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To tackle the problem of rough set on single-universe, we discuss the rough set model over dual-uni-
verses in aspect of building connection between single-universe model and dual-universes model. The
rough set model over dual-universes denoted as RSMDU in this paper is built through inspecting the rela-
tion between the two universes. Firstly, we propose the RSMDU and study its property using character
function and relation matrix. The algorithm for obtaining the lower and upper approximations is then
presented. Secondly, we show that Pawlak rough set model can be induced using RSMDU. The theorem
inferring the connection between Pawlak model induced by RSMDU and RSMDU is presented. Finally, the
applications of RSMDU are studied. According to proposed model, we demonstrate that the existing mod-
els of rough set are special cases of RSMDU and that the set of conditional attribute and the set of decision
attribute can be regarded as dual-universes in decision-making system, where the model can be utilized
to handle decision processing.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Rough set theory is an extension of set theory [1–4], in which a
subset of a universe is described by a pair of ordinary sets called
the lower and upper approximation. Rough set theory, a mathe-
matical approach dealing with inexact, uncertain or vague knowl-
edge, has recently received a lot of attention on the research areas
in both of the real-life applications and the theory itself. On the
other hand, the real-life applications promote the theory research
about rough set. It is emerging as a powerful theory dealing with
imperfect data and it is an expanding research area stimulating
explorations on both real-world applications and the theory itself.
It has found practical applications in many areas such as knowl-
edge discovery [5,6], data analysis [7], approximate classification
[8], conflict analysis [4].

There are mainly two methodologies for the development of
this theory, the constructive and axiomatic approaches [9]. In con-
structive methods, lower and upper approximations are con-
structed from the primitive notions, such as equivalence relations
on a universe and neighborhood systems. However, equivalence
relations could not exist in every area which we are interested
in, so extended models about the relation on universes were stud-
ied by many scholars. For example, the notions of approximation
operators have been generalized by tolerance relation or similarity
relation [10–13], dominance relation [14,15], general binary rela-
tion on the universe of discourse [12,16–18], partitions and cover-
ll rights reserved.
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ings of the universe of discourse [19–24], neighborhood systems
and Boolean algebras [25–27] and general approximation spaces
[25,26,28]. Scholars have put forward many extended rough set
models combining with other soft computing theories or relaxing
the relation on the universe or broadening the boundary, such as
statistical rough set [29], fuzzy rough set [30–33], probabilistic
rough set [34], variable precision rough set [35,36], Bayesian rough
set [37] and grey rough set [38].

Grzymala–Busse has demonstrated that rough set theory repre-
sents an objective approach to imperfections in data [39]. In rough
set theory, all computations are performed directly on the dataset.
In other words, there is no additional feedback needed from an
external expert. Therefore, there is no need for any additional
information about data, such as a probability distribution function
as found in statistics, or a grade of membership as we find in fuzzy
set theory, and so forth [40]. However, when processing a decision-
making problem, rough set theory is widely adopted to deal with
problems, which have only one decision attribute. Nevertheless
dealing with the issue of decision-making often is the case of mul-
tiple attributes decision-making. In literatures, research communi-
ties have given countless efforts to deal with multiple attributes
[41–44]. As a result, the subjective factors of researchers are added,
which more or less affect the best decision-making. Then the
objectivity of rough set cannot be made full use of. On the other
hand, it is difficult to describe relations in our life using a unified
model, as well as information rationally. Rough set models on
two universal sets can be interpreted by both generalized approx-
imation spaces and the notions of interval structures [45]. Many
scholar have been done much research for these models [46–49].
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In this study, we model the rough set using two correlational
universes: U and V, with the given name Rough Set Model over
Dual-universes (RSMDU). In this paper, we discuss the property
of RSMDU and Pawlak rough set induced by RSMDU. Conclusions
are drawn by analyzing the model’s practical applications. For
example, the existing models of rough set are special cases of
RSMDU. Specifically, the conditional attribute and the decision
attribute regarded as dual-universes in decision-making system
indicates that RSMDU is significant in the real life.

