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Ratio-dependent predator-prey models are favored by many animal ecologists recently
as more suitable ones for predator—prey interactions where predation involves searching
process. In this paper, a ratio-dependent predator—prey model with stage structure and
time delay for prey is proposed and analyzed. In this model, we only consider the stage
structure of immature and mature prey species and not consider the stage structure of
predator species. We assume that the predator only feed on the mature prey and the
time for prey from birth to maturity represented by a constant time delay. At first, we
investigate the permanence and existence of the proposed model and sufficient conditions
are derived. Then the global stability of the nonnegative equilibria are derived. We also
get the sufficient criteria for stability switch of the positive equilibrium. Finally, some
numerical simulations are carried out for supporting the analytic results.

Keywords: Ratio-dependent; stage structure; time delay; characteristic equation; globally
asymptotical stability.

1. Introduction

In the natural world, almost all animals have the stage-structure of immature and
mature. Hence, it is of ecological importance to investigate the effects of such a
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subdivision on the interaction of species. In recent years, stage-structured mod-
els have been received great attention. In [1], Aiello and Freedman proposed and
invested a model of single species population growth incorporating stage structure
as a reasonable generalization of the classical logistic model. This model assumed
an average age to maturity which appears as a constant time delay reflecting a
delayed birth of the immatures and a reduced survival of the immatures to their
maturity. The model takes on the following form

{ Ti(t) = axm — yxi(t) — e Tap(t - 7), (1.1)

i’m(t) = Q'e_TTirm(t - T) - ﬁ&?,_?n.

where z;(t) denotes the immature population density, z,,(t) represents mature pop-
ulation density, a > 0 represents the birth rate, v > 0 is the immature death rate,
B > 0 is the mature death and overcrowding rate, 7 is the time to maturity. The
term eV, (t—7) represents the immatures who were born at time ¢ —7 and sur-
vive at time ¢t (with the immature death rate ), and therefore represents the trans-
formation of immaturity to maturity. Following the way of Aiello and Freedman,
many authors studied some different kinds of stage-structured models and some
significant work has been carried out (see, for example, [9, 10, 13, 14, 19, 24, 28]).

A large body of existing prey—predator models have appeared in the literature,
which assumed that the per capita rate of predation depends on the prey numbers
only. That is not reasonable especially when predators have to search, share or com-
pete for food. In 1959 and 1966, Holling proposed three types of functional response
and proved that the functional response played an important role in predator—prey
systems [17, 18]. A more suitable general predator-prey model should be based
on the “ratio-dependent” theory. The per capita predator growth rate should be
a function of the ratio of prey to predator abundance. Moreover, the number of
predators is relative to prey number and it often changes slowly because of the
competition among the predators, and the per capita rate of predation depending
on the numbers of both prey and predator, most probably and simply on their
ratio [27]. These hypotheses are strongly supported by numerous field and labora-
tory experiment and observations [2-4, 16]. Hence, ratio-dependent predator—prey
models with Michaelis Menten type functional response have received great atten-
tion [25, 27]. Recently, ratio-dependent prey-dependent predator—prey models have
been studied by several researchists (see, for example, [3-5, 12, 15])

The predator—prey systems with stage-structure are very important and have
been studied by many authors. In [22], Shi and Chen considered the following model,

(£1(t) = axa(t) — diz(t) — ae~ U Tz (t — 7),

pra(t)y(t)

Ea(t) = ae™ N Tay(t — 7) — dawa(t) — daa(t) — my(t) + z2(t)

e IE fpa(t)y(t)
| 9(t) = —day(t) + my(t) + z2(t)’

; (1.2)
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where 1 (t) and x2(t) denote the immature and mature prey population densities
at time ¢, y(t) is the density of predator population at time ¢, & > 0 is the birth
rate and transformation rate of immature population, dy > 0 is the death rate of
immature population, ds > 0 is the death rate of mature population, ds > 0 is the
intra-specific competition rate of mature population, p > 0 is capturing rate, m > 0
is half capturing saturation constant, dy > 0 is the predator death rate, f is the
conversion rate for predation. System (1.2) assumes the prey population have stage-
structure and only mature individuals are consumed by the predator. This seems
reasonable for a number of mammals. As is common, the dynamics-eating habits,
susceptibility to predators, are often quite different in these two sub-populations. In
the natural world, when the immature preys conceal in the mountain cave and are
raised by their parents, they do not necessarily go out to seek food, then the rate
they are attacked by the predators can be ignored. In [22], Shi and Chen discussed
the stability of equilibria and the effect of impulsive interruption on the original
model.

In this paper, we assume that the present number of the predator affects instan-
taneously the number of the maturity prey, but that the growth of the predator
is influenced by the amount of the maturity prey in the past [25]. To this end,
we consider the following more reasonable integro-differential equations with time
delay

(27 (?L) - O:.TL'Q(t) —di2 (t) — (16"417;1:2(1‘, - T),
- - p2(t)y(t)
£) = ae— BTz (t — 1) — dya(t) — daz2(t) — —P22 ,
4 @a(t) = ae xa( T) 22 (t) 325(t) my(t) + za(t) (1.3)
t
. ow2(s)y(s)  _se—s
t) = —d t+hf * (t=9)gs,
\ y( ) 4y( ) . my(s) ‘Jr“Ig(S)e S
the exponential weight function satisfies
t o0
f de0t=8) s = de %du = 1. (1.4)
— 00 0

