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This paper is concerned with finite-time state estimation for Markovian jump systems with quantiza-
tions and randomly occurring nonlinearities under event-triggered scheme. The event triggered scheme
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burden. The randomly occurring nonlinearities are taken into account, which are governed by a Bernoulli
distributed stochastic sequence. Based on stochastic analysis and linear matrix inequality techniques,
sufficient conditions of stochastic finite-time boundedness and stochastic H,, finite-time boundedness
are firstly derived for the existence of the desired estimator. Then, the explicit expression of the gain of
the desired estimator are developed in terms of a set of linear matrix inequalities. Finally, a numerical
example is employed to demonstrate the usefulness of the theoretical results.
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1. Introduction

As an important class of stochastic hybrid systems, Markovian
jump systems (M]Ss) have received an extensive attention [1-5], in
which the modes can switch from one to another at different time
in structure and parameters. MJSs are used to describe the phe-
nomena of random abrupt variation, possibly caused by the
component failures, sudden environmental disturbances, changes
in the interconnections of subsystems, and so forth. Some im-
portant results in systems and control theory have been reported
[6-9]. Particularly, delay-dependent H, filtering is investigated in
[6] for singular Markovian jump time-delay systems. State esti-
mation problem for discrete Markovian jumping neural networks
with time delay is discussed in [7]. The authors in [8] address the
problem of H,, control for networked MJSs under event-triggered
scheme. The authors in [9] investigate the problem of robust H,,
control for MJSs with partially known transition probabilities and
nonlinearities.

As we know, the bandwidth of the transport network is limited,
it is essential to develop appropriate transmission strategies to
reduce the bandwidth utilization of the transport network. Re-
cently, much attention has been paid to deal with the issue [10-
17]. The following two methods are usually applied to reduce the
communication burden: (i) the first is quantization strategy, which
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aims to reduce the size of the data. For example, in [10], the au-
thors investigate the H,, filtering of continuous Markov jump
linear systems with general transition probabilities and output
quantization. The authors in [11] are concerned with the stability
analysis of networked control systems with dynamic quantization,
variable sampling intervals and communication delays. (ii) the
second one is event-triggered scheme. The recently proposed
event-triggered scheme has been proved to be an effective method
to reduce the data transmission frequency in the network. The key
idea is that whether or not the current sampled data will be sent
out is judged by an event generator with a pre-specified threshold,
and those unselected data is discarded without any further pro-
cessing. Many results with regard to event-triggered control are
reported, to be specific, in [12], the authors are concerned with
event-triggered H, controller design for networked control sys-
tems. The reliable control design is investigated in [13] for net-
worked control system under event-triggered scheme. The authors
in [14] investigate decentralized control for a class of inter-
connected system under decentralized state-dependent triggering
scheme. The authors in [15] propose a discrete event-triggered
communication scheme for a class of networked Takagi-Sugeno
fuzzy systems. However, when considering the two methods at the
same time, up to mow, no results about state estimation for MJSs
can be found, which is the first motivation of this study.

It is well known that most of the researches focuse on the
asymptotical or exponential stability of closed loop systems over
an infinite time. However, in practical applications, it is usually
expected that the system state does not exceed certain specified
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bounds in a given finite time interval, for example, large values of
the system states are not acceptable in the presence of saturations.
It is necessary to deal with transient behavior [18,19]. Finite-time
stability is introduced in [20] to ensure the system trajectories
within given bounds in a given finite time interval. Based on the
concept of finite-time stability, the authors in [21] investigate the
non-fragile and robust finite-time H,, control problem for a class of
uncertain Markovian jump nonlinear systems with bounded
parametric uncertainties and norm-bounded disturbance. The
problem of finite-time H,, static output feedback control of Markov
jump systems is considered in [22]. In [23], the authors are con-
cerned with the problem of reliable finite-time H,, filtering for
discrete time-varying delay systems with Markovian jump and
randomly occurring nonlinearities. The problem of finite time
stabilization for a class of delayed neural networks is investigated
in [24]. However, there are no results available coping with the
finite-time event-triggered state estimation for MJSs with quan-
tizations and randomly occurring nonlinearities, which motivates
the current work.

Motivated by the above discussions, in this paper, the problem
of event-based finite-time state estimation is investigated for
Markovian jump systems with quantizations and randomly oc-
curring nonlinearities. A state estimator is designed to guarantee
the state estimation error dynamic system to be stochastic finite
boundedness and satisfy a prescribed H,, performance level in a
finite-time interval. The main contributions of this paper can be
summarized as follows.

(1) The event-triggered scheme and the quantization strategy are
introduced into the model of MJSs. The measured outputs are
directly transmitted to the event generator. Only when the
measured output satisfies a specified triggering condition, can
it be transmitted though the quantizer to the state estimator.