This paper is organized as follows. In Section 2, we build RSMDU
and study its properties. In Section 3, Pawlak rough set derived by
RSMDU is discussed. Section 4 presents the relation between
RSMDU and Pawlak rough set. In Section 5, the conclusions and fu-
ture works are described.

Notation: AC denotes complementation of the set A.
Let p and q be propositions. The conjunction of p and q, denoted

p ^ q, is the proposition p and q.
The disjunction of p and q, denoted p _ q, is the proposition p or

q.

2. The model and properties of rough set over dual-universes

In this paper, we use the following mark unless there are special
requirements. Let U and V denote the universe of discourse. Let
R # U � V denote a given relation depending on the universes U
and V, R0 # V � U be the inverse relation of R. Let
R(x) = {y 2 Vj(x,y) 2 R} and R0(y) = {x 2 Uj(x,y) 2 R} where x 2 U,
y 2 V.

In order to discuss the relation between U and V distinctly, we
use matrix to describe the relation under the help of characteristic
function.

Definition 1. Let U and V be the universes of discourse. R # U � V
and R0 # V � U be the inverse relation of R. "x 2 U, "y 2 V, the
characteristic function of R and the characteristic function of R0 are
defined respectively as

vRðx; yÞ ¼
1 ðx; yÞ 2 R

0 ðx; yÞ R R

�
vR0 ðy; xÞ ¼

1 ðx; yÞ 2 R

0 ðx; yÞ R R

�

Using characteristic function, we define relation matrix of R de-
noted by A = [aij]m�n, where

aij ¼
1 vRðxi; yjÞ ¼ 1
0 vRðxi; yjÞ ¼ 0

(

while the relation matrix of R0 denoted by A0 is the transpose of ma-
trix A.

If A is a matrix with none row filled with zeros, then A is called
information matrix.

For the sake of illustration, we consider the following example.

Example 1. Let U and V denote the universe of discourse. Let
U = {x1,x2, . . .,x6}, V = {y1,y2, . . .,y7} and R # U � V. R(x1) = {y1,y4},
R(x2) = {y1,y2,y3,y4}, R(x3) = {y1,y4,y5,y6,y7}, R(x4) = {y1,y2,y3,y4},
R(x5) = {y5,y6,y7}, R(x6) = {y5,y6,y7}.

Then the relation matrix A of R is denoted by

A ¼

1 0 0 1 0 0 0
1 1 1 1 0 0 0
1 0 0 1 1 1 1
1 1 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1

2
666666664

3
777777775

And R0(y1) = {x1,x2,x3,x4}, R0(y2) = {x2,x4}, R0(y3) = {x2,x4}, R0(y4) = {x1,
x2,x3,x4}, R0(y5) = {x3,x5,x6}, R0(y6) = {x3,x5,x6}, R0(y7) = {x3,x5,Sx6}.
The relation matrix of R0 from V to U is A0 which is the transpose
of matrix A.
Definition 2. Let U and V be the universe of discourse. R # U � V
and R0 the inverse relation of R. "Y # V, the lower approximation
and upper approximation of Y over dual-universes under R are
defined as

R0Y ¼ fxjx 2 U;RðxÞ# Y ^ RðxÞ – ;g;
R0Y ¼ fxjx 2 U;RðxÞ \ Y – ; _ RðxÞ ¼ ;g ð1Þ

If

R0Y ¼ R0Y

then Y is a crisp set on V over dual-universes. If

R0Y – R0Y

then Y is called a rough set over dual-universes on V denoted as
RSDU in this paper.

Operators

R0;R0 : PðVÞ ! PðUÞ

are referred to as approximate operators from P(V) to P(U) where
P(V) and P(U) are power sets of U and V respectively.