More precisely, the number of predators grows depending on the weight-averaged
time of the Michaelis-Menten function of x5 (¢) over the past by means of the func-
tion z(t) given by the integral

S L dxa(s)y(s) —8(t=5)
() [-m my(s) + x2(s) 4 (1.5)

Clearly, this assumption implies that the influence of the past fades away exponen-
tially and the number 1/6 might be interpreted as the measure of the influence of
the past. So, the smaller the § > 0, the longer the interval in the past in which the
values of z5(t) are taken into account [7, 11, 20].
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The integro-differential system (1.3) can be transformed [11, 20] into the system
of differential equations on the interval [0, co)
(21(t) = axa(t) — diz1(t) — e DT ao(t — 1),

pr2(t)y(t)
my(t) + z2(t)

io(t) = ae" N a2y (t — 7) — doza(t) — d3z2(t) —

| L Omay)
£(t) =
my(t) + x2(t)
| 5(0) = —day(®) + ha®).
The relationship between systems (1.3) and (1.6) as follows: if (x4 (), z2(t), y(t)) :
[0,00) — R? is the solution of (1.3) corresponding to continuous and bounded
initial function (Z(t),Z2(t),y(t)) : [0,00) — R* then (x1(t),z2(t),2(t),y(t)):
[0,00) — R* is a solution of (1.6) with z1(0) = Z1(0),z2(0) = Z2(0),y(0) = y(0)
and

-

- 52“’)1

0 - -
2(0) = / 0_182(7-)?’!_(7-) e®7dr. (1.7)
— oo MY(T) + T2(T)

Conversely, if (z1(t), x2(t), z(t),y(t)) is any solution of (1.6) defined on the real line
and bounded on [0, 00), then z(t) is given by (1.5) and so (z1(t), z2(t), y(t)) satisfies
(1.3).

In the next sections of this paper, we study model (1.6) with the following initial
conditions:

xr (9) = (b()(e) 2 0, J?Q(Q) e (;51 (9) Z U, o = (}52(9) > U._

y(0) = d3(0) 20, $0(0) >0, ¢1(0) >0, (1.8)
(452(0)>0, ¢3(U)>0, 36[—7’,0],

where (¢o(0), d1(0), #2(0), p3(8)) € C([-7,0], Rf), the Banach space of con-
tinuous functions mapping the interval [—7,0] into RJ, where R} =
{(z1,29,23,24) : ; > 0,i=1,2,3,4}. For continuous of the initial conditions, we
further require

0
xmn:[ ae* 6y (8)ds. (1.9)

-

This paper is organized as follows. In the next section, we discuss the perma-
nence and extinction of the system (1.6). In Sec. 3, we study the stability of one
nonnegative equilibrium. The existence of Hopf bifurcation at the positive equilib-
rium is presented in Sec. 4. In Sec. 5, some numerical simulations are performed
to illustrate the analytical results. A brief discussion is given in Sec. 6 to conclude

this work.

2. Boundary Dynamics and Permanence

It is important to show the positivity and boundedness for the system (1.6) as they
represent populations. Boundedness may be interpreted as a natural restriction to
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growth as a consequence of limited resources. In this section, we present some basic
results, such as boundedness of solutions, the permanence and extinction of the
system.

As a direct corollary of [8, Lemma 1.4], we have the following lemma.

Lemma 2.1. Ifa >0, b > 0 and #(t) > b — ax(t) when t > 0 and z(0) > 0, we
have liminf, 4o z(t) > 2.

If a > 0,b > 0 and @(t) < b — az(t) when t > 0 and z(0) > 0, we have
lim sup,_, ., z(t) < 2.

We need the following results from [23].
Lemma 2.2. Consider the following equation
i(t) = ax(t — 1) — ba(t) — cz®(t),

where a,b, c, and T are positive constants, x(t) > 0 for t € [—7,0]. We have

(i) If a > b, then lim;_ o z(t) = 9=2;

C

(ii) If a < b, then limy_ . x(t) = 0.

Theorem 2.3. Solutions of system (1.6) with initial conditions (1.8) and (1.9) are
nonnegative and bounded for all t > 0.

Proof. Firstly, we show x1(t) > 0,22(t) > 0,2(t) > 0,y(¢) > 0 for all ¢t > 0.

Let (x1(t), z2(t), 2(t), y(t)) be a solution of system (1.6) with initial conditions
(1.8) and (1.9). First we show x2(t) > 0, for all t > 0. Otherwise if it is false, noting
that x2(¢) > 0, (—7 <t <0), y(t) > 0, (—7 <t < 0), then there exists a t >0,
such that 25(t') = 0. Now we define to = inf{t > 0|zo(t) = 0}, then to > 0, and
from the second equation of system (1.6), we have

, ae~ T (kg — 1), 0<to<T,
.’L’z(t{]) —

ae " NTxy(tg —17), to>T.

Then z2(ty) > 0, but by the definition of ty, xz2(tp) = 0, this is a contradiction.
Hence z5(t) > 0, for all ¢ > 0.

Next we will show z(t) > 0, y(t) > 0, for all t > 0.

If there exists t > 0, and denote t, = inf{t > 0|z(t) = 0}, then ¢, > 0, and
from the third equation of system (1.6), we have

oxa(t)y(t)
my(t) + z2(t)

hence, we get z(t) > 0. Similarly, we can derive y(t) > 0. By (1.9) and the first
equation of system (1.6), we derive z;(t) = f:_T ae~h(t=3) gy (s)ds > 0 for t € [0, 7],
clearly, ;1 (t) > 0, for all t > 0.