(2) An estimation error system is constructed, which includes the
influence of the event-triggered scheme, the quantization
strategy and randomly occurring nonlinearities.

(3) Sufficient conditions are derived which can ensure the esti-
mation error dynamic stochastically H, finite boundedness.
Moreover, a new co-design algorithm is developed to design
the desired estimator gains and event-triggered parameters.
Finally, a numerical simulation example is employed to de-
monstrate the usefulness of the obtained results.

The remainder of this paper is organized as follows. Section 2
describes the modeling process when considering event-triggered
scheme and the quantization. The main results concerning the
state estimator design conditions are presented in Section 3. A
simulation is given in Section 4 to demonstrate the usefulness of
the proposed method. Finally, Section 5 concludes the paper.

Notation: R"™ and R™™ denote the n-dimensional Eculidean
space, and the set of n x m real matrices; the superscript T stands
for matrix transposition; I is the identity matrix of appropriate
dimension; the symbol ® denotes the Kronecker product; the
notation X > 0 (respectively, X > 0), for X € R™", means that the
matrix X is real symmetric positive definite (respectively, positive
semi-definite); Prob{X} denotes probability of event X to occur;
Sym {X} denotes the expression X' + X; & denotes the expectation
operator; for a matrix B and two symmetric matrices A and C,

[’; C] denotes a symmetric matrix, where * denotes the entries

implied by symmetry.

2. System description

Consider the following continuous-time Markovian jump

system (M]S)
X(t) = Apx(t) + Ay (®) + a(Ohy 0 + (1 = a(6)g,,X)

Y = Gx(t)
z(t) = Lpx(t) 1

where x(t) € R" is the state variable, y(t) € R™ is the measured
output, z(t) € RP is the signal to be estimated, (t) € RY is the
external disturbance with w(t) € £,[0, ), respectively; Ay, Aup
Gy, and L, are known real constant matrices with appropriate
dimensions. {n, t > 0} is continuous-time Markov jump process
taking values in a finite space S = {1, 2, ---, r}. The transition
probability matrix /7 = (zjj)r«r are given by

mijh + o(h), i#]j

Prob{ti,p =jir =i} =
e =J0e = 1) {1+n,-jh+o(h),i=j

where h > 0, limy_2® =

b= 0, mj > 0, for j#i. mi= — Z?I:Lj;gi Tij.
The stochastic variable «(t) is Bernoulli-distributed white se-
quences taking values on 0 or 1 with Prob{a(t)=1}=a,
Prob{a(t) = 0} = 1 — a. The nonlinear functions h, (x) and g, (x)
are assumed to satisfy h,,(0) =0, g,0)=0 and the following

second-bounded conditions:
i () = B ) = Bt % = DT Thy ) = By () = gt X =] <0
8, (%) = 8,0 — ¢ X =WT[E,X) — &, ) - ¢F, x-NI<0 (2

where X,y € R, ¢f, ¢;., ¢ and ¢f are real matrices with
compatible dimensions.

Remark 1. It is well known that the network-induced nonlinear
disturbances are ubiquitous. In this paper, we introduce nonlinear
functions h;,(x) and g, (x) to represent the changeable type/in-
tensity of the nonlinearities. The random variable « (t) is employed
to describe the probabilistic switches between h;,(x) and g, (x)
according to Bernoulli distribution. Note that random variables of
similar kind can be found in [25,26].

Throughout this paper, we make the following assumptions:

(1) The sensor is time driven and the set of sampling instants of
the sensor is S; = {h, 2h, ---}, where h is the sampling period.

(2) As is shown in Fig. 1, the sampled signals are directly
transmitted to the event generator, the released signals are
then quantized. The set of release instants of the event
generator are denoted by S, = {t;h, th, ---}.

(3) The quantized signals are transmitted to the remote state es-
timator through wireless network. During the transmitting
procedure, the network-induced delays are described by z,
% € [O, ), 7 is non-negative integer, which represent the
maximum network-induced delay.

(4) The disturbance w(t) satisfies

+0oo T 9
8{ fO 9} (t)m(t)dt} <d 3)

w(t) Piant =(t) 2(1)

=20
State
estimator

Event
generator

ek a0 h) v

,‘J Quantizer %

Fig. 1. Block diagram of an event-triggered M]Ss with a quantizer.
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In this paper, we take the effects of the event triggered scheme
and the quantization into account, the following H, state esti-
mator for the network (1) will be adopted:

RO = AR ®) + ahy, (0 + (1 - @8, %) + Ky [H(©) — F(0]
Ity =GRt
2(t) = LX(t) 4)

where K;, is the state estimator gain to be estimated.

In the following, when the system transits to the ith mode, the
corresponding system matrices and the nonlinear functions are
denoted by A;, A,i, G, Li, h; and g; for simplicity.

