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H∞ FILTERING FOR TIME-DELAY SYSTEMS WITH MARKOVIAN

JUMPING PARAMETERS: DELAY PARTITIONING APPROACH

Jinliang Liu*, Wenguang Yu, Zhou Gu, and Songlin Hu

ABSTRACT

This paper proposes an H∞ filter design for Markovian jump systems with time
delay.  First, exploiting the delay partitioning-based Lyapunov function, new criteria
are derived for the H∞ performance analysis of the filtering-error systems, which can
lead to much less conservative analysis results.  Second, based on the obtained
conditions, the filter gain can be obtained in terms of linear matrix inequalities (LMIs).
Finally, numerical examples are given to demonstrate the effectiveness and the merit
of the proposed method.
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I. INTRODUCTION

The filtering problem has long been one of the
fundamental problems in signal processing, commu-
nication and control applications.  The problem of
filtering can be briefly described as the design of an
estimator from the measured output to estimate the
state of the given systems.  During the last few
decades, the H∞ filtering technique introduced in
(Elsayed et al . ,  1989) has received increasing
attention, for example (Gao et al., 2006; Peng et al.,
2008; Zhang et al., 2005; Zhang et al., 2008) and the
references therein.  One of its main advantages is that
it is insensitive to the exact knowledge of the statis-
tics of the noise signals.

During the past few decades, Markovian Jump
Systems (MJSs) have attracted much attention (Yue
et al., 2005; Zhang et al., 2009; Shao et al., 2008; Xu
et al., 2003).  These can be regarded as a special class
of hybrid systems with finite operation modes whose

structures are subject to random abrupt changes.  The
system parameters usually jump among finite modes,
and the mode switching is governed by a Markov process.
MJSs have many applications, such as failure prone
manufacturing systems, power systems and economics,
etc.  A great number of results on estimation and control
problems related to such systems have been reported
in the literature (Zhang et al., 2009; Wang et al., 2006;
Wang et al., 2004; Xiong et al., 2009).

Recently, the problem of H∞ filtering of linear /
nonlinear time-delay systems has also received much
attention due to the fact that for many practical fil-
tering applications, time-delays cannot be neglected
in the procedure of filter design and their existence
usually results in poor performance (Wang et al.,
2003; Nguang et al., 2007; Wang et al., 2004).  Some
useful results on H∞ filtering for time-delay systems
have been reported in the literature and there are two
kinds of results, namely delay-independent filtering
(Souza et al., 2001) and delay-dependent (Peng et al.,
2009; Wang et al., 2006; Basin et al., 2007; Yue et
al., 2006).  The delay-dependent results are usually
less conservative, especially when the time-delay is
small.  The main objective of the delay-dependent H∞
filtering is to obtain a filter such that the filtering er-
ror system allows a maximum delay bound for a fixed
H∞ performance or achieves a minimum H∞ perfor-
mance for a given delay bound.

This paper has addressed the problem of H∞ fil-
ter design for MJSs with time delay.  To obtain less
conservative results, a new Lyapunov function is
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constructed, which includes delay partitioning.  Based
on this, an LMI-based sufficient condition for the
existence of the desired H∞ filter has been derived,
which can lead to much less conservative analysis
results.  Compared with the existing method (Hu et
al., 2007; Xu et al., 2005; Lin et al., 2006; Li et al.,
2007), the conservativeness of the derived H∞ per-
formance analysis results is further reduced, and novel
H∞ filter design criteria are obtained.  Examples used
in (Hu et al., 2007; Xi et al., 1997) are employed to
show the effectiveness and reduced conservativeness
of the proposed methods.

