectation of the derivative of V ( x ( t )), we have 

E { ̇ V (x (t)) } = 2 x T (t) P ˙ x (t) + x T (t)(R 1 + R 2 + R 3 ) x (t) − x T (t − ηM 

) R 1 x (t − ηM 

) 

−x T (t − τM 

) R 2 x (t − τM 

) − x T (t − d M 

) R 3 x (t − d M 

) + E { ̇ x T (t) R ̇

 x (t) } 
−ηM 

∫ t 

t−ηM 

˙ x T (s ) R 1 ̇ x (s ) ds − τM 

∫ t 

t−τM 

˙ x T (s ) R 2 ̇ x (s ) ds − d M 

∫ t 

t−d M 

˙ x T (s ) R 3 ̇ x (s ) ds (15)

where R = η2 
M 

R 1 + τ 2 
M 

R 2 + d 2 
M 

R 3 . 

By Lemma 1 , the following inequalities hold if there exist M l (l = 1 , 2 , 3) satisfying (13) : 

−ηM 

∫ t 

t−ηM 

˙ x T ( s ) R 1 ̇ x ( s ) ds ≤ ξ T 
1 ( t ) �1 ξ1 ( t ) (16)

−τM 

∫ t 

t−τM 

˙ x T (s ) R 2 ̇ x (s ) ds ≤ ξ T 
2 (t)�2 ξ2 (t) (17)

−d M 

∫ t 

t−d M 

˙ x T (s ) R 3 ̇ x (s ) ds ≤ ξ T 
3 (t)�3 ξ3 (t) (18)

where 

ξ T 
1 (t) = 

[
x T (t) x T (t − η(t)) x T (t − ηM 

) 
]

ξ T 
2 (t) = 

[
x T (t) x T (t − τ (t)) x T (t − τM 

) 
]

ξ T 
3 (t) = 

[
x T (t) x T (t − d(t)) x T (t − d M 

) 
]

�l = 

⎡ 

⎣ 

−R l ∗ ∗
R l − M l −2 R l + M l + M 

T 
l ∗

M l R l − M l −R l 

⎤ 

⎦ , l = 1 , 2 , 3 

Noting that 

E { ̇ x T (t) R ̇

 x (t) } = A 

T R A + ᾱ(1 − ᾱ) B 

T R B (19)
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in which A = Ax (t) + ᾱBK[ x (t − τ (t)) + e (t)] + (1 − ᾱ) BK f (x (t − d(t))) + Eg(x (t − η(t))) + Dω(t) , B = BK[ x (t − τ (t)) +
e (t) − f (x (t − d(t)))] 

From Lemma 3 , it is not difficult to know that there exist U and V such that [
x (t − η(t)) 

g(x (t − η(t))) 

]T [−U�−
g U�+ 

g 

�+ 
g U −U 

][
x (t − η(t)) 

g(x (t − η(t))) 

]
≥ 0 (20) 

[
x (t − d(t)) 

f (x (t − d(t))) 

]T [−V �−
f 

V �+ 
f 

�+ 
f 
V −V 

][
x (t − d(t)) 

f (x (t − d(t))) 

]
≥ 0 (21) 

Combining (15) –(21) and (4) , then it implies that 

E { ̇ V (x (t)) } ≤ 2 x T (t) P ˙ x (t) + x T (t)(Q 1 + Q 2 + Q 3 ) x (t) − x T (t − ηM 

) Q 1 x (t − ηM 

) 

−x T (t − τM 

)) Q 2 x (t − τM 

) − x T (t − d M 

) Q 3 x (t − d M 

) + ξ T 
1 (t)�1 ξ1 (t) 

+ ξ T 
2 (t)�2 ξ2 (t) + ξ T 

3 (t)�3 ξ3 (t) + A 

T R A + ᾱ(1 − ᾱ) B 

T R B 

+ 

[
x (t − η(t)) 

g(x (t − η(t))) 

]T [−U�−
g U�+ 

g 

�+ 
g U −U 

][
x (t − η(t)) 

g(x (t − η(t))) 

]

+ 

[
x (t − d(t)) 

f (x (t − d(t))) 

]T [−V �−
f 

V �+ 
f 

�+ 
f 
V −V 

][
x (t − d(t)) 

f (x (t − d(t))) 

]
−e T (t)�e (t) + σ x T (t − τ (t))�x (t − τ (t)) 

= ξ T (t)�11 ξ (t) + A 

T R A + ᾱ(1 − ᾱ) B 

T R B (22) 

where 

ξ T (t) = 

[
ξ T 

1 (t) x T (t − τ (t)) x T (t − τM 

) x T (t − d(t)) x T (t − d M 

) ξ4 (t) 
]
, 

ξ4 (t) = 

[
g T (x (t − η(t))) f T (x (t − d(t))) e T (t) ω 

T (t) 
]

By the Schur complement, we can derive that (12) is equivalent to E { ̇ V (x (t)) } < γ 2 ω 

T (t) ω(t) − z T (t) z(t) . This completes

the proof. �

Based on Theorem 1 , we are now ready to present the controller design approach for the closed-loop system (7) . 