Remark 2. The presence of the disturbances o (t) are undesired
input signals which affect the system output, the sensors and
the plants causing accidents or unnecessary costs. There are
some interesting research about the disturbance rejection [27-
32]. For example, in [27], a hybrid controller with observer is
designed for the estimation and rejection of a disturbance; The
authors in [29] introduce the structure control of the dis-
turbance rejection in two electromechanical process. In this
paper, the objective is to design the finite-time state estimator
for system (1) and obtain an estimate Z (t) of the signal z(t) such
that the desired performance criteria are minimized in the es-
timation error sense.

Remark 3. It should be noted that y(t) is the real input of the state
estimator. In the following, we will explain that the signal j(t) can
be influenced by the event generator scheme, the quantization and
network-induced delay.

As is well known, the network resources is limited, un-
necessary communication can lead to a waste of commu-
nication resources. It is necessary to design a strategy to re-
duce the transmission frequency and communication cost. In
order to remove the requirement for continuous commu-
nication, on the basis of reference [12], we introduce an
event-based protocol

&L (O)Rry €k (0) < 0rg YT (G + Qe 5y (Eeh + jh) 5)

where ey (t) = y(tgh) — y(th + jh), ‘Qrtkh+jh is a symmetric positive
definite matrix, y(txh + jh) is the current measured output,
y(tyh) is the latest transmitted data, j=1, 2, ---. Orgnajn € [0, 1).

It should be noted that only the signals exceed the condition (5), can
they be transmitted to the corresponding quantizer. The one satisfying
the condition (5) will not be sent to the quantizer. Similar to [33], the
holding interval A = [tyh + 7, tgs1h + 7,,,) can be divided into in-
terval like subset A =(JAj, Aj = [tkh + jh + 7, tch + jh + h + 7, ),
j= 1,2, -, Ley1 — Lk — 1.

Remark 4. Under the event triggered condition (5), the re-
lease times are assumed to be tyh, tih, th, ---, where to = 0 is the
initial time. s;h = t,1h — tyh represents the release period
between the latest transmitted data and the next transmitted
one.

Remark 5. The event-triggered scheme has been widely used to
reduce the utilization of the network resources. It should be
pointed out that the triggering parameters depend on the system
mode in this paper. If the newly sampled data violates the event-
based protocol (5), it can be transmitted to the quantizer.

Define z(t) =t — tyh — jh, it follows that 0 < z(t) < 7. Substituting
that definition of z(t) into (5), the event-based protocol (5) can be
written as

el (DQiex(t) < oiyT (t — 7(t)Qiy (¢t — (1)) (6)

To further reduce the communication burden, quantizers are
employed. The quantizer q() is defined as

qW) = [0 G0 - Gnp)) Where g (s =1, 2, -, m) can be
defined as

u®, 1 u® <y, < u®, y, >0
ds

0, ify, = 0
-q(—¥) i) <0 )

— Ygs

qs (XS) =

where 5 = (1 =0 +p )0 <pg < 1), py is the quanti-
zation density and it is a given constant. The set of
quantization levels is presented by [34,35]:
U={xu® u=pufd = +1,,2 Ul £u}UI0} with

u$ > 0. Based on the above definition, using the sector bound
approach, the measurements with quantization effects g(y) can be
expressed as

qu) = +4Ag)y 6))

in which 4 = diag {Aq,, Aq,, -+, Ag, } Ag, € [ — gy 6,1, $=1,2, -, m

Based on the above analysis, considering the effect of event
generator and the quantizer, the actually received signal j(t) of the
designed estimator can be described as

J(©) = d + Ay tch) 9)
Recall the definition of e(t) and z(t), (9) can be rewritten as
J@©) = d + Ag) (e (t) + Gx(t — =(t))) 10)

Define e(t) = x(t) — X (t), Z(t) = z(t) — Z(t), combining (1), (4) and
(10), the following estimation error system can be obtained

é(t) = Aje(t) + Ayio(t) + a(t)hi(x) — ahi(x) + (1 — a(t))g;(x)
-1 -a)gx) — KGR - d + Ag)ex(t) — (I + Ag)Cix (t — = (¢))]
2(t) = Lie(t) [€0))

Let n(t) = [xT(t) T (H)TT, an augmented system can be obtained as
follows:

() = Ain(t) + Agin(t — (1)) + Aie(t) + Ao (t) + ah;(t)
+(1 = D) + (a(t) — @)Shi(t) — @(t) - @St
2ty =Lint 12)

where

i | A 0 i 0 0
"Tl-KG A+ KG T T | Kid+49G 0f

i 0 A _ Ami
A = [K,-«I + Aq»]' Aoi = [A{,,,]

I0 i i AT
[ : O], L=[0L] R®=[he heo-h&®],

g0 =gl gw-g'®]

S

Remark 6. From (5), we can deduce that

el (HRie(t) < o (t — t(t)HTCT QiGHy(t — z(t)), H=[I 0] (13)

The following definitions and lemmas are necessary, which will be
used in the proof of our main results.