Definition 3. Let U and V be the universe of discourse. R # U � V
and R0 the inverse relation of R. "X # U, the lower approximation
and upper approximation of X over dual-universes under R are
defined as

RX ¼ fyjy 2 V ;R0ðyÞ# X ^ R0ðyÞ– ;g;
RX ¼ fyjy 2 V ;R0ðyÞ \ X – ; _ R0ðyÞ ¼ ;g ð2Þ

If

RX ¼ RX

then X is a crisp set on U over dual-universes. If

RX – RX

then X is called a rough set over dual-universes on U denoted as
RSDU in this paper.

Operators

R;R : PðUÞ ! PðVÞ

are referred to as approximate operators from P(U) to P(V) where
P(U) and P(V) are power sets of U and V respectively.

Remark 1. Definition 2 and Definition 3 are relative and which is
adopted depending on objectives researched. In the following
paper, the properties based on Definition 2 are just studied. The
properties based on Definition 3 can be got by analogy.
Example 2. Let U and V denote the universe of discourse. Let
U = {x1,x2,x3,x4}, V = {y1,y2,y3}. R # U � V. R(x1) = {y1,y2}, R(x2) =
{y2,y3}, R(x3) = {y3}, R(x4) = {y1,y3}. Then the relation matrix of R is

A ¼

1 1 0
0 1 1
0 0 1
1 0 1

2
6664

3
7775

Suppose Y = {y1,y3}, we have R0Y ¼ fx3; x4g; R0Y ¼ fx1; x2; x3; x4g.
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Let U and V denote the universe of discourse. Let U = {x1,x2, . . .,
xm}, V = {y1,y2, . . .,yn} and Y # V where Y = {yj1,yj2, . . .,yjp}. When
the universes U and V have a fixed number elements, the lower
and upper approximations of Y over dual-universe can be drawn
following these three steps.

(1) Obtain the relation matrix A = [aij]m�n depending on the rela-
tion R. The algorithm is as follows.

S1 Set A = []m�n;
S2 For i = 1, . . .,m, for j = 1, . . .,n, if yj 2 R(xi), aij = 1; else aij = 0.

(2) Obtain the lower approximation of Y over dual-universes
under the relation R from Definition 2. This can be done by
three steps. Firstly, we compute the sum of the elements
in the i-th row of matrix A and denote the sum as pi. Sec-
ondly, we compute the sum of the elements aij1 ; aij2 ; � � � ; aijp

of matrix A and denoted the sum as qi. Thirdly, we compare
pi and qi. If pi == qi – 0, then the element xi should be an ele-
ment of the lower approximation of Y over dual-universes
denoted as R0Y. The algorithm is as follows.

S1 Set R0Y = ;;
S2 For i = 1, . . .,m, pi = 0, for j = 1, . . .,n, pi = pi + aij;
S3 For i = 1, . . .,m, qi = 0, for k ¼ 1; . . . ; p; qi ¼ qi þ aijk ;
S4 If pi == qi and pi – 0, then R0Y = R0Y [ {xi}.

(3) Obtain the upper approximation over dual-universes of Y
under R from Definition 2. We can look at the issue at two
levels:

� If the i-th row filled with zeros, then xi should be an ele-

ment of the upper approximation of Y over dual-uni-
verses denoted as R0Y;

� Considering the elements aij1 ; aij2 ; . . . ; aijp of the matrix, if
there exists an element aijk ðk ¼ 1;2; . . . ; pÞ, whose at least
one value equals 1, then the element xi should be an ele-
ment of the upper approximation of Y over dual-uni-
verses denoted as R0Y . The algorithm is as follows.
S1 Set R0Y ¼ ;;
S2 For i = 1, . . .,m, for k = 1, . . .,p, if aijk ¼¼ 1, then
R0Y ¼ R0Y [ fxig.
Theorem 1. Let U and V be the universe of discourse. R # U � V and
R0 the inverse relation of R. Y, Y1, Y2 # V, we have

(1) R0Y # R0Y;
(2) Y1 # Y2 ) R0Y1 # R0Y2;R

0Y1 # R0Y2;
(3) R0(Y1 \ Y2) = R0Y1 \ R0Y2;
(4) R0ðY1 [ Y2Þ ¼ R0Y1 [ R0Y2;
(5) ðR0YÞC ¼ R0ðYCÞ;R0ðYCÞ ¼ ðR0YÞC .

