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Abstract: This study proposes a class of H1 filter design for linear time-delay system. The time delay considered here is assumed
to be satisfying a certain stochastic characteristic. Corresponding to the probability of the delay taking value in different intervals,
a stochastic variable satisfying Bernoulli random binary distribution is introduced and a new system model is established by
employing the information of the probability distribution. Then new criteria is derived for the filtering-error systems, which
can lead to much less conservative analysis results. It should be noted that the solvability of the obtained criteria depend not
only on the size of the delay, but also the probability distribution of it. At last, numerical examples are given to demonstrate
the effectiveness and the merit of the proposed method.
1 Introduction

Filtering problem has wide applications in signal-processing,
communications and control application. The problem of
filtering can be briefly described as the design of an
estimator from the measured output to estimate the state of
the given systems. H1 filtering was first introduced in [1].
Ever since, much work has been done for the design of H1

filter, for example [2–5] and the references therein. One of
its main advantages is that it is insensitive to the exact
knowledge of the statistics of the noise signals.

Recently, the problem of H1 filtering of time-delay systems
has also received great attention because of the fact that for
many practical filtering applications, time delays cannot be
neglected in the procedure of filter design and their
existence usually results in a poor performance [6–8].
Some useful results on H1 filtering for time-delay systems
have been reported in the literature and there are two kinds
of results, namely delay-independent filtering [9] and delay
dependent [10–13]. The delay-dependent results are usually
less conservative, especially when the time delay is small.

From the stochastic theory point of view, the variation of
the delay may often stick to some probability distribution,
although it is fast time varying and not derivable. As
pointed out in [14], for a given wireless network, it can be
measured that there exists a small number 1 such that
Prob{t(k) . d} , 1, where d is a constant. For this case,
what we need to investigate is, for a given 1, to find the
upper bound for d, or, for a given d, to find the upper
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bound for 1. Obviously, the variation probability of the
time delay will affect the size of the allowable variation
range of the delay. Furthermore, in many real systems, such
as the networked control systems, affected by the external
disturbances and some unpredictable elements, the practical
time-varying delay may have some abrupt burst, the delay
in this case may be very large with a small probability,
which is usually outside the allowable variation range
obtained by the traditional methods in [15–22]. Therefore
the system performance should depend not only on the
variable range of the delay, but also the probability
distribution of the delay. However, the information of the
probability of the delay have been omitted by most of the
researchers. Therefore a challenging issue is on how to
derive some filter design criteria that can exploit the known
probability distribution of the delay and obtain a larger
allowable variation range of delay. To the best of the
authors’ knowledge, up to now, no results have been
reported for the filter design when both the information of
variation range of the time delay and the information of
probability of the time-varying delay in an interval are
taken into consideration.

Motivated by the above discussions, the aim of this paper is
to consider the delay-distribution-dependent stability of the
filtering-error system. The time-varying delay varies
randomly in an interval and there are no constraints on the
derivative of the delay. Based on the delay taking values in
different intervals, a stochastic variable satisfying Bernoulli
binary distribution is introduced to rebuild the following
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traditional system

ẋ(t) = Ax(t) + Adx(t − t(t)) + Bw(t) (1)

Then a new type of system model with stochastic parameter
matrix is proposed, the system (1) can be seen as a
simplification of the system without considering the
information of probability distribution and the abrupt burst
of the delay. By using the Lyapunov–Krasovskii functional
approach and the convexity of the matrix equations, delay-
distribution-dependent criteria for the exponential mean-
square stability of the filtering-error system are derived that
are shown as a set of matrix inequalities. Examples used in
[23, 24] are employed to show the effectiveness and less
conservativeness of the proposed methods.