Definition 1 (Stochastically finite-time stability(SFTS)[36]). For gi-
ven time constant T, the augmented system (12) with o (t) =0 is
said to be SFTS with respect (g, ¢, T, R) with 0 < g < ¢ and R > 0,
if
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sup &{n' (to)Ry(to), #' (to)Rrj (to) }
—7<tp<0

<t =& MOR)) <2 tel0,T] (14)

Definition 2 (Stochastically finite-time bounded (SFTB)[21]). The
augmented system (12) is said to be SFITB with respect to
(@, 6, T, R, d)ywith 0 < q < ¢ and R > 0, if the constrained relation
(14) holds.

Definition 3 (/21] (Stochastically H, finite-time bounded (S H,
FTB))). The augmented system (12) is said to be S H, FTB with
respect to (g, &, T, R, y, d), if the augmented system (12) is SFTB
with respect to (g, &, T, R, d) and under zero initial condition, it
holds that

T T
a{ fo zT(t)z(t)dt} <y28{ /O a)T(t)aJ(t)dt} s

Lemma 1. (/37])Consider the Markov jump system with z(t) that
satisfies 0 < z(t) < 7. For any matrices X € R™" and U € R™" that
satisfy [ ;T z] > 0, the following inequality holds:

x(-17) ur Xr—ur -X

x(t)
X(t - 7(t))

X(t-17)

. xo T -x * *
—fft_fxT(S)XX(S)s X(t—z@®)| [ XT -UT -2X+U+UT =

(16)

Lemma 2. (/38])Given matrices F,=F, F, and Fs; of appropriate
dimensions, we have F, + F3a(k)F, + F3 AT (k)F} < 0 for all A(k) sa-
tisfying AT (k)A(k) < I, if and only if there exists a positive scalar
e < 0, such that F; + e 'F3F} + eF3F, < 0

3. Main results

In this section, we will develop an approach for both the finite-
time bounded and the state estimator design. Firstly, we give the
finite time bounded for the augmented system (12).

Theorem 1. For given scalars @, ty, o;, f, T> 0, d> 0 and g > 0,
under the event-triggered scheme (5), the augmented system (12) is
stochastically finite-time stability with respect to (q, &, T, R, d), if
there exist positive scalars A =1,2,3,4,5), upper bound c,,
0<q <0 UM, P >0,Q;>0,R>0,0; >0( €9S), H;and M;, with
appropriate dimensions such that

En * *
E=| 51 - P,'Qz_lpi * 1<0
531 0 E33 a7
MR <P <R, Qi1 <A3R, Q2 <A4R, A=l +tyls+ 11%4/14 (18)
M
[QZT ‘] >0, Ack+1sd?2<e i, 0<H <isl
M Q2 19)

where

m * * * * * *
21 I * o * "
LM_T LQZ - l]\/],T - eﬂ’MQl _ LQZ * * * #
™! ™ ! ™
= AeTiPi 0 0 —Q * * w
AuiP; 0 0 0 -H * X
Pi+ e}, 0 0 0 0 Qa-ml o+
1 -aP;+ ;Q‘ngi 0 0 0 0 _ 62 6,2 — ol

_ T 1
In1=PiAi + Aj Pi - pPi+ Q1 - an - mofk - ® & + miiPi

1

T 1 1
ra1=AgiPi+ —Q2 - —M{,
™ ™

o= - 205+ M+ M7 + oHICT iGH,
™ ™ ™
Q2=ad - @sTQzs

hT 4 h

1 1, T
ofi=1@symogii dop  fi=1@sym_of o5

hy 4k

¢+ o3

of=1@ sym i 5 2,
21=[ yiMPiAi PiAgi JMPiAei TMPiAwi a/mPi (1 - @) 7P

700000 0]

ofi+ o5
of=1gsym-1_—2 5 20

31=

17=[ mil o miet] (mieal w”_irl]

=33 =diag{ - Py, -, = PTY, = PRL, -, = P71}

Pi=diag{P1; P2i}, Q1= diag{Qi1, Qi2}, Q2= diag{Ry, R2}

Proof. Select a Lyapunov-Krasovskii functional for system (12)
V@), i, t) = Vit o), i, £) + Va(r (D), i, £) + V30 (D), 1, ) (20)
where

Vit (), i, £) = g7 (O)Pin (t)

t
Van(t), i, £) = [ P97 (5)Qu(5)ds
»
t t
Vs(r(b), i, £) = [ f eB =57 (v)Qqr (v)dvds
o

Calculating the derivative of V (5 (t), i, t) along the trajectory of the
system (12) for i, i € S, we have