II. SYSTEMS DESCRIPTION AND
PRELIMINARIES

Fix a probability space (Ω, F, P ) and consider
the following class of uncertain linear stochastic sys-
tems with markovian jump parameters and time de-
lays (Σ)

x(t) = A(θ t)x(t) + Ad(θ t)x(t – τ) + Aω(θ t)ω(t)
y(t) = C(θ t)x(t) + Cd(θ t)x(t – τ) + Cω(θ t)ω(t)
z(t) = L(θ t)x(t) + Ld(θ t)x(t – τ) + Lω(θ t)ω(t)
x(t) = φ(t) , ∀t ∈ [–τ , 0]

,

(1)

where x(t) ∈ R n is the state vector, y(t) ∈ R r is the
measurement vector, ω(t) ∈ L2[0, ∞) is the exogenous
disturbance signal, z(t) ∈ R p is the signal to be
estimated, τ is the constant delay time of the state in
the system, {θt} is a continuous-time Markovian pro-
cess with right continuous trajectories and taking val-
ues in a finite set S = {1, 2 ..., N } with stationary
transition probabilities:

Prob{θ t + h = j θ t = i} =
π ijh + o(h) , i ≠ j
1 + π iih + o(h) , i = j

(2)

where h > 0, lim
h → 0

o(h)
h  = 0, and πij ≥ 0, for j ≠ i is the

transition rate from mode i at time t to mode j at time
t + h and

π ii = – π ijΣ
j = 1, j ≠ i

N
. (3)

In this paper, we consider the following filter
for system Eq. (1)

x(t) = A(θ t)x(t) + Ad(θ t)x(t – τ) + G(θ t)(y(t) – y(t))
y(t) = C(θ t)x(t) + Cd(θ t)x(t – τ)
z(t) = L(θ t)x(t) + Ld(θ t)x(t – τ)

(4)

The set S comprises the various operation modes

of system Eq. (1) and for each possible value of θt =
i, i ∈ S, the matrices associated with “i – th mode”
will be denoted by

Ai := A(θt = i), Adi := Ad (θt = i), Aωi := Aω (θt = i),

Ci := C(θt = i), Cdi := Cd (θt = i), Cωi := Cω (θt = i),

Li := L(θt = i), Ldi := Ld (θt = i), Lωi := Lω (θt = i),

where Ai, Adi, Aωi, Ci, Cdi, Cωi, Li, Ldi, Lωi are con-
stant matrices for any i ∈ S.  It is assumed that the
jumping process {θt} is accessible, i.e. the operation
mode of system (Σ) is known for every t ≥ 0.

Let e(t) = {{{{{x(t) – x(t) and ~z(t) = {{{{{z(t) – z(t).  Then
we have the following filtering error system:

e(t) = A ie(t) + Adie(t – τ) + Aωiω(t)
z(t) = Lie(t) + Ldie(t – τ) – Lωiω(t) , (5)

where

 –
Ai = Ai + GiCi,  

–
Adi = Adi + GiCdi,

 
–
Aωi = −Aωi – GiCωi .

The following lemma and definitions are needed
in the proof of our main results.

Lemma 1. (Gu et al., 2003) For any constant matrix
Q ∈ Rn × n, Q > 0, scalar τ, and vector function x

.
: [–τ,

0] → R n such that the following integration is well
defined, then it holds that

– τ xT(t)Qx(t)dt
t – τ

t

≤ x(t)
x(t – τ)

T – Q *
Q – Q

x(t)
x(t – τ) (6)

Definition 1. The system Eq. (5) is said to be expo-
nentially stable in the mean-square sense (EMSS), if
there exist constants α > 0, λ > 0, such that t > 0

E{ e(t) 2} ≤ αe– λt sup
– τ < s < 0

{ φ(s) 2} (7)

Definition 2. For a given function V: Cb
F0

([–τ, 0], Rn)
× S → R, its infinitesimal operator L (Mao et al.,
2002) is defined as

L V(x t) = lim
∆ → 0+

1
∆[E(V(x t + ∆ x t ) – V(x t))] (8)

The H∞ filtering problem addressed in this pa-
per is to design a filter of form Eq. (5) such that

• The filtering error system Eq. (5) with ω(t) =
0 is exponentially stable
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• The H∞ performance ||~z(t)||2 < γ ||ω(t)||2 is
guaranteed for all nonzero ω(t) ∈ L2[0, ∞) and
a prescribed γ > 0 under the condition e(t) =
0, ∀t ∈ [–τ, 0].