Thus, z1(t) > 0,29(t) > 0,2(t) > 0,y(t) > 0 for all t > 0.

Now we consider the boundedness of positive solutions of system (1.6).

2(to)|yz0 = >0,

1250014-5



Int. J. Biomath. 2012.05. Downloaded from www.worldscientific.com
by DONGHUA UNIVERSITY on 03/30/17. For personal use only.

L. Zha, J.-A. Cui & X. Zhou

Let (21(t),x2(t), 2(t), y(t)) be any positive solution of system (1.6) with initial
conditions (1.8). Define p(t) = dx; (t) + dza(t) + pz(t). Calculating the derivative of
p(t) along positive solutions of (1.6), it follows that

p(t) = adxa(t) — ddix1(t) — ddaxa(t) — ddzxa(t) — Spz(t),

< —Ap(t) + bowa(t) — Sdsad(t),

oo
< —Ap(t) + —, 2.1
< —4p(0)+ 3 2.1)
where A = min{d;, ds, p}. Therefore, by Lemma 2.1, we have

. Yo
rlggo plt) < 4Ads"

Then there exists an M, depending only on the parameters of system (1.6), such
that for any t > T', we have

:L‘l(t) < My, :L‘Q(t) < M, z(t) < M.
It follows from the fourth equation of system (1.6) that for ¢ > T,
y(t) < —day(t) + hM;.

By Lemma 2.1, we have

hM
limsupy(t) < it 3
t—+oo d,4

Define M = max{%'-, M, }. Hence, we have

0 < z1(t), z2(t), 2(t), y(t) < M.

This completes the proof. O

Since the last three equations of system (1.6) have no relation to variable (),
we only need to investigate the following system (2.2):

4

I'Q(f) — ae_le-'L'Q(t - T) o d23"2(t) o d‘gflr%(f) - piﬁz(t)y(t)

my(t) + z2(t)’

o Omy®)
()= my(t) + x2(t) St

| 9(t) = —day(t) + hz(t).

In the next sections of this paper, we focus on model (2.2) with initial
conditions (1.8).

First, we introduce a definition which is useful to study the permanence of the
system (2.2).

(2.2)

Definition 2.4. (i) System (2.2) is said to be uniformly persistent if there exists
a compact region D C IntR?}, such that every solution X (¢) of system (2.2)
with initial conditions (1.8) eventually enters and remains in the region D.

1250014-6
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(ii) System (2.2) is said to be impermanent if there is a positive solution
(z2(t), z(t),y(t)) of (2.2) satisfying

Illlll{t_ljﬁm inf x5 (t), t_l}&lx inf 2(t), t_l}ﬁgomfy(t)} = 0.

Theorem 2.5. If (i) ae™H7 —dy — £ >0 and (ii) h > dy hold, then system (2.2)
s uniformly persistent.

Proof. Obviously, Q = {za(t), 2(t),y(t)) | 0 < xa(t), 2(t), y(t) < M} is a positively
invariant set of system (2.2). Given any positive solution (z2(t), z(t), y(t)) of system
(2.2), we have

ig(t) > O!G_leQJQ(t = T) = d2:l)2(t) — d;;.?:%(ﬂ) = & (23)
Consider the following auxiliary equation
(T
i(t) = ae= BT u(t — 1) — dou(t) — dau(t) — 248 (2.4)
m

LR, . R —d1T L—
By applying Lemma 2.2 to system (2.4), when ae™™7 — dy — £ > 0, one obtains

) ae~NT —d, — £
lim wu(t) = i
t——+o0 d3

by comparison, we get

e ae~hT —dy —
liminf z5(¢) > L = 9.
t—+oo ==

ds3

Hence there is a 7" > 0, such that xa(t) > %—2* for t > T, and we have

my(t) + 5 ’ (2.5)
y(t) = —day(t) + hz(t).
Now, we consider the comparison equations

B 5%2'1:@) B
= ez ou) (2.6)
0(t) = —dyv(t) + hu(t).

Obviously, there can exist two equilibria of (2.6): (0,0) and (u*,v*), where u* =
dy 22 h

pot, vt =52 (4 — 1)
Linearizing system (2.6) at (0, 0), we derive the characteristic equation of (0, 0) is
A2+ (8 +dy)X+6(dy — h) = 0. (27)
Clearly, if h > d4, then (2.7) has a positive root, then the equilibrium (0,0) of
system (2.6) is unstable.

1250014-7
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Linearizing system (2.6) at (u*,v*), we derive the characteristic equilibrium of
(u*,v*) is

A2+ (6 +dy)\ + 6dy (1 - %) = 0. (2.8)

It is easy to see that if h > dy, then (2.8) has two negative real roots, then the
equilibrium (u*, v*) of system (2.6) is locally asymptotically stable.