Proof

(1) The proof is straightforward from Definition 2;
(2) The proof is straightforward from Definition 2;
(3) x 2 R0Y1 \ R0Y2 () RðxÞ 2 Y1;RðxÞ 2 Y2
() RðxÞ 2 Y1 \ Y2

() x 2 R0ðY1 \ Y2Þ
Then R0(Y1 \ Y2) = R0 Y1 \ R0Y2.
(4) x 2 R0ðY1 [ Y2Þ () RðxÞ \ ðY1 [ Y2Þ – ;
() ðRðxÞ \ Y1Þ [ ðRðxÞ \ Y2Þ – ;
() RðxÞ \ Y1 – ; _ RðxÞ \ Y2 – ;
() x 2 R0Y1 _ x 2 R0Y2

() x 2 R0Y1 [ R0Y2
Then R0ðY1 [ Y2Þ ¼ R0Y1 [ R0Y2.
(5) y 2 R0Y () RðyÞ# Y
() RðyÞ \ ðYCÞ ¼ ;

() y R R0ðYCÞ

() y 2 ðR0ðYCÞC :
That is ðR0YÞC ¼ R0ðYCÞ.
y 2 R0ðYCÞ () RðyÞ# YC
() RðyÞ \ Y ¼ ;

() y R R0ðYÞ

() y 2 ðR0ðYÞÞC :
Then R0ðYCÞ ¼ ðR0YÞC . h

Remark 2. We can obtain R0ðY1 \ Y2Þ# R0Y1 \ R0Y2 from Theorem
1(2). However, R0ðY1 \ Y2Þ ¼ R0Y1 \ R0Y2 is not always correct. As

x 2 R0Y1 \ R0Y2 () x 2 R0Y1 ^ x 2 R0Y2
() RðxÞ \ Y1 – ; ^ RðxÞ \ Y2 – ;
( ðRðxÞ \ Y1Þ \ ðRðxÞ \ Y2Þ – ;
() RðxÞ \ ðY1 \ Y2Þ – ;

() x 2 R0ðY1 \ Y2Þ

We can also obtain R0(Y1 [ Y2) � R0Y1 [ R0Y2 from Theorem 1(2).
Whereas, R0(Y1 [ Y2) = R0Y1 [ R0Y2 is not always correct. Since

x 2 R0ðY1 [ Y2Þ () RðxÞ# Y1 [ Y2
( RðxÞ# Y1 _ RðxÞ# Y2

() x 2 R0Y1 _ x 2 R0Y2

() x 2 R0Y1 [ R0Y2

Property 1. Let U and V be the universe of discourse. R # U � V and
R0 the inverse relation of R. Y # V. If the relation matrix of R is an
information matrix, then R0; ¼ R0; ¼ ;;R0V ¼ R0V ¼ U.

The proof is straightforward from Definition 2.

Theorem 2. Let U and V be the universe of discourse. R # U � V and
R0 the reverse relation of R. Y # V. If the relation R is monic, then
R0Y ¼ R0Y.
Proof. The proof R0Y # R0Y is straightforward. Let us consider
R0Y � R0Y . 8xi 2 R0Y ; RðxiÞ \ Y – ;. There must be at least one ele-
ment yj 2 Y such that R(xi) = {yj} for the relation R is monic. Then
xi 2 R0Y. That is R0Y � R0Y . To sum up, R0Y ¼ R0Y . h
Theorem 3. Let U and V be the universe of discourse, where
U = {x1,x2, . . ., xm}. R # U � V and R0 the inverse relation of R. Consider
R (x1) # R(x2) # R(x3) # � � � # R(xm). For the subset Y # V, we have

(1) If xi 2 R0Y, then x1, x2, . . ., xi�1 2 R0Y(i = 2,3, . . .,m);
(2) If xi 2 R0Y, then xiþ1; xiþ2; . . . ; xm 2 R0Y ði ¼ 1; 2; . . . ; m� 1Þ.
Proof

(1) For xi 2 R0Y, then R(xi) # Y. For R(x1) # R(x2) # � � �
# R(xi�1) # R(xi) # Y, then x1, x2, . . ., xi�1 2 R0Y.