III. STOCHASTIC STABILITY ANALYSIS

Theorem 1. For some given constants τ, d and γ, the
system Eq. (5) is exponentially mean-square stable
(EMSS) with a prescribed H∞ performance γ, if there
exist Pi > 0, Q1 > 0, Q2 > 0, Ri > 0 and R > 0 (i ∈ S)
with appropriate dimensions such that the following
matrix inequalities hold.

ΨΨ =
Ψ11 * *
Ψ21 Ψ22 *
Ψ31 Ψ32 – Q

< 0 , (9)

π ijRjΣ
j = 1

N
≤ R , (10)

where

R =

R11 R12 R1n

R21 R22 R2n

Rn1 Rn2 Rnn

,

Ri =

Ri11 Ri12 Ri1n

Ri21 Ri22 Ri2n

Rin1 Rin2 Rinn

,

ΨΨ 11 =

Λ 1 * * * *
Λ 2 Λ 3 * * *

Ri31 + τ
d R31 Λ 4 Λ 5 * *

* *
Rid1 + τ

d Rd1 Λ 6 Λ 7 Λ 8 *

Adi
TPi + Q2 – Rid1 – Rid2 – Rid(d – 1) – Ridd – Q2

,

ΨΨ 21 =
Awi

TPi 0 0 0 0
Li 0 0 0 Ldi

,

ΨΨ 22 =
– γ 2I *
– Lwi I ,

ΨΨ 31 = [Q
–
Ai   0   0   ...   0   Q

–
Adi],

ΨΨ 32 = [Q
–
Awi   0],

Λ 1 = Pi A i + A i
TPi + π ijPjΣ

j = 1

N
+ Ri11 – d * Q1 – Q2

+ τ
d R11 ,

Λ2 = Ri21 + d * Q1 + τ
d

R21,

Λ3 = Ri22 – Ri11 − d * Q1 + τ
d R22,

Λ4 = Ri32 – Ri21 + τ
d R32,

Λ5 = Ri33 – Ri22 + τ
d R33,

Λ6 = Rid2 + τ
d

Rd2 – Ri(d – 1)1,

Λ7 = Rid3 + τ
d

Rd3 – Ri(d –1)2 ,

Λ8 = Ridd – Ri(d –1)( d –1)  + τ
d Rdd,

Q = τ 2

d
Q1 + τ 2Q2.

Proof.  Introduce a new vector

ζζ T(t) = [eT(t) eT(t – τ
d ) eT(t – 2τ

d )

eT(t – (d – 1)τ
d )] .

Let xt(s) = x(t + s), –τ ≤ s ≤ 0.  Then, similar to
(Boukas, et al., 2001), {(xt, θt), t ≥ 0} is a Markov
process.  Construct a Lyapunov functional candidate
as

V(xt , θ t) = Vi(xt , θ t)Σ
i = 1

4
, (11)

where

V1(xt, θt) = eT(t)P(θt)e(t) ,

V2(xt , θ t) = ζ T(s)R(θ t)ζ(s)ds
t – τ

d

t
,
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V3(xt , θ t) = τ
– τ

d

0
eT(v)Q1e(v)dvds

t + s

t

+ τ
– τ

0
eT(v)Q2e(v)dvds

t + s

t
,

V4(xt , θ t) =
– τ

d

0
ζ T(v)Rζ(v)dvds

t + s

t
.

Let L be the weak infinite generator of the ran-
dom process {xt, θt}.  Then, for each θt = i, i ∈S, we
have

L [V(xt, θ t)]

≤ eT(t)(2Pi A i + π ijPjΣ
j = 1

N
)e(t)

+ 2eT(t)Pi Adie(t – τ) + 2eT(t)Pi Aωiω(t)

+ ζ T(t)Riζ(t) – ζ T(t – τ
d )Riζ(t – τ

d )

+ ζ T(s)
t – τ

d

t
( π ijRjΣ

j = 1

N
)ζ(s)ds

+ eT(t)(τ 2

d Q1 + τ 2Q2)e(t)