Let 0 < u(to) < z(t0),0 < v(to) < y(to),to > T. If (u(t),v(t)) is a solution of
(2.6) with initial conditions (u(to),v(to)) for to > T, then z(t) > u(t),y(t) > v(t)
for t > to. For (2.6), if there exists a solution which is unbounded, say (u(t), v(t)) —
(400, +00) as t — +oco, then it follows that for (2.2) there exists at least one solu-
tion, say (x2(t), z(t), y(t)), which is also unbounded provided there is a satisfying
initial condition 0 < u(ty) < 2(tg),0 < v(tg) < y(to). This contradicts the bound-
edness of solutions of (2.2). Hence we must have that all the solutions of (2.6)
are bounded. It follows that the unique positive equilibrium (u*,v*) is globally
asymptotically stable. Hence we have

liminf 2(t) > u” := 2z, liminf y(¢) > v* := y.

t——+o00 t—+oo

Theorem 2.3 and the above arguments imply that, if conditions (i) and (ii) of
Theorem 2.5 hold, then the system (2.2) is uniformly persistent. O

Theorem 2.6. If e~ U7 — dy < 0 holds, then system (2.2) is not persistent.

Proof. It follows from the first equation of system (2.2) that
Eo(t) < ae™ N7 xo(t — T) — doxa(t) — daz3(t). (2.9)
Consider the following auxiliary equation
a(t) = ae” N Tu(t — 1) — dau(t) — dzu®(t). (2.10)
By Lemma 2.2, if ae~MT — dy < 0, then it follows that

lim wu(t) = 0.

t——4o00

By comparison, we derive that

lim z5(t) = 0.

t—+4o0

Then there is a T' > 0, such that for any sufficiently small € > 0 and ¢ < m, we
have z2(t) < € for t > T'. From the second equation of (2.2), we have

oe

3(t) < — — 62(2). 2.11
(1) < = — 62(1) (2.11)
Consider the following equation
o
1W(t) = — — oult). 2.12
i(t) = = — du(t) (2.12)

1250014-8
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Clearly, if % < 6, then by Lemma 2.1, we have

lim wu(t) = LN
t—-+o0 m

Setting € — 0, then
t-Ll—in-]oo u(t) = 0.

Hence, by comparison, we have

lim z(t) =0.

t—+4oco

Consider the last equation of system (2.2)
y(t) = —day(t) + hz(t). (2.13)
By the same method, we have

lim y(t) =0.

t—+oo

This proves the theorem. O

By setting #o(t) = 2(t) = y(t) = 0 in system (2.2), it is easy to see that
system (2.2) has at least one equilibrium Ey(0,0,0). Because system (2.2) cannot
be linearized, the local stability of Ey will not be studied. We leave it as a future
problem. If

ae” N —dy >0,
then the system (2.2) has a nonnegative equilibrium E;(x9,0,0), where

ae~UT — d,
ds )

It is easy to see that if (i) h > dy and (ii) ae™17 —dy > £(1— ‘f—:) hold, then system
(2.2) has a unique positive equilibrium E*(x35, z*, y*), where

1
x%:a[ae_d‘”— 2—%(1—%)],

Zg = (2.14)

[

*

I
—
3| =
X
-y

I
2]
S—
l__\.:l*

3. Global Asymptotic Stability of E;

In this section, we concentrate on the study of the stability of F;. Hence, we assume
ae~ M7 — dy > 0 holds, then the equilibrium E; of (2.2) exists. By our study, we
obtain the global stability of E;.

1250014-9
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Now, we introduce the following results (quoted in many papers such as in [29])
which may be found in [26] and used to study the global stability of E;.
Consider the following ordinary differential systems

&= f{t,z), (3.1)

v =9(y), (3.2)

where f and g are continuous and locally Lipschitz in € R™ and solutions exist
for all £ > 0. System (3.1) is called asymptotically autonomous with limit system
(3.2) if f(t,z) — g(x) as t — +oo uniformly for z € R"™.

Lemma 3.1. Let e be a locally asymptotically stable equilibrium of (3.2) and w be
the w — limit set of a forward bounded solution xz(t) of (3.1). If w contains a point
Yo such that the solution of (3.2), with y(0) = yo converges to e as t — +o00, then
w = {e}, i.e. (t) > e ast — +oo.

Corollary 3.2. If solutions of the system (3.1) are bounded and the equilibrium e
of the limit system (3.2) is globally asymptotically stable, then any solution x(t) of
the system (3.1) satisfies x(t) — e as t — oc.

Theorem 3.3. Assume ce™ ™ —dy > 0. If dy > h, then Ey is globally asymptoti-
cally stable.
Proof. Linearizing system (2.2) at E; = (29,0,0), we derive the characteristic
equation of the equilibrium E; = (29,0,0) is
A+ 20e D7 —dy — ae e M)A + (dy 4 §)A + ddy — hé] = 0, (3.3)
Obviously, if dy < h, equation
M+ (dy + 6N+ 6dy —hd =0 (3.4)

has a positive real root; if dy > h, then (3.4) has two negative real part; All other
eigenvalues are determined by the solutions of equation

A+ 20 N7 —dy — ae e N = (. (3.5)

If ae=h™ —dy > 0, we will show that all of the eigenvalue of (3.5) have negative
real part. Suppose that Re A > 0, then it follows from (3.5) that

Rel = —2ae N7 + dy + ae~H17e TR cog(TIm),
& —Qee™ N L ido Fitve N7,
— —ae_d']T - dg < 0. (36)

It is a contradiction. Thus we have Re A < 0.
Hence, if ae™7 —dy > 0, and dy < h, then one of the eigenvalues of (3.3) has
positive real part. Therefore, E; is unstable.

1250014-10
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If ce=®7 —dy > 0 and dy > h, then all of the eigenvalues of (3.3) have negative
real parts. Therefore, F is locally asymptotically stable.
In the following, we show the nonnegative equilibrium F; is globally asymptot-
ically stable, if ce™47 —dy > 0 and dy > h.
From the last two equations of Eq. (2.2), we have
z(t) < oy(t) — oz(t),
y(t) = —day(t) + hz(t).
Consider the following equations
w(t) = ov(t) — du(t),
(t) (t) (t), 3.7)
0(t) = —dav(t) + hz(t).