EWVA((), 1, 0)) = 2T OPA + 9T (6) Y, miPin (D)
j=1 21

EVan(®), i, ) = pVa(n(®), i, )
+ 0T (OQn (@) — ePFMyT (t — ) QiX(t —7m)  (22)

EVs(m(®), i, O} = p3(n(®), i, ) + zmriT Q27 (t)

t
— B (t—5),,T 5
ft . e 71 ($)Qar(s)ds 23)

in which A = Ain(t) + Agin(t — () + Acier(t) + Agiw () + ahi(t)
+ (1 - ag()
By Lemma 1, for Q, and M; satisfy [EZT QM;] > 0, the following

inequality holds

t
- / e =957 (5)Qan (s)ds
t—p

ney T -Q *
S%[n(t—rm)} Q2 -Mf -2Qa + M;+ M] :
n(t—tm) M Q2-M] -Q2
n(t)
(- ()
n(t = ) 24

Notice that (2) implies that
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hi®) = d @ pHn®Thi®) - d ® )1 <0 25)

E® - dQ ¢HnOI[g®) — d® pfHnt)] <0 (26)
Then, combining (13) and (21)—(26), we have
EV @), i, )

T
<PV, i, 0 + 2T OPA + 4T (©) Y P ()
j=1

+ 7T (OQy (1) — ePMyT (t — 2p)Qun(t — wi) + T () Q27 (b)

o T -Q2 * *
+—| -2ty | Qa-M] -2Q2+ M+ M] *

n(t —m) M'T Qz—M'.T -Q2

n(t)
n(t = 7(0) | = ef (ORiex() + ory " (€ = 2(@)HICT2iCiHn (t - 7(0))
n(t = wv)

— iR = A ® ¢HnOT i) - d @ pfHn®)]
~ 1l — A ® pEOTE® - A ® p£Hn(D)]
<V a®. 10+ TOEC D)
r

+ ol OHo® + 77 ®) Y. P + o’ ©Qan(t)
j=1j#i 27)

where ¢T(6) = [ 1(t) n(t - 2(t) n(t - 1) e(t) w(®) hs) g)]'
From (17) and (27), recalling 0 < H; < s, we can get

EVa®,1, 0} <PV 0, i, O) + o OHo )}
SEPV@©, 0, O + Ao (Ha(D)) (28

It can be obtained from (28) that

8[%(6_/”‘/(71(0: i, t))] < 8{ lsE‘ﬁth(t)w(t)}

(29)
Integrating (29) from O to t with t € [0, T], we have
t t
— . — T

/O g[e PV (n(s), i, s)]ds < As /0 &le o ()w(s) | ds 30)
From (30), we can find that
gle V), i, )] < V), ro, 0) + /158{ /0 t wT(s)w(S)dS} a1
Notice that
V(#(0), 1, 0) < sup S{WT(fo)er(fo)' ﬁT(fo)Rn‘(to)}A <At

—r<t<0 32)

where A = % + y s + 7f344. In view of 4R < P, for all t € [0, T}, we
have

E[Van®), i, )] > anT ORy(t) (33)
Thus, we can derive from (31)—(33) and (3) that

e (Act + Asd?)

T
n" (ORn () < p 34

Therefore, the system (12) is finite-time bounded, 5" (t)Ry(t) < c3.
This completes the proof. ©

Remark 7. It is a challenging problem on how to estimate the
integral term with time delay information

- ft fTM e/ =957 (s)Q,ii(s)ds. Very recently, several effective meth-

ods are developed to find the upper bound of the integral term, for
example, the free-weighting-matrix approach in [39,40] and the
reciprocally convex lemma proposed in [37], Besides, the authors
in [41] develops two relaxed integral inequalities to estimate the

the integral term. In this paper, the widely used method of re-
ciprocally convex lemma is employed.

Theorem 1 presents sufficient conditions which ensure the aug-
mented system (12) to be stochastically finite-time stability. By em-
ploying the same method in Theorem 1, we can derive the following
Theorem 2, in which sufficient conditions are given for the stochasti-
cally H,, finite-time bounded of the augmented system (12).

Theorem 2. For given scalars a, wy, o;, f, T>0, d> 0 and g > 0,
under the event-triggered scheme (5), the augmented system (12) is
stochastically H, finite-time bounded with respect to
(@, &, T, R, y, d), if there exist positive scalars 4(I1=1, 2, 3, 4, 5), {1,
Mo 0<g <, Pi>0 Q>0 R>0, 2; >0 (ieS), and M, with
appropriate dimensions such that

_ | & -PQ;'P o+
5= _21 1Q2 i <0
L 0 -1 x
En 0 0 Ey 35)
MR < P; < R, Q1 < 23R, Q2 < 4R (36)
Q M
. >0, A+ p2d?<ePTicd, E4 =51 E4a= 53
M Q2 37)
where
M Q2-MI -efMQi-Q2 *  * * *
5o Akp; 0 0 -9 *
Al 0 0 0 - ¢ *
Pi+ mel, 0 0 0 0 Qa-ml *
(- aPi+mds 0 0 0 0 -0 Oa-pl