Assumption 4. In order to tackle with the nonlinear terms in Theorem 1 , similar to [14] , B is assumed to be full column

rank, the singular decomposition for B can be denoted by B = M 

[ 
B 0 
0 

] 
N. 

Theorem 2. Let the following parameters ηM 

, τM 

, d M 

, ᾱ, γ , ε r , r = 1 , 2 , 3 and σ be given, the closed-loop system (7) is asymp-

totically stable if there exist positive matrices P, Q 1 , Q 2 , Q 3 , R 1 , R 2 , R 3 , and appropriate dimensioned matrices M l (l = 1 , 2 , 3) ,

diagonal matrices �, U, V and a matrix Y such that ⎡ 

⎣ 

�̄11 ∗ ∗
�̄21 R̄ ∗
�̄31 0 R̄ 

⎤ 

⎦ < 0 (23) 

[
R l ∗
M l R l 

]
> 0 , l = 1 , 2 , 3 (24) 

where 

�̄11 = 

[ 


11 ∗ ∗

̄21 
22 ∗

̄31 
32 
33 

] 

, 
̄21 = 

⎡ 

⎢ ⎣ 

ᾱY T B 

T + R 2 − M 2 0 0 

M 2 0 0 

R 3 − M 3 0 0 

M 3 0 0 

⎤ 

⎥ ⎦ 

, 


̄31 = 

⎡ 

⎢ ⎣ 

E T P �+ 
g U 0 

(1 − ᾱ) Y T B 

T 0 0 

αY T B 

T 0 0 

D 

T P 0 0 

⎤ 

⎥ ⎦ 

, �̄21 = 

[
ηM ̄

�T 
4 τM ̄

�T 
4 d M ̄

�T 
4 

]T 
, 

�̄31 = 

[
ηM ̄

�T 
5 τM ̄

�T 
5 d M ̄

�T 
5 

]T 
, �̄4 = 

[
�̄41 �̄42 

]
�̄5 = 

[
0 1 ×3 δBY 0 1 ×4 −δBY δBY 0 

]
�̄41 = 

[
PA 0 0 ᾱBY 0 0 0 

]
, �̄42 = 

[
P E (1 − ᾱ) BY ᾱBY P D 

]
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R̄ = diag{−2 ε 1 P + ε 2 1 R 1 , −2 ε 2 P + ε 2 2 R 2 , −2 ε 3 P + ε 2 3 R 3 } 
where P = Mdiag{ P 1 , P 2 } M 

T , P 1 ∈ R 

m ×m , P 2 ∈ R 

(n −m ) ×(n −m ) . Other symbols have been defined in Theorem 1 . The controller gain

can be designed as 

K = P −1 
0 Y, P 0 = (B 0 N) −1 P 1 B 0 N (25)

in which B 0 and N can be seen in Assumption 4 . 

Proof. Since P = Mdiag{ P 1 , P 2 } M 

T and the singular decomposition B = M 

[ 
B 0 
0 

] 
N in Assumption 4 , according to Lemma 2 , there

exists a new variable P 0 satisfying P B = BP 0 , from 

Mdiag{ P 1 , P 2 } M 

T M 

[
B 0 

0 

]
N = M 

[
B 0 

0 

]
NP 0 (26)

we get 

P 0 = (B 0 N) −1 P 1 B 0 N (27)

Substitute PBK with BP 0 K , and define Y = P 0 K, it follows from (12) that ⎡ 

⎣ 

�̄11 ∗ ∗
�̄21 R ∗
�̄31 0 R 

⎤ 

⎦ < 0 (28)

In terms of the following inequality: 

(R k − ε −1 
k 

P ) R 

−1 
k 

(R k − ε −1 
k 

P ) ≥ 0 , (k = 1 , 2 , 3) (29)

One has that 

−P R 

−1 
k 

P ≤ −2 ε k P + ε 2 k R k (30)

Replace −P R −1 
k 

P with −2 ε k P + ε 2 
k 

R k in (28) , (23) can be obtained. This completes the proof. �

Remark 4. It should be pointed out that the event-triggered condition in this paper is obviously different from the ones

in [3–5,13] . The event-triggered control schemes in [3–5,13] make a decision by the receiving information including the

measurement of agent i and its neighbors. However, the event-triggered condition in this paper only requires the local

sensor own measurements. 