– τ eT(s)Q1e(s)ds
t – τ

d

t
– τ eT(s)Q2e(s)ds

t – τ

t

+ τ
dζ T

(t)Rζ(t) – ζ T(s)Rζ(s)ds
t – τ

d

t
. (12)

Applying Lemma 1, we have

– τ eT(s)Q1e(s)ds
t – τ

d

t

≤ d e(t)
e(t – τ

d )

T – Q1 *
Q1 – Q1

e(t)
e(t – τ

d )
(13)

– τ eT(s)Q2e(s)ds
t – τ

t

≤ e(t)
e(t – τ)

T – Q2 *
Q2 – Q2

e(t)
e(t – τ)

(14)

Combining Eq. (12), Eq. (13) and Eq. (14), it is
easy to see that

L [V(xt, θ t)] – γ 2ωT(t)ω(t) + z T(t)z(t)

≤ eT(t)(2Pi A i + π ijPjΣ
j = 1

N
)e(t) + 2eT(t)Pi Adie(t – τ)

+ 2eTPi Aωiω(t) – γ 2ωT(t)ω(t) + z T(t)z(t)

+ ζ T(t)Riζ(t) – ζ T(t – τ
d )Riζ(t – τ

d )

+ eT(t)(τ 2

d Q1 + τ 2Q2)e(t) + τ
dζ T(t)Rζ(t)

+ d e(t)
e(t – τ

d )

T – Q1 *
Q1 – Q1

e(t)
e(t – τ

d )

+ e(t)
e(t – τ)

T – Q2 *
Q2 – Q2

e(t)
e(t – τ)

. (15)

From Eq. (15) and using Schur complement, it is
easy to see that L[V(xt, θt)] – γ 2ωT(t)ω(t) + ~zT(t)~z(t) < 0
if Eq. (9) and Eq. (10) hold for any delay smaller than
τ.  Define a new function as

W(xt, i, t) = e:tV(xt, i, t). (16)

Its infinitesimal operator L is given by

W(xt, i, t) = :e:tV(xt, i, t) + e:tLV(xt, i, t). (17)

By the generalized Itô formula (Gahinet et al.,
1995), we can obtain from Eq. (17) that

E{W(xt, i, t)} – E{W(x0 , i)}

= :e:sE{V(xs, i)}ds
0

t
+ e:sE{LV(xs, i)}ds .

0

t
 (18)

Then, using the method similar to (Yue et al.,
2005), we can see that there exists a positive number
α such that for t > 0

E{V(xt, i, t)} ≤ α sup
– τ ≤ s ≤ 0

{ φ(s) 2}e– :t (19)

Since V(xt, i, t) ≥ {λmin(Pi)}xT(t)x(t), it can be
shown from Eq. (19) that for t ≥ 0

E{xT(t)x(t)} ≤ α– :t sup
– τ ≤ s ≤ 0

{ φ(s) 2} , (20)

where –α = α/(λminPi).  Recalling Definition 1, the
proof can be completed.

Remark 1. As mentioned above, the interval delay
[0, τ] is segmented into d intervals, and from the ex-
ample below, we can see that the more intervals are
segmented, the less conservative the results.

Remark 2.  In the proof of Theorem 1, by segmen-
talizing the state-delay into several continuous
equivalent subintervals in constructing the Lyapunov
function, a new analysis method is proposed to ad-
dress the problem of stability, which leads to much
less conservative results than those in the existing
(Yue et al., 2005; Zhang et al., 2009; Hu et al., 2007).
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IV. H∞∞∞∞∞ FILTER DESIGN

In the following, we are seeking to design the
H∞ filtering based on Theorem 1.