Other variables are the same as Theorem 1

Proof. Construct the same Lyapunov-Krasovskii functional as in
Theorem 1. Similar to the proof in Theorem 1, we have

E(Va®,i,0} - pE(Va(®), i, O} = 2o’ o) + 2T O()
<0 38)
Further, from (38), we get

d, _ . _ ST s
S{E(e PV (i (0), 1, t))} < e[ P’ o) - 21020 o)

Under zero initial condition, integrating (40) from O to T, we have

T
—pt :
0 <&{(e?Va), i, 1)) <f0 &
{ e [y20’ Ow(t) — ZT(t)Z(t)] }dt (40)

Further, we can get

T T
a{e-ﬂT /0 zT(t)Z(t)dt} <8{ /0 e-ﬂffT(t)z(t)dt}
T
2 —pt T
<8{y fo ) (t)w(t)dt}

T
<8{}/2/0 wT(t)w(t)dt} an
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Therefore, the proof is completed. ©

In the following, we will deal with the estimator design pro-
blem by considering the effect of event-triggered scheme and
quantization. Based on Theorem 2, sufficient conditions are es-
tablished for the existence of the desired estimator and the explicit
expression of the desired parameter is provided in the following
Theorem.

Theorem 3. For given scalars @, v, o;, B, T>0, d>0, €, &,
6,v=1,--i-1,i+1,--,1and q > 0, under the event-triggered
scheme (5), the augmented system (12) is stochastically H, finite-
time bounded with respect to (g, &, T, R, y, d), if there exist positive
scalars y(1=1,2,3,4), U, y2, 0<g<a, ;>0 >0, Q;>0,
R>0, ; >0 (i € S), and M;, with appropriate dimensions such that

5 —2e1P + €2Q, % * *
=L 0 -1 = = ]<0
Eq 0 0 B4 =
Zs1 0 0 0 =55 (42)
MR < P; < 2R, Q1 < 23R, Q2 < 4R 43)
Q: M
. >0, Act+y2d? <e T ics
M Q (44)
where
[ f“.” * * * * * *
f21 ' * * * * *
mr Q2-M] -efMQi-Qy *  * * *
= Aei 0 0 -Q * *
Alip; 0 0 0 -4 = *
Pi+ mel, 0 0 0 0 Qa-ml *
A A
(- &P; + p2d§; 0 0 0 0 -Q2 Q2-pu2l
LT N
Fri=Ai + A - pPi+Q1—- Q2 - i - w20 + miPi Aei =[0 Y]]
- ~ = P1iAi 0 P 0 cTyr
21=Agi + -MI, A= . Agi = i
21=Aai Q2= M ' [— YiGi PiAi + PaiY; "“lo o
Eo1=| yaiAi JTiAg JTAe TWPiAwi @ TRIP; (1 - @) 7P|
T
. e 0 00000 )
En= . , C= [C,‘ 0]
0 064G 0 541 000
- —e 0 - _
Z44 = , Z51=(mM 000000
44 [ 0 521] s1=] ]|
_ , 7 . .
a=[ @i ~ J@iiPi il - JmPi| ., Pi=diag Py Pai)
Z55 = diag { — 01P; + lep], vy — 2(9,‘_113,‘ + «9,.2_11),'_1, - 2«9”1131' + 9i2+1P,'+1, v, = 20rP;

+02Pr)

Other parameters are defined in Theorem 1, Moreover, if the above
inequality is solvable, the desired estimator gain can be determined

by

Ki = Pz_ilyi (45)
Proof. First, we denote Ay = A; + Agi, Aei = Aei + Aeqi, Where
[0 o] ; o] .. .

A= [K,»Ci o]’ Adi = [mqq o] = KiCqn Aei = Ki

. 0 o 0 _ _
Aggi = [Kmq] =KiCp, Ki = [1(,]‘ Cqp=[44G 0], Cpo = 44

Due to

Q2 - 7'PHQ37' Q2 - ¢7'P) 2 0,

we can get
—PiQ5'P; < — 2e1Pi + ££Q> (46)

By utilizing Lemma 2, it follows from (35) and (51) that there exist
scalars &7 > 0 such that