Remark 5. It should be pointed out that the term PBK is nonlinear in Theorem 1 when designing the controller for

the discussed closed-loop system. To overcome the difficulty, motivated by the work in [14] , the structure of P is P =
Mdiag{ P 1 , P 2 } M 

T , the singular value decomposition of B is denoted by B = M 

[ 
B 0 
0 

] 
N. From Lemma 2 , P B = BP 0 , P 0 is a new

variable. By this method, P 0 K can be defined as a new matrix variable, then the controller design problem is turned into the

feasibility of inequalities (23) and (24) . Moreover, the controller gain can be derived from (25) . 

Remark 6. Theorem 2 is derived based on a normal Lyapunov–Krasovskii functional (LKF) in (14) and Jensen integral in-

equality. If we choose some proper augmented LKF [42,43] and employ the Bessel–Legendre inequality [27] , it is expected

to derive some less conservative results. 

When the neural network is under the decentralized event-triggered scheme, and the network is without cyber-attacks,

the closed-loop system (7) reduces to the following forms: 

˙ x (t) = Ax (t) + BK[ x (t − τ (t)) + e (t)] + Eg(x (t − η(t))) + Dω(t) , 

t ∈ [ t k h + τt k , t k +1 h + τt k +1 
) (31)

Similar to the proof in Theorem 2 , we can obtain the following Corollary. 

Corollary 1. For given ηM 

, τM 

, γ , ε r , r = 1 , 2 and σ , the closed-loop system (31) is asymptotically stable if there exist positive

matrices P, Q 1 , Q 2 , R 1 , R 2 , and appropriate dimensioned matrices M l (l = 1 , 2) , diagonal matrices �, U, and a matrix Y such that ⎡ 

⎣ 

ˆ �11 ∗ ∗
ˆ �21 

ˆ �22 ∗
ˆ �31 0 

ˆ R 

⎤ 

⎦ < 0 (32)

[
R l ∗
M l R l 

]
> 0 , l = 1 , 2 (33)
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where 

ˆ �11 = 

⎡ 

⎢ ⎣ 

ˆ �1 ∗ ∗ ∗
R 1 − M 1 −2 R 1 + M 1 + M 

T 
1 − U�−

g ∗ ∗
M 1 R 1 − M 1 −Q 1 − R 1 ∗

Y T B 

T + R 2 − M 2 0 0 �2 

⎤ 

⎥ ⎦ 

, 

ˆ �1 = PA + A 

T P + Q 1 + Q 2 − R 1 − R 2 + C T C, 

ˆ �21 = 

⎡ 

⎢ ⎣ 

M 2 0 0 R 2 − M 2 

E T P �+ 
g U 0 0 

Y T B 

T 0 0 0 

D 

T P 0 0 0 

⎤ 

⎥ ⎦ 

, 

ˆ �22 = diag{−Q 2 − R 2 , −U, −�, −γ 2 I} , 
ˆ �31 = 

[
ηM 

PA 0 0 ηM 

BY 
τM 

PA 0 0 τM 

BY 

]T 

, ˆ �32 = 

[
0 ηM 

P E ηM 

BY ηM 

P D 

0 τM 

P E τM 

BY τM 

P D 

]

ˆ R = diag{−2 ε 1 P + ε 2 1 R 1 , −2 ε 2 P + ε 2 2 R 2 } 
where P = Mdiag{ P 1 , P 2 } M 

T , P 1 ∈ R 

m ×m , P 2 ∈ R 

(n −m ) ×(n −m ) , �2 has been defined in Theorem 1 . The controller gain can be de-

signed as 

K = P −1 
0 Y, P 0 = (B 0 N) −1 P 1 B 0 N (34) 

in which B 0 and N can be seen in Assumption 4 . 

4. Numerical examples 

In this section, two simulation examples are provided to illustrate the effectiveness of the developed approach in the

previous section. 