Obviously, when d4 > h, then the unique equilibrium (0,0) of Eq. (3.7) exists and
is locally and globally asymptotically stable. By comparison, we get

Jim z(t) =0, lim y(t) =0,

thus, for an arbitrary positive number £ small enough, there exists a time 7', such
that y(t) < €, for all t > T. Then by the first equation of (2.2), we have

pr2(t)y(t)

Eo(t) = ae™ N Txo(t — 7) — daxa(t) — d3z2(t) — my(t) + za(0)

> ae” Moy (t — 7) — daaa(t) — dsad(t) — py(t). (3.8)

Considering the solutions of equation

u(t) = ae” T u(t — 7) — dau(t) — dsu®(t) — py(t). (3.9)
The limit equation of (3.9) is
u(t) = ae~ N Tu(t — 7) — dou(t) — dsu?(t). (3.10)
By Lemma 2.2 and ae™ " — dy > 0, we get the solutions of (3.10) is close to x9,
as t — oo, that is limy_ o u(t) = 9%;—‘12— = 2. It follows from Corollary 3.2
that the solutions of (3.9) satisfies lim;_, o u(t) = * = 3. By compare,
we have

ae~hT —d,
lim xs(t) > ————

= 0.
Moreover, it is obvious that

io(t) < ae DTy (t — 7) — dowa(t) — dszi(t).
Clearly,

—le
. ae — ds
lim 25(t) < ———= = 3:3

t— 400 ds
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Then, it is easy to see that

li ) = ——— = 2,.
Jm, 5= ——5— =a}

This completes the proof. O

4. Stability and Hopf Bifurcation at the Equilibrium E*

In this section, we are going to study the stability of E*(z3,z* y*). Hence, we
assume throughout this section that (i) h > d4 and (i) ae™"7 — dy > =l — %})
hold, which ensures the existence of this steady-state.

Linearizing system (2.2) at E*(x3, 2*,y*), we derive the characteristic equation
of the equilibrium E*(z3, 2*,y*) is

e hoxt
A+ dg +2dzy + pm—yz —ae e N[ A2 + (dg + )X + 6dy — %
(my*+a3) (my* + x35)
Smy* hpxt
my” hpry 0. (4.1)

(my* + a3)°

Equation (4.1) can be written as

P\ T) +Q(\7)e™* =0, (4.2)
where
P(AT) = A + Ao (T)N° + A1 (T)A + Ao (1), (4.3)
Q(A\, 7) = Ba(T)A* + B1(T)A + Bo(7), (4.4)
and

Ao(1) = dy + 6 + G(1),

hoay

A](T) — G(T)(d4 + (5) + 6d4 — m

— (da + O)G(r) + 6ds (1 _ %) |

Ao(r) = G() (5d4 __ hoaj ) omy* hpxs

(my* + x3)? (my* +x3)*

_ - ped 0
o, (1-%) [+ 2 (1)),

1250014-12



Int. J. Biomath. 2012.05. Downloaded from www.worldscientific.com
by DONGHUA UNIVERSITY on 03/30/17. For personal use only.

Ratio-Dependent Predator—Prey Model with Stage Structure and Time Delay

—d
Bs(1) = —ae™ ™7,

Bi(1) = —ae~ N7 (dy + 0),

dy

B(](T) — —Oée_leéd;_; (]_ = E) 5

pmy*
(my* + x3)?

2 d | dy\ 2
:2cxe_d‘T—d2——p fims 22 +£ o
m h m h

Obviously G(7) > 0, and clearly A = 0 is not a root of (4.2), since

G(r) = dy + 2d32} +

Ag(7) + Bo(7) = édy4 (1 — %) lG(T) — e~ BT 4 pda (1 — i—‘*)] #0.

mh
When 7 = 0, Eq. (4.2) reduces to
A3 + (A2(0) + B2(0))A? + (A1(0) 4+ B1(0))A + Ag(0) + By(0) = 0. (4.6)
Note that

As(0) + B2(0) =ds + 6 + G(0) — a,

h
Ao(0) + Bo(0) = dds (1 _ @) {G(O) — gt (1 _ d“ﬂ ?

h mh h

(A2(0) 4+ B2(0))(A1(0) + B1(0)) — (Ao (0) + Bo(0))

A1(0) + B1(0) = (dg + 6)(G(0) — @) + ddy (1 - ﬂ) ,

= (da +96) [(d4 +0)(G(0) — @) + dda (1 B %)]

mh h

2 2
+ (dg + 6)(G(0) — @)? + pdio (1 — @) .
(4.7)

By Routh-Hurwitz Theorem, from which it is easy to know that all characteristic
roots of (4.6) have negative real parts if and only if

pdy dy

G(O)—aJra(l—z) >0

holds. Then we have the following theorem.

1250014-13
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Theorem 4.1. Assume (i)h > dy and (i) ae™ 7 —dy > L(1 — ""4) hold. When
T = 0, then the unique positive equilibrium E* (x5, z*,y*) of system (2.2) is locally
asymptotically stable if and only if

G(0) — o + Pl (1 - %) > 0. (4.8)

In the following, we study the existence of purely imaginary roots A = iw,
w € R. Equation (4.2) takes the form of a third-degree exponential polynomial in
A, in which all the coefficients of P and @ are dependent on 7. Beretta and Kuang
[6] established a geometrical criterion which gives the existence of purely imaginary
roots for a characteristic equation with delay dependent coefficients. In order to
apply the criterion due to Beretta and Kuang [6], we need to verify the follow-
ing properties, for all 7 € [0, Tinax), Where Tiax is the maximum value which E*
exists.