(2) For xi 2 R0Y , then R(xi) \ Y – ;. For R(xi) # R(xi+1) #

R(xi+2) # � � � # R(xm), then R(xi+1) \ Y – ;, R(xi+2) \ Y – ;,
� � �, R(xm) \ Y – ;. Therefore, xiþ1; xiþ2; . . . ; xm 2 R0Y . h
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Theorem 4. Let U and V be the universe of discourse, where
U = {x1,x2, . . ., xm}. R # U � V and R0 the reverse relation of R. Consider
R(x1) # R(x2) # R(x3) # � � �# R(xm), R0Y – ; ("Y # V). If the rela-
tion matrix of R is an information matrix, then R0Y ¼ U.
Proof. For R0Y – ;, then there exist at least an element xi 2 R0Y. For
R(x1) # R(x2) # R(x3) # � � � # R(xm), then x1, x2, . . ., xi�1 2 R0Y
from Theorem 3(1). Then xi 2 R0Y for R0Y # R0Y . For R(x1) #

R(x2) # R(x3) # � � � # R(xi) and the relation matrix of R is an infor-
mation matrix, then xiþ1; xiþ2; . . . ; xm 2 R0Y from Theorem 3(2). For
x1; x2; . . . ; xi�1 2 R0Y # R0Y , therefore, x1; x2; . . . ; xm 2 R0Y . That is
R0Y ¼ U. h

3. Properties of Pawlak rough set induced by RSMDU

Let U and V be the universe of discourse. R # U � V and R0 the
inverse relation of R. The relation EU # U � U induced by the rela-
tion R can be defined as

EU : xEUx0 () RðxÞ ¼ Rðx0Þ; x; x0 2 U ð3Þ

EU is an equivalence relation on U � U, because EU meets with
reflexivity, symmetry and transitivity straightforwardly. Then the
equivalence relation EU partitions the set U into disjoint subsets.
Let U/EU denotes the equivalence classes of EU. Let ½x�EU

denotes
the equivalence class containing x, where x 2 U. In this paper ½x�EU

is replaced by [x]U for short. Then operators

EU ; EU : PðUÞ ! PðUÞ

are just Pawlak approximate operators. "X # U, the lower approx-
imation and upper approximation of X under EU are defined as

EUX ¼ xjx 2 U; ½x�U # X
� �

; EUX ¼ xjx 2 U; ½x�U \ X – ;
� �

ð4Þ

We can also obtain the equivalence relation EV induced by R0, which
is defined as

EV : yEV y0 () R0ðyÞ ¼ R0ðy0Þ; 8y; y0 2 V

and Pawlak approximate operators

EV ; EV : PðVÞ ! PðVÞ
Example 3. Following with Example 1, we can obtain
U=EU ¼ fx1g; fx2; x4g; fx3g; fx5; x6gf g
V=EV ¼ fy1; y4g; fy2; y3g; fy5; y6; y7gf g

If

X ¼ fx1; x2; x3g

then

EUX ¼ fx1; x3g; EUX ¼ fx1; x2; x3; x4g

If

Y ¼ fy1; y2; y3g

then

EV Y ¼ fy2; y3g; EV Y ¼ fy1; y2; y3; y4g

Let EU denote an equivalence relation on U, and U/EU = {X1,
X2, . . .,XP}. Let W # U. The steps obtaining the lower approximation
of W are presented as

L1 Set j = 1, L = ;;
L2 For j = 1, . . .,p, if Xj # W, then L = L [ Xj.
The steps obtaining the upper approximation of W are presented as

R1 Set j = 1, R = ;;
R2 For j = 1, . . .,p, if Xj \W – ;, then R = R [ Xj.