Example 1. The corresponding parameters of system (1) are given as follows: 

A = 

[ −0 . 5 0 0 

0 0 . 1 0 

0 0 −0 . 1 

] 

, B = 

[ 

0 . 1 

0 . 2 

0 . 1 

] 

, E = 

[ 

0 . 1 0 . 2 0 

−0 . 1 0 . 2 0 . 1 

−0 . 2 0 −0 . 3 

] 

, C = 

[ 

0 . 1 0 0 

0 0 . 1 0 

0 0 0 . 1 

] 

D = 

[ 

0 . 1 

0 . 1 

0 . 1 

] 

, g(x ) = 

[ 

tanh (0 . 03 x 1 (t)) 
tanh (0 . 06 x 2 (t)) 
tanh (0 . 03 x 3 (t)) 

] 

, ω(t) = 

{ 

1 , 5 ≤ t ≤ 10 

0 , else 
−1 , 15 ≤ t ≤ 20 

The cyber-attack function is assumed to be 

f (x ) = 

[ 

tanh (0 . 04 x 1 (t)) 
tanh (0 . 04 x 2 (t)) 
tanh (0 . 04 x 3 (t)) 

] 

It is easy to obtain that �−
g = diag { 0 , 0 , 0 } , �+ 

g = diag { 0 . 015 , 0 . 03 , 0 . 015 } , �−
f 

= diag { 0 , 0 , 0 } , �+ 
f 

= diag { 0 . 02 , 0 . 02 , 0 . 02 } .
In the following, we will consider two cases for neural network. In Case 1, the event-triggered scheme and the cyber-

attacks are both considered in neural network. In Case 2, the event-triggered scheme is employed in neural network

without cyber-attacks. 

Case 1. Suppose that ᾱ = 0 . 8 , ηM 

= 0 . 5 , d M 

= 0 . 5 , τM 

= 0 . 5 , γ = 1 , σ = 0 . 1 , h = 0 . 1 , ε 1 = ε 2 = ε 3 = 1 , by employing the

MATLAB LMI Toolbox, from the LMI constraints (23) and (24) in Theorem 2 , we can obtain the following feasible solutions: 

P = 

[ 

13 . 4 4 4 4 −2 . 1657 −2 . 3122 

−2 . 1657 8 . 4437 −1 . 1200 

−2 . 3122 −1 . 1200 11 . 3531 

] 

, Y = 

[
−4 . 5193 −20 . 8923 −3 . 6645 

]
, 

G = 

[ 

9 . 9045 0 0 

0 8 . 1964 0 

0 0 1 . 8943 

] 

, U = 

[ 

18 . 1332 0 0 

0 14 . 7018 0 

0 0 8 . 9410 

] 

, 

V = 

[ 

12 . 3354 0 0 

0 14 . 3981 0 

0 0 13 . 3825 

] 

Applying (25) in Theorem 2 , we derive the corresponding control gain 

K = 

[
−0 . 6645 −3 . 0720 −0 . 5388 

]
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Fig. 2. State response (Case 1)). 

Fig. 3. Release instants and intervals on sensor node 1(Case 1). 

 

 

 

 

 

 

 

 

 

The state trajectories of the controlled neural network is shown in Fig. 2 , from which we can see that the closed-loop

system converges to zero asymptotically. Figs. 3–5 present the release instants and the corresponding release intervals on

sensor node 1, sensor node 2 and sensor node 3, respectively. The transmitted sensor measurements are 66, 51 and 49 on

sensor node 1, sensor node 2 and sensor node 3, respectively, which means the average transmission rate is 11.07%. 

Case 2. When the neural network is under event-triggered scheme but without cyber-attacks, set ηM 

= 0 . 6 , τM 

= 0 . 6 , γ = 1 ,

σ = 0 . 2 , h = 0 . 1 , ε 1 = ε 2 = 1 . Based on the MATLAB LMI Toolbox, from Corollary 1 , we can get the controller gain and the

triggering matrix as follows: 

K = 

[
−0 . 3708 −2 . 1362 −0 . 0501 

]
, G = 

[ 

5 . 9709 0 0 

0 3 . 9676 0 

0 0 0 . 2388 

] 

, 

The state response is shown in Fig. 6 . Figs. 7–9 present release instants and intervals on sensor nodes 1, 2, and 3, respec-

tively, where the average transmission rate is 11.4% of the total 1500 sampled measurements. 

From the simulation results in the above two cases, it can be found that the stability of the controlled system can be

guaranteed under the designed control approach, and the decentralized event-triggered scheme can reduce data transmis-

sion frequency compared with time-triggered scheme, numerous unnecessary sampled measurements are discarded, which

alleviates the transmission load greatly. 
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Fig. 4. Release instants and intervals on sensor node 2 (Case 1). 

Fig. 5. Release instants and intervals on sensor node 3 (Case 1). 