Theorem 2. For some given constants τ, d and γ, the
augmented system Eq. (5) is exponentially mean-
square stable (EMSS)  with a prescribed H∞ perfor-
mance γ if there exist Pi > 0, Q1  > 0, Q2 > 0, Ri > 0,
R > 0 and  

–
Gi (i ∈ S) with appropriate dimensions such

that the following LMIs hold for a given ε > 0

ΨΨ =
ΨΨ 11 * *
ΨΨ 21 ΨΨ 22 *
ΨΨ 31 ΨΨ 32 ΨΨ 33

< 0 , (21)

π ijRj ≤ RΣ
j = 1

N
, (22)

where

ΨΨ 11 =

Γ 1 * * * *
Λ 2 Λ 3 * * *

Ri31 + τ
d R31 Λ 4 Λ 5 * *

* *
Rid1 + τ

d Rd1 Λ 6 Λ 7 Λ 8 *

Γ2 – Rid1 – Rid2 – Rid(d – 1) – Ridd – Q2

,

ΨΨ 21 =
– Awi

T Pi – Cwi G i
T 0 0 0 0

Li 0 0 0 Ldi
,

ΨΨ 31 = [PiAi + 
–
GiCi  0  0  ...  0  PiAdi + 

–
GiCdi],

ΨΨ 33= –2εPi + ε2Q,

Γ 1 = PiAi + Ai
TPi + G iCi + Ci

T G i
T + π ijPjΣ

j = 1

N
+ Ri11

– d * Q1 – Q2 + τ
d R11 ,

Γ 2 = A
T
diPi + C

T
di  

–
G

T
i + Q2

and Q, Λ3, Λ4, Λ5, Λ6, Λ7, Λ8, ΨΨ 22, ΨΨ 32 are as de-
fined in Theorem 1.

Moreover, the filter gain in the form of Eq. (4)
is as follows:

Gi = Pi
–1 –

Gi (23)

Proof.  Defining 
 –
Gi  = PiGi, from Eq. (5), Eq. (9) and

using Schur complement, the matrix inequality Eq.
(9) holds if and only if

ΨΨ 11 * *
ΨΨ 21 ΨΨ 22 *
ΨΨ 31 ΨΨ 31 – PiQ

– 1Pi

< 0 . (24)

Due to

(εQ – Pi)Q–1(εQ – Pi) ≥ 0 (25)

which gives

–PiQ–1Pi ≤ –2εPi + ε2Q,  i = 1, 2. (26)

Substituting –PiQ–1Pi with –2εPi + ε2Q into Eq.
(24), we obtain Eq. (21), so if Eq. (21) holds, we have
Eq. (9) holds.

From the above proof, we have Gi = Pi
–1 –

Gi .  This
completes the proof.

Remark 3. The inequality Eq. (26) is used to bound
the term –PiQ

–1Pi in Eq. (24).  This step can be im-
proved by adopting the cone complementary algo-
rithm (El et al., 1997), which is popular in current
control designs.  But the cone complementary algo-
rithm carries much computational burden due to its
complexity.  Here the scaling parameter ε > 0 can be
used to improve conservatism in Theorem 2.

Remark 4. From Theorem 2, we can get the upper
bound of time delay τ through solving the following
maximum problem by using LMI SOLVER FEASP
in MATLAB LMI tool box (Gahinet et al., 1995)

max       ττ

subject   to   LMIs   Eq(21), Eq(22)

If the system mode set S = {1}, the jump system
is just a general linear system.  From the proof of
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Theorem 1, we can conclude the following corollary.

Corollary 1. For some given constants τ, d, the aug-
mented systems Eq. (5) with i ∈ S = {1} are exponen-
tially mean-square stable (EMSS) if there exist P > 0,
Q1 > 0, Q2 > 0 and R > 0 with appropriate dimensions
such that the following LMIs hold for a given ε > 0

ΨΨ *
Λ – Q < 0 , (27)

where

ΨΨ =
ΨΨ 11 + ΦΦ + ΦΦ T * *

– MT – dQ1 *
– NT 0 – Q2

,

Table 2  Max. value of τττττ for different d

d d = 2 d = 3 d = 4 ...

τ 5.7175 5.9677 6.0568 ...

Table 1  Max. value of τττττ
Method Delay bound τ

(Xu et al., 2005; Lin et al., 2006) 4.4721
(Li et al., 2007) 4.54

Corollary 1 (d = 4) 6.0568

ΨΨ 11 =

P A1 + A1
TP + R11 * * *

R21 R22 – R11 * *
* *

Rd1 Rd2 – R(d – 1)1 Rdd – R(d – 1)(d – 1) *

A d1
T P – Rd1 – Rd(d – 1) – Rdd

,

ΦΦ  = [M + N   –M   0 0
d – 2

   −N],

M = [M1   ...   Md + 1], N = [N1   ...   Nd + 1],

Λ = [Q –A   0 0
d – 1

     Q –Ad1   0   0],

Q = τ 2

d Q1 + τ 2Q2 .