(i) P(0,7) +Q(0,7) £ 0;
(ii)) P(iw,7)+ Q(iw,7) #0
(iii) hmsup{|[g(;\ :)| |A| = 00, ReA >0} < 1;
(iv) F(w,7) = |P(iw,7)|? — |Q(iw, 7)|? for each 7 has at most a finite number of
real zeros;
(v) Each positive root w(7) of F(w,7) = 0 is continuous and differentiable in 7
whenever it exists.

Here, P(\,7) and Q(\, 7) are defined as in (4.3) and (4.4).
Properties (i), (ii) and (iii) can be easily verified. Let 7 € [0, Timax/, it is easy to
see that

P(0,7) +Q(0,7) = Ao(r) + Bo(1) # 0.
Moreover,
P(iw,7) + Q(iw, T) = —iw® — Ayw?® + iAjw — Baw? + iByw + By,
= [~(Az(7) + Ba(7))w? + Ao(7) + Bo(T)]

+i[—w? + (A1 (1) + By (T)w)]. (4.9)
Hence, (ii) is true. It is easy to get |?,-%—i—~:~| |§3¥—1| Therefore, (iii) is also true.

From (4.3) and (4.4), we have
|P(iw, T)|2 = w8 + [A2 — 24;|w* + [A% — 245 A¢]w? + A2,
|Q(iw, 7)|* = Bjw®* + [Bf — 2B2Bow?® + Bj.
Then we have
F(w,7) = o+ p(r)o! + g(1)® + 7(7),

1250014-14
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where
p(r) = A3(1) — 24As(7) — B3(7),
q(1) = A%(7) — 242(7) Ao (7) + 2By (7)Ba (1) — B(7), (4.10)
r(r) = Aj(r) — B§().

Straightforward calculations show

2
p(t) = [G(T)]* + 6+ di + gf‘i — (™ h7)?,

g(r) = ({52 +d2 67?‘) {[G(N)? = (ae™7)*} + [5‘34 (1 - d;_f)r

2
ii—d:(l ‘f‘*) 6+ ds + G(7)],

)= [t (1= )] o v+ 2 (1)

X [G(r) =i . P (1 = d—};‘)] .

mh
(4.11)

It is obvious that property (iv) is satisfied. Let (wg,70) be a point of its domain
such that F(wp,70) = 0. Obviously, the partial derivatives F,, and F. exist and
continuous in a certain neighborhood of (wg, ) and F,(wg,70) # 0. By Implicit
Function Theorem, (v) is also satisfied.

Now assume that A = iw(w > 0) is a purely imaginary characteristic root of
(4.2). Substituting it into Eqgs. (4.3) and (4.4), separating real and imaginary parts
yields

— Ay (T)w? + Ag(1) = —[=Ba(7) + Bo(71)] cos(wr) — By (7T)w sin(wr), (4.12)
—w? + A1 (1T)w = [-B1(7)|w cos(wT) + [~ Ba(T)w? + Bo(7)]sin(wr).  (4.13)

It is easy to check that if (w,7) is a solution of Eqs. (4.12) and (4.13), then so is
(—w, 7). Hence, if iw is a purely imaginary characteristic root of Egs. (4.12) and
(4.13), its conjugate has the same property. In the following, we only look for purely
imaginary roots of Egs. (4.12) and (4.13) with positive imaginary part. Squaring
both sides of (4.12) and (4.13) and adding them up, we get

w8 + p(T)w? + ¢(7)w? + r(7) = 0. (4.14)
That is F(w,7) = 0.

Let # = w?. Then (4.14) becomes

h(z) := 23 + p(7)x? + q(7)x + r(1) = 0. (4.15)
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We denote
AT) = pg(r) — 3q(7), (4.16)
and, when A(7) > 0,

- _p(T) —; V A(T), (4.17)

xo(T)

then we have the following lemma (details of the proof are given in Ruan and Wei
[21], Lemma 2.2).

Lemma 4.2. Let 7 € [0, Timax) and A(T), xo(7) be defined by (4.16) and (4.17),
respectively. Then h(x), defined in (4.15), has positive roots if and only if r(7) < 0
orr(t) >0, A(T) > zo(1) > 0 and h(xzo(7),7) < 0.

Note that

1 o ()] -2 (1)

X [G(T) — e~ N7 4 pds (1 = %)] ;

mh

then we get a sufficient condition for r(7) < 0:

{ae‘d” + G(1) — pda (1 — @)] [G(T) —ae hT 4 pds (1 - d4)] < 0.

mh h mh h

Consequently, 7(0) < 0 and considering the continuity of r(7), we deduce that
there exists 7 > 0, such that r(7) < 0 for 7 € [0,7). Set I := [0,7). Then there
exists 7 € [0,7) such that F(w(7),7) = 0.

From (4.12) and (4.13), we get
(B] = AQBQ)LU4 -+ (AQBQ + AoBy — A1 By )u)2 — Ao By

ng‘; -+ (Bf = 28230)(02 -+ Bg '
. BQUJS + (AQBl = AlBQ = B(])(UB + (A] Bg = AQBl)w
sin(wt) = Blwd + (B2 — 2B,Bo)w? + B2 ,  (4.19)
where we deliberately omit the dependence of the parameter on 7.