Theorem 5. Let U and V be the universe of discourse. R # U � V and
R0 the reverse relation of R. "Y # V,

(1) EUðR0YÞ ¼ R0ðEV YÞ;
(2) EU(R0Y) = R0(EVY).

Proof

(1) 8x 2 EUðR0YÞ; ½x�U \ R0Y – ; from Definition 3. Let
xi 2 ½x�U \ R0Y
then
½xi�U ¼ ½x�U ^ xi 2 R0Y
According to Definition 3,
9y 2 Y ^ xiRy
Then xRy. Therefore
y 2 RðxÞ \ EV Y and RðxÞ \ EV Y – ;
That is
x 2 R0ðEV YÞ
Then we get EUðR0YÞ# R0ðEV YÞ.
Otherwise, if x 2 R0ðEV YÞ, then RðxÞ \ EV Y – ;. Let
y 2 RðxÞ \ EV Y
We have
y 2 RðxÞ ^ y 2 EV Y
That is
ðx; yÞ 2 R ^ ½y�V \ Y – ;
So there is
yi 2 V ^ yi 2 ½y�V \ Y
That is
ðx; yÞ 2 R; ½y�V ¼ ½yi�V ; yi 2 Y
Therefore
ðx; yiÞ 2 R ^ yi 2 Y
That is
yi 2 RðxÞ \ Y
Then
RðxÞ \ Y – ; ^ x 2 R0ðYÞ
As
x 2 ½x�U \ R0ðYÞ
there is
½x�U \ R0ðYÞ– ;
That is
x 2 EV ðR0YÞ
Then R0ðEV YÞ# EUðR0YÞ. Hence EUðR0YÞ ¼ R0ðEV YÞ.
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(2) For
EUðR0YÞ ¼ R0ðEV YÞ
then
EUðR0YÞ
� �C

¼ R0ðEV YÞ
� �C
And
EUðR0YÞ
� �C

¼ EU ðR0YÞC
� �

¼ EUðR0ðYCÞÞ;

R0ðEV YÞ
� �C

¼ R0ððEV YÞCÞ ¼ R0ðEV ðYCÞÞ
grounding on duality of Pawlak rough set and Theorem 1(5). Then
EUðR0ðYCÞÞ ¼ R0ðEV ðYCÞÞ
For "Y # V, there is EU(R0Y) = R0(EVY). h

4. The relation between RSDU and Pawlak rough set

Rough set theory has been studied further increasingly. Practi-
cal applications also conduce more to the development of rough
set theory, such as the extended research on the equivalence rela-
tion. The model of rough set over dual-universes is an extended
model of Pawlak rough set and this model depending on the rela-
tion themselves. The similarities and differences between two
models are as follows.

The similarities:

(1) Both two models deal with the approximation of sets con-
structed from descriptive data elements.

(2) Both Pawlak rough set and RSDU create three regions when
they analyze data, namely, the positive, negative and bound-
ary regions.

(3) In decision-making table, the set of condition attributes and
the set of decision attributes in Pawlak rough set model are
considered to be two universes in RSMDU.

Concerning decision problems, we set the set of condition attri-
butes as U, the set of decision attributes as V. Then decision prob-
lems can be dealt with as RSMDU. When the universe V has only
one attribute, the relation matrix can be written in the way the
same as decision table which is a common way to deal with infor-
mation. For example, let U = {x1,x2,x3}, V = {y1}. R(x1) = ;, R(x2) = y1,
R(x3) = ;. The relation matrix of U and V is

A ¼
0
1
0

2
64

3
75

Then the decision matrix is

D ¼ ½dij� ¼
1 0 1
0 1 0
1 0 1

2
64

3
75

where dij = 1 if the element xi and xj have the same value in the uni-
verse V, else dij = 0.