¥ + exH{ Hy + e 'HI Hg < 0 7
where
Y11 * * *
V1 - 2e1Pj+ £ o . T
T 122 Fa1=A; Pi+ Q2 - M/
L 0 -1
4 0 0 Z44
B 5Tl * * * * * *
le ') * * * * *
MiT Qo - MiT —efMQi-Qy * ® * *
T
¥y = AeiPi 0 0 -Q; * # *
Alpi 0 0 0 -k *
Pi+ mol 0 0 0 0 Qa-ml ®
a- ri)Pi+;42¢'2g,» 0 0 0 0 Q2 Q2-pml
Hy = [R,—TP,- 000000 ,mk,-TP,-]
Hq=[0Cq10Cq2 000 0]
wo1 = JPiAT [PiAT O TiPiAei - TRIPiAL @ TP (1 - @) TP
By Schur complement, (47) is equivalent to
'{I_H £ ES * *
My = 2ePi+6£Qy * % %
=\ L 0 -1 = *|[<0
¥a1 Y12 0 Zy =
¥s1 0 0 0 ¥ (48)
in which
_r T
eakihh 0 0 0 000
¥ = N ,
0 6GO0sI 000

o7
K P; — =
Vi = [82 T’g i ’], Vs1 =531, ¥s5=2Z33

Denoting Y = P5;K;, pre- and post-multiplying both sides of (48)
with diag{I, I, ---, I, P;, ---, P;}, we can easily obtain
—

r-1

_:—”']1 * * * *

B - 2ePi + 812Q2 * * *
Y=L 0 -1 = = [<0

541 0 0 544 *

5 0 0 0 ¥ 49)
where
Pss = diag { — PyiP{ Py, -+, — PaiPzYPaiy — PaiPh Paiy -+,

— PPy Py} (50)
Notice that
P3P Py < = 20,Pyi + 62B,v=1, -, i—-1,i+1, -1 (51)

Replace —PyP;'Py; by —26,Py; + 2P, we can get (3) the proof is
then complete. ©

Remark 8. There are three main aspects leading to the design of
state estimator more complicated, i.e. event-triggered scheme,
quantizations and randomly occurring nonlinear perturbation. In
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Theorem 3, sufficient conditions are derived which guarantee the
augmented system (12) stochastically H,, finite-time bounded
with respect to (g, &, T, R, 7, d) and the explicit expression of de-
sired state estimator gains are given in terms of the feasibility of a
linear matrix inequality. From Theorem 3, we can observe that the
H,, performance requirement and the network resource usage are
related to the event-triggered parameters and the quantization
method. The triggered parameters o; can be adjusted according to
performance of the Markovian jump systems.

Remark 9. The gain can be determined by equality K; = P5'Y;. It
should be pointed out that the designed state estimator is con-
strained by inequalities (42), (43) and (44). Noticed that when
inequalities (42), (43) and (44) are feasible, the matrix £2;, P,; and
Y; are obtained. Then, the gain matrix of the state estimator can be
derived from K; = P5'Y.. The gain of the state estimator is depen-
dent on the feasible solution of the inequalities (42), (43) and (44).

Remark 10. In many practical applications, the minimum value of
y? + ¢ is expected. The feasible conditions in Theorem 3 can be
described as the following optimization problem

min g,y2 + ¢,¢7
s.t. (42 - 44) (52)

where ¢ and @ are relative weighting coefficients.

4. Simulation examples

To validate the effectiveness and feasibility of the proposed
method, we operate the following example. Consider the following
networked Markov jump system involving two modes with the
following parameters:

-08 0 1 10 0.2 0.15
A= » Am = , G= N L=
! [ 0.8 —1] ! [—0.2] ! [0 1] ! [0.1 0.3]
A =[-0.5 1 ] Ay = [—0.1]' G- [0.5 0 ]

0o -1 0.1 0 0.6
L _[ 0.2 0.1]
2=
-02 04

The nonlinear functions are chosen as

by = [0.04)(1 — tan(0.3x) + 0.1 5X2] _ [ - 0.3x tan(O.le)]
0.09x, tan(0.7x,) " 217 0.8x, + tan(0.6xy)
hy [ 0.4%, — tan(0.3x1)] _ [ 0.3% — tan(O.le)]
0.9% — tan(0.7%) [ <% | 0.8%, — tan(0.6xy)

It is easy to see that the constraint (2) can be met with

n_[-006 0 n_[0 o0 o o
¢”‘[ 0 0]' 4’21"[0 0.02]‘ ¢11"[0 0.04]'

~0.02 0
d’Zglz[ 0 o]

The exogenous disturbance inputs are selected as
0.5, 5<t<10

-05, 15<t<20

0, else

w(t) =

The switching between the two modes is described by the

Mode
&

0 5 10 156 20 25 30 35
Time(s)

Fig. 2. The probabilities of switching between modes.
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Fig. 3. Release instants and intervals in case 1.

-05 0.5
03 -03

transition probability matrix 17 =[
given as xo =[ 0.3 - O.3]T.