Define the function 6(7) € [0, 27|, and cos(67) and sin(f7) are given by the right
hands of (4.18) and (4.19), respectively, such that w(7) = 0(7)+2nm, n =0,1,2,....
Hence, we define the maps:

_ (1) +2nm
T w(n)

(4.18)

cos(wr) =

s =0,1,2..0,

where w(7) is a positive root of (4.14). Using (4.12) and (4.13), we can verify that
iw* with w* = w(7*) is a root of (4.14) if and only if 7 is a root of function 5,
defined by

O(7) + 2nm

Sn(T) =7 — o)

, T7€l, n=0,1,2,....
The following theorem is due to Beretta and Kuang [6].
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Theorem 4.3. Assume that w(7) is a positive root of (4.14) defined for T € I, and
at some 7™ € I,

Sp(7*) =0

for some n = 0,1,2,.... Then a pair of simple conjugate pure imaginary roots
A = tiw(T*) of (4.2) ewists at T = T, which crosses the imaginary axis from left
to right if 6(7*) > 0, and crosses the imaginary axis from right to left if 6(7*) < 0,
where

dRe )\

T

dsy,(T)
dr

O(7*) = sign

= sign{F,,(w(7*,7"))} sign{

A=iw(7*)

Since %(w,'r) = 2w

}. (4.20)
ah( 2

%2 (w?,7), condition (4.20) can be rewritten as

) dRe A . Oh ; dsy (T
o(7*) = sign = s1g1‘18—(w2(1"*),'r*)81g11 % . (4.21)
T I=iw(r*) T L P—
5 1.8
45} 1 1.6}
4 14
3.5 1 1.2}
o N
>
3t 1
25} 4 0.8
2 0.6
15 : - - : 0.4 : : - -
0 20 40 60 80 100 0 20 40 60 80 100
t t
5
05 - ; ; ;
0 20 40 60 80 100
t
Fig. 1. The temporal solution found by numerical simulation of system (2.2) with e = 10,

di = 1,d2 = e l,d3 = 1,p =2,m = 1,dy = 1,6 = 1.5,h = 3,7 = 1 and initial value
(P1(0), p2(0), ¢3(0)) = (4.8,0.5,0.5).
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It can be easily observed that S,(0) < 0. Moreover, for all 7 € I, S,(7) >
Sn+1(7), with n € N. Hence, if Sy(7) < 0 has no root in I, then S, (7) has no root
in [. If S,,(7) has a positive roots 7 € I for some with n € N, then there is at least
one root satisfying

dS, ()
dr

Applying Theorem 4.1, we can conclude the existence of a Hopf bifurcation as
stated in the following theorem.

> 0.

Theorem 4.4. For system (2.2), assume (i) h > dy and (i) ae™"7™ —dy > £(1 -
%‘L), condition (4.8) hold true.

(i) If the function So(T) has no positive in I, then the equilibrium E* is locally
asymptotically stable for all T > 0,

(ii) If the function So(T) has a positive root in I, then there at least exists a
7" € I, such that the positive equilibrium E* is locally asymptotically stable

5 0.6

4 0.5
0.4+t

3 L
0.3t

o "

0.2

1 4
0.1}

or s

-1 . : . : -0.1 : . : :
0 20 40 60 80 100 0 20 40 60 80 100

1.4

1.2

2:0 4.0 6:0 BIG 100

t
Fig. 2. The temporal solution found by numerical simulation of system (2.2) with a = 6,
di = 1,do = 8 ',d3 = 1,p = 2,m = 1,dy = 1,6 = 1.5,h = 3,7 = 2 and initial value
(¢'1 (9): Q‘52(9): ¢3 (6)) = (4‘8?0'5$0'5)'
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for 0 < 7 < 7" and becomes unstable for T > 7", with a Hopf bifurcation occur-
ring when T = 7%, if and only if

Oh

%(UJQ(T*).. ™) < 0.

5. Numerical Simulations

In this section, we shall carry out some numerical simulations for supporting our
theoretical analysis.

(1) In system (2.2), we select « = 10,d; = 1,dy = e71,d3 = 1,p = 2,m = 1,
dy=1,0 =1.5,h = 3,7 = 1. It is easy to show that (i) ae_d”—dg—;_,% > 0 and
(ii) A > d4. By Theorem 2.6, we see that system (2.2) is permanent. Numerical
simulation illustrates our result (see Fig. 1).

(2) In system (2.2), we select & = 6,d; = 1,dy = 8¢ ',d3 = 1,p = 2,m = 1,
di =1,6 = 1.5,h = 3,7 = 2. Clearly, ae~®7 — dy < 0. By Theorem 2.7, we

5 12
4.5 s |
4.
0.8
3.5¢
3l J 0.6
[ N
>
0.4
0.2}
0-
0.5 i i i i _0'2 i i i i
0 20 40 60 80 100 0 20 40 60 80 100
t t
1
0.9+
0.8
0.7
0.6
> 0.5
0.4
0.3}
0.2}
01}
0 i i L i
0 20 40 60 80 100
t
Fig. 3. The temporal solution found by numerical simulation of system (2.2) with o« = 15,

di = 1,dy = 3e l,d3 = 1,p = 2,m = 1,dy = 2,6 = 1.5,h = 1,7 = 2 and initial value
(61(0), p2(0), ¢3(0)) = (5,1,1).
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see that the system (2.2) will be extinct. Numerical simulation illustrates our
result (see Fig. 2).