The differences are embodied in restrictions on universes and
relation. Following is the differences in detail:

(1) RSMDU uses two distinct but related universal sets. How-
ever, Pawlak rough set just discusses questions in the same
universe.

(2) Pawlak rough set is based on equivalence relation, whereas
RSMDU is just based on intrinsic relation between the two
universes.
(3) RSMDU’s application is flexible for it’s depending on intrin-
sic relation between the two universes. However, equiva-
lence relations, which is a basic composition of Pawlak
rough set model, impose restrictions on applications for
equivalence relations could not exist in every area which
we are interested in.

From the above, we draw the conclusion that RSMDU is a gen-
eral rough set model. We can build rough set models grounding on
their sensible plan. The set of conditional attributes and the set of
decision attributes can be regarded as dual-universes. The expert
system can be set up.

The expert system is comprised of Experts in systems, Users,
man–machine interface, knowledge acquisition, knowledge data-
base, reasoning machine. Let us take disease diagnosis as an
example.

(1) Knowledge database: knowledge database corresponds to
the relation between diseases and symptoms. Knowledge
database is built depending on the experiences from experts.

(2) Reasoning machine: the function of reasoning machine is
drawing an inference from the fact values that were imputed
by users and the knowledge of repository, and returning a
reference to page layout of outputting inference.

(3) User interface: by above knowledge, we know there is an
user input interface which is the interface for the set of
diseases or symptoms.

Example 4. Let U be the set of symptoms, V the set of diseases,
where U = {x1,x2, . . .,x19}={adiaphoresis, panicky, night sweat, nau-
sea, headache, tired, general malaise, chills, anorexia, a sore throat,
dry cough, sneeze, a stuffed-up nose, low grade fever, high fever,
afternoon fever, phlegm, heart beat fast, abdominal pain}, V =
{y1,y2, . . .,y9}={common cold, influenza, myocarditis, tuberculosis,
viral hepatitis, acute bronchitis, meningitis, pneumonia, acute ton-
sillitis}. If the disease yj has the symptom xi, then aij = 1 else ai j = 0,
where aij is an element of relation matrix A = [aij]. The matrix
depending on the relation from U to V is as follows.

A ¼ ½aij� ¼

1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0 0
1 1 0 0 0 1 1 0 0
0 1 0 1 1 1 1 0 0
0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1
0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 1 0 1 0
1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

Let X # U and X = {x5,x11,x15,x17}. Then RX ¼ fy8g; RX ¼ fy1; y2; y4;

y6; y7; y8; y9g and ðRXÞc ¼ V � RX ¼ fy3; y5g. The explanations are as
follows.
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(1) If a person has symptoms headache, dry cough, high fever
and phlegm, then he must suffer disease pneumonia.

(2) If a person has symptoms headache, dry cough, high fever
and phlegm, then he might suffer disease common cold,
influenza, tuberculosis, acute bronchitis, meningitis, pneu-
monia or acute tonsillitis

(3) If a person just has symptoms headache, dry cough, high
fever and phlegm, then he does not suffer from disease myo-
carditis and viral hepatitis.

5. Conclusions and future work

The main contributions of the paper are:

(1) We discussed properties of RSMDU by introducing character
function and relation matrix, and proposed algorithms for
obtaining lower and upper approximation of RSDU.

(2) We studied Pawlak rough set induced by RSMDU, and
advanced a theorem about the relation between Pawlak
rough set and RSMDU.

(3) We discussed the relation between Pawlak rough set and
RSMDU further, and pointed that RSMDU has general appli-
cations in real life.

However, RSMDU research is only in start and is still being
worked up. Future work will be performed in researching the
reduction of attributes and the extraction of the rules from the
relation matrix. Furthermore, due to the complexity, uncertainty
of information, the extended researches about RSMDU have to be
studied, for example, fuzzy rough set over dual-universes, Bayesian
rough set over dual-universes and so on.
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