Fig. 6. State response (Case 2). 
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Fig. 7. Release instants and intervals on sensor node 1 (Case 2). 

Fig. 8. Release instants and intervals on sensor node 2 (Case 2). 

Fig. 9. Release instants and intervals on sensor node 3 (Case 2). 
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Fig. 10. State response (Example 2). 

Fig. 11. Release instants and intervals on sensor node 1 (Example 2). 
Example 2. Consider system (1) with 

A = diag{−1 . 2769 , −0 . 6231 , −0 . 9230 , −0 . 4480 } , B = 

[
1 1 1 1 

]T 
, 

E = 

⎡ 

⎢ ⎣ 

0 . 8674 −1 . 2405 −0 . 5325 0 . 0220 

0 . 0474 −0 . 9164 0 . 0360 0 . 9816 

1 . 8495 2 . 6117 −0 . 3788 0 . 8428 

−2 . 0413 0 . 5179 1 . 1734 −0 . 2775 

⎤ 

⎥ ⎦ 

, C = 

⎡ 

⎢ ⎣ 

0 . 1 0 0 0 

0 0 . 1 0 0 

0 0 0 . 1 0 

0 0 0 0 . 1 

⎤ 

⎥ ⎦ 

, D = 

⎡ 

⎢ ⎣ 

0 . 1 

0 . 1 

0 . 1 

0 . 1 

⎤ 

⎥ ⎦ 

g(x ) = 

⎡ 

⎢ ⎣ 

tanh (0 . 03 x 1 (t)) 
tanh (0 . 06 x 2 (t)) 
tanh (0 . 03 x 3 (t)) 
tanh (0 . 03 x 3 (t)) 

⎤ 

⎥ ⎦ 

, ω(t) = 

{ 

1 , 5 ≤ t ≤ 10 

0 , else 
−1 , 15 ≤ t ≤ 20 

The cyber-attack function is 

f (x ) = 

⎡ 

⎢ ⎣ 

tanh (0 . 04 x 1 (t)) 
tanh (0 . 04 x 2 (t)) 
tanh (0 . 04 x 3 (t)) 
tanh (0 . 04 x 3 (t)) 

⎤ 

⎥ ⎦ 

Clearly, �−
g = diag { 0 , 0 , 0 , 0 } , �+ 

g = diag { 0 . 015 , 0 . 03 , 0 . 015 , 0 . 015 } , �−
f 

= diag { 0 , 0 , 0 , 0 } , �+ 
f 

= diag { 0 . 02 , 0 . 02 , 0 . 02 , 0 . 02 } . 



L. Zha et al. / Information Sciences 457–458 (2018) 141–155 153 

Fig. 12. Release instants and intervals on sensor node 2 (Example 2). 

Fig. 13. Release instants and intervals on sensor node 3 (Example 2). 

 

 

 

 

 

 

 

 

Choose ᾱ = 0 . 8 , ηM 

= 0 . 4 , d M 

= 0 . 4 , τM 

= 0 . 3 , γ = 1 , σ = 0 . 1 , h = 0 . 1 , ε 1 = ε 2 = ε 3 = 1 . Applying Theorem 2 , the

corresponding controller gain matrix and the trigger matrix are 

K = 

[
−0 . 0625 −0 . 5065 −0 . 2758 −0 . 3406 

]
, G = 

⎡ 

⎢ ⎣ 

9 . 8267 0 0 0 

0 22 . 6337 0 0 

0 0 11 . 8197 0 

0 0 0 7 . 4354 

⎤ 

⎥ ⎦ 

and the transmitted sensor measurements are 99, 105, 106 and 99, respectively. That is the average transmission rate is

34.08% of the total 1200 sampled measurements. The release instants and the corresponding release intervals of sensor

nodes 1, 2, 3, 4 are shown in Figs. 11–14 . Fig. 10 depicts the response of the state. From the simulation results, it can be

seen that the average release intervals decrease and the derived control method and triggering matrix can stabilize the

neural networks with limited network-bandwidth and cyber-attacks. 

5. Conclusions 

In this paper, the event-triggered H ∞ 

control problem for neural network with limited network-bandwidth and cyber-

attacks is investigated. A decentralized event-triggered scheme is employed to avoid unnecessary transmissions, which can

reduce the controller updates. The randomly occurring cyber-attacks aiming to reduce the network reliability is modeled as
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Fig. 14. Release instants and intervals on sensor node 4 (Example 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a nonlinear function. Desired controllers have been designed to guarantee the closed-loop system asymptotically stable. The

usefulness of the obtained results has been illustrated by simulation results. 
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