V. EXAMPLES

Example 1. Consider a Markovian jump system in
Eq. (5) with one modes and the following parameters
(Xi et al., 1997):

x(t) = – 2 0
0 – 0.9 x(t) + – 1 0

– 1 – 1 x(t – τ) .

For several methods (Xu et al., 2005; Lin et al.,
2006; Li et al., 2007) and different values of d, the
computation results of τ are listed in Table 1, Table2.
Obviously, for the same conditions for the time delay,
using delay partitioning can lead to less conservative
results.

To illustrate the proposed method of filtering

design, another example is considered as follows.

Example 2.  Consider linear Markovian jump sys-
tems in the form Eq. (1) with two modes.  For mode
1 and 2, the dynamics of the system are described as

A1 =
– 3 1 0
0.3 – 2.5 1

– 0.1 0.3 – 3.8
,

Ad1 =
– 0.2 0.1 0.6
0.5 – 1 – 0.8
0 1 – 2.5

,

Aω1 =
1
0
1

,

C1 = [0.8   0.3   0], Cd1 = [0.2   –0.3   –0.6],

Cω1 = 0.2,

L1 = [0.5   –0.1   1], Ld1 = [0   0   0], Lω1 = 0,

A2 =
– 2.5 0.5 – 0.1
0.1 – 3.5 0.3

– 0.1 1 – 2
,
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Ad2 =
0 – 0.3 0.6

0.1 0.5 0
– 0.6 1 – 0.8

,

Aω2 =
– 0.6
0.5
0

,

C2 = [0.5   0.2   0.3], Cd2 = [0   –0.6   0.2],

Cω2 = 0.5

L2 = [0   1   0.6], Ld2 = [0   0   0], Lω2 = 0.

Suppose the transition probability matrix is given

by π = – 0.5 0.5
0.3 – 0.3

 and the initial conditions x(0) =

[0.8   0.2   –0.9]T, {{{{{x(0) = [0   0.2   0]T.
This system is nominally the same one consid-

ered in (Hu et al., 2007).  By Theorem 2, we get the
maximum time delay τ = 12.2864 for ε = 10 and γ =
1.2.  This upper bound is much larger than the one τ
= 1.9195 given by (Hu et al., 2007), which shows our
method is less conservative than that of (Hu et al.,
2007).

The corresponding filter are given by

G1 =
– 4.9979
– 0.0004
– 4.9979

, G2 =
1.2000

– 0.9998
– 0.0000

.

To illustrate the performance of the designed
filter, choose the disturbance function as follows

ω(t) =
– 0.5 , 5 < t < 10
0.5 , 15 < t < 20
0 , otherwise

.

With this filter, the simulation results are shown
in Figs. 1-2.

VI. CONCLUSIONS

In this paper, we have studied a class of H∞ fil-
ter design for Markovian jump systems with time
delay via manipulating the delay partitioning-based
Lyapunov-Krasovskii Functionals.  With the proposed
method, an LMI-based sufficient condition for the
existence of the desired H∞ filter has been derived,
which can lead to much less conservative analysis
results.  Finally, Numerical examples have been car-
ried out to demonstrate the effectiveness of the pro-
posed method.
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NOMEMCLATURE

I the identity matrix of appropriate dimension
R n n-dimensional Euclidean space
Rn × m the set of n × m real matrices
T matrix transposition
X > 0 the matrix X is real symmetric positive defi-

nite
X ≥ 0 the matrix X is real symmetric positive

semi-definite
||.|| the Euclidean vector norm
E{x} the expectation of stochastic variable x

A *
B C

a symmetric matrix
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 Fig. 1  Operation modes Fig. 2  Estimated signals error η(t) = z(t) – ~z(t)
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