In system (2.2), we select a = 15,dy = 1,dy = e 3,d3 = 1,p = 2,m = 1,
dy =2,0 =1.5h=1,7 = 2. System (2.2) with above coefficients has a bound-
ary equilibrium E1(0.9,0,0). Clearly, ae=%"™ —dy > 0 and d4 > h. By Theorem
3.3, £1(0.9,0,0) is globally asymptotically stable. Numerical simulation illus-
trates our result (see Fig. 3).

In system (2.2), we select a = 2,d; = 0.4,ds = 0.03,d3 = 1,p = 2.2,m = 1,
dy = 1,6 = 0.3,h = 2,7 = 0.73. System (2.2) with above coefficients has a
unique positive equilibrium E£*(0.36,0.18,0.36). It is easy to show that h > dy,
ae~ N7 —dy > it B %‘}), By Theorem 4.4, the positive equilibrium E* is stable.
Numerical simulation illustrates our result (see Fig. 4).

In system (2.2), we select a = 2,d; = 0.4,ds = 0.03,d3 = 1,p =2.2,m = 1,
dy = 1,6 = 0.3,h = 2,7 = 0.8. System (2.2) with above coefficients has a
unique positive equilibrium £*(0.32,0.16,0.32). It is easy to show that h > dy,
ae ™ hT —dy > E(1— %) and g%(wQ('r*), 7*) > 0, By Theorem 4.4, the positive

T

0.8 0.3
0.28}
0.7+
0.26
0.6 0.24
_os} 0.22
% N 0.2
o 0.18}
03 0.16}
0.14H
02“ 1
0.12}
0.1 : . 0.1 . .
0 500 1000 1500 0 500 1000 1500

0.65
061
0.55
0.5
0.45
0.4
0.35f,
0.31

0.25¢

0.2 L -
0 500 1000 1500

t

Fig. 4. The temporal solution found by numerical simulation of system (2.2) with a = 2,
diy = 04,dp = 0.03,ds = 1.p = 22,m = 1.dg = 1,0 = 0.3,h = 2,7 = 0.73 and initial value

((i’l (9): ¢2(9)r @3 (9)) = (08 0.25, 05)
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0.8 T T 0.3
0.7¢
0.25
0.6
oS 1 02
g 0.4 ! N
0.3 0.15
0.2 U
M 0.1} U
0.1f U
0 . A 0.05 : :
0 500 1000 1500 0 500 1000 1500
t t
0.6
0.55
0.5
0.45
0.4
> 0.35
0.3
0.25H
0.2 M U
0.15'“
0.1 5 g
0 500 1000 1500
t
Fig. 5. The temporal solution found by numerical simulation of system (2.2) with a = 2,

di = 0.4,d2 = 0.03,d3 = 1,p = 22,m = 1,dy = 1,6 = 0.3,h = 2,7 = 0.8 and initial value
(01(0), ¢2(0), ¢3(0)) = (0.8,0.25,0.5).

equilibrium E* is unstable and a Hopf bifurcation occurs, Numerical simulation
illustrates our result (see Fig. 5).

. Discussion

In this paper, a ratio-dependent predator—prey model with stage structure for prey
and time delay is considered. We assume that the present level of the predator
affects instantaneously the growth of the maturity prey, but that the growth of
the predator is influenced by the amount of the maturity prey in the past. Then in
Sec. 2, we give sufficient conditions for the permanence and cxtinction of the system.
By Theorem 2.5, we derive that if h > dqs and 0 < 7 < 1 In _|_p hold, then system

(2.2) is uniformly persistent. By Theorem 2.6, we derwe that 1f T3 = 111 , then
system (2.2) is not persistent. In Sec. 3, we assume 0 < 7 < d In Z- a,nd h < dy,
then the nonnegative equilibrium FE; exists. By Theorem 3.3, we know it is globally
asymptotically stable f01 any time delay 0 < 7 < d In &+ s . In Sec. 4, we assume
h>djand 0 <71 < d lnﬁ which ensures the existence of the positive
equilibrium E* and then the stability of the positive equilibrium E* is studied.
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By Theorem 4.1, we know that for 7 = 0, E*(x5, 2%, y*) of system (2.2) is locally
asymptotically stable, if and only if G(0) — a + %(1 - %) > 0. By Theorem 4.4,
we know that for 7 > 0, there will exist 7 € I, such that the equilibrium E* is

asymptotically stable for 0 < 7 < 7*, and becomes unstable for 7 staying in some
right neighborhood of 7%, with a Hopf bifurcation occurring when 7 = 7 if and
only if g%(wg(r*),'r*) < 0.

Figures 4 and 5 have the same parameter values: @« = 2,dy = 0.4,d> =
0.03,ds = 1.p = 22,m = 1,dy = 1,0 = 0.3,h = 2,7 = 0.8. Here initial value
(01(0), 92(0), p3(0)) = (0.8,0.25,0.5). In Fig. 4 the trajectory converges to the pos-
itive equilibrium at 7 = 0.73; Fig. 2 shows a periodic behavior at 7 = 0.8.

There are still many interesting and challenging mathematical questions that
need to be studied. In this paper, we do not study the stability of the equilibrium
Ey(0,0,0). And we leave it as a future work.
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