With the parameters given above, it is aimed to co-design an
event triggered scheme (5) and a state estimator (4) for the Mar-
kovian jump systems (1). In the following, we will consider two
possible cases which are used to illustrate the impact of the trig-
gered parameters on the system performance. Case 1 employs the
same triggering parameters. Case 2 employs the dynamically ad-
justed parameters. For the convenience of analysis, the values of a,
3¢ ™, d, €1, €2, 01, 65, B, R and Tare chosen the same for the
following two cases except the triggering parameters ¢; and o,.

Case 1: Setting the dynamically adjusted triggering parameters
o1 =025, o,=0.15, for given a=0.8, 5, =09, 7y =0.1, d=2.5,

e1=1, e2=1, 61=1, 6,=1, p=05, R=[‘ 0] T=3, based on

]. The initial state is

01
Matlab/LMIs toolbox and applying Theorem 3, combine (42)—(44)
and K; = P5'Y;, we can get y = 3.3391, c=7.0328 (g;=1,0, = 1),
and the desired estimator parameters and event-triggered matrix
as follows

K = [- 0.0516 — 0.0506] K = [— 0.0387 - 0.0592]
-0.0370 0.0244 | -0.0379 0.0205

=[ 5.4640 —0.4325] =[ 5.8080 —0.2328]
'71-04325 59486 | -02328 59777

The probabilities switching between modes can be seen from
Fig. 2. The release instants and intervals are shown in Fig. 3. In the
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(1)

Output estimation errors

Time(s)

Fig. 4. Output estimation errors Z(t) in case 1.

Mode
o

0 5 10 15 20 25 30 35
Time(s)

Fig. 5. The probabilities of switching between modes in case 2.

simulation of 35 s, only 88 sampled data are released, which takes
25.1% of the sampled signals.

The estimation output error Z(t) is shown in Fig.4, where the
estimation output error converges to zero.

Case 2: Setting the same triggering parameters are chosen as
o1 =03 =0.25, for given a = 0.95, 55, = 0.9, 7y = 0.1, d=2.5, ¢1 =1,

e=1 06,=1, 0,=1, p=05 R= [é ?] T=3, we can obtain

y =3.3364, ¢ = 7.0283(¢, = 1, o, = 1), the desired estimator para-
meters and event-triggered matrix are derived as follows

_ [_ 0.0515 - 0.0508] - [_ 0.0389 - 0.0593]
"~ [-00370 0.0248 | -0.0380 0.0206

o =[ 5.4582 —0.4328] =[ 5.4239 —0.3698]
-0.4328 59416 | -0.3698 5.6851

Fig.5 depicts a possible system mode evaluation. The release in-
stants and intervals are given in Fig.6. The simulation results for
t € [0, 35] show that 92 sampled data are transmitted, which takes
26.3% of the sampled signals. Fig.7 shows the estimation output
error, which indicates that the estimation output error converges
to zero.

From Figs. 4 and 7, it can be seen that the estimation error
system is stochastically H,, finite-time bounded and the designed
estimator is effective and feasible. Compared with the time-trig-
gered scheme, 25.1% and 26.3% sampled data are transmitted for
case 1 and case 2, respectively. The simulation results in case 1 and
case 2 show that the event-triggered scheme can reduce the
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Fig. 6. Release instants and intervals in case 2.
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Fig. 7. Output estimation errors Z(t) in case 2.

communication load in the network-based M]Ss, the maximum
release interval of the event generator is 0.7s. Moreover,
Figs. 3 and 6 illustrate that the number of the sampled-data by
dynamic triggered scheme is less than those by making use the
same event-triggered scheme. The obtained results in this article
not only reduce the network transmission frequency while pre-
serve the desired performance but also guarantee the estimation
error dynamic system stochastically H,, finite-time bounded.

Remark 11. It should be observed that the novelty of the results in
this paper pays more attention to finite-time state estimation and
the limited network resources in Markovian jump systems with
randomly occurring nonlinearities. An modified event-triggered
method is employed to save the network resources. The similar
event-triggered scheme was firstly proposed in [12], however, the
authors only considered the controller design problem. They didn't
consider the finite-time state estimation for Markovian jump
systems with randomly occurring nonlinearities. From the simu-
lation results, we can see that the state estimator design method
obtained in this paper is effective.

5. Conclusion

In this paper, the problem of event-based finite-time state es-
timation is investigated for Markovian jump systems with quan-
tizations and randomly occurring nonlinearities. An event trig-
gered communication scheme and a quantizer are introduced into
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the framework to reduce the network bandwidth utilization. Suf-
ficient conditions of stochastically finite-time boundedness and
stochastically H,, finite-time boundedness are established for the
estimation error system. Furthermore, the explicit expressions of
the desired estimator gains are derived. A simulation example has
highlighted the usefulness of the proposed method. Future re-
search directions will include the problems of event-based finite-
time H, filtering and event-based non-fragile finite-time output
feedback H, control for Markovian jump systems with network-
induced time delays.
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