Notation: The notation used here is fairly standard. Rn

denotes the n-dimensional Euclidean space, Rn×m is the set
of real n × m matrices, I is the identity matrix of
appropriate dimensions, ‖.‖ stands for the Euclidean vector
norm or spectral norm as appropriate. R+ denotes the set of
positive real numbers. The notation X . Y (X ≥ Y ), where
X and Y are symmetric matrices, means that X 2 Y is
positive definite (positive semi-definite). For a real matrix B
and two real symmetric matrices A and C of appropriate

dimensions,
A ∗
B C

[ ]
denotes a real symmetric matrix,

where ∗ denotes the entries implied by symmetry. E{x}
denotes the expectation of the stochastic variable x and
E{x|y} denotes the expectation of x conditional on y.

2 Problem formulation and preliminaries

The considered system is given by the following
mathematical model

ẋ(t) = Ax(t) + Adx(t − t(t)) + Bw(t) (2)

y(t) = Cx(t) + Cdx(t − t(t)) + Cw(t) (3)

z(t) = Lx(t) + Ldx(t − t(t)) + Lww(t)x (4)

x(t) = c(t), t [ [−t2, 0] (5)

where x(t) [ Rn, y(t) [ Rm and z(t) [ Rq are the state
vector, measurement vector and the signal vector to be
estimated, respectively; w(t) is the disturbance input; A, Ad,
B, C, Cd, D, L, Ld and Lw are the parameter matrices with
appropriate dimensions. t(t) [ [0, t2] is the time-varying
delay with an upper bound of t2.

Assumption 1: t(t) changes randomly and for a constant
t1 [ [0, t2], the probability of t(t) [ [0, t1) and t(t) [ [t1,
t2] can be known.

Define two sets

V1 = {t: t(t) [ [0, t1)} (6)

V2 = {t: t(t) [ [t1, t2]} (7)

Furthermore, define two functions as

t1(t) = t(t), for t [ V1

0, for t � V1

{
(8)

t2(t) = t(t), for t [ V2

t1, for t � V2

{
(9)
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Obviously, V1 < V2 ¼ R+ and V1 > V2 ¼ F (empty
set).

From the definitions of V1 and V2, it can be seen that
t [ V1 means the event t(t) [ 0, t1

[ )
occurs and

t [ V2 means the event t(t) [ t1, t2

[ ]
occurs.

Corresponding to t(t) taking values in different intervals, a
stochastic variable b(t) is defined as

b(t) = 1, t [ V1

0, t [ V2

{
(10)

Assumption 2: b(t) is a Bernoulli distributed sequence with

Prob{b(t) = 1} = E{b(t)} = b0,

Prob{b(t) = 0} = 1 − E{b(t)} = 1 − b0 (11)

where 0 ≤ b0 ≤ 1 is a constant.

Remark 1: The introduction of b(t) is motivated by [25–27],
where the Bernoulli distributed sequence b(t) is used to
model the missing message of the systems. Different from
[25–27], b(t) is used in this paper to describe the time-
varying delay taking values in different intervals.

Remark 2: From Assumption 2, it can be shown that
E{b(t) − b0} = 0 and E{(b(t) − b0)2} = b0(1 − b0). Since
Prob t(t) [ 0, t1

[ ){ }
= Prob{b(t) = 1} and Prob t(t) [

{
t1, 1

[ )
} = Prob{b(t) = 0}, b0 and 1 2 b0, respectively,

denote the probability of t(t) taking values in 0, t1

[ )
and

t1, t2

[ ]
.

By using the new functions ti(t) (i ¼ 1, 2) and b(t), (2)–(5)
can be rewritten as

ẋ(t) = Ax(t) + b(t)Adx(t − t1(t))

+ (1 − b(t))Adx(t − t2(t)) + Bw(t) (12)

y(t) = Cx(t) + b(t)Cdx(t − t1(t))

+ (1 − b(t))Cdx(t − t2(t)) + Dw(t) (13)

z(t) = Lx(t) + b(t)Ldx(t − t1(t))

+ (1 − b(t))Ldx(t − t2(t)) + Lww(t) (14)

x(t) = c(t), t [ [−t2, 0] (15)

The purpose of this paper is to construct a filter that can be
used to estimate the signal z(t). The structure of the
designed filter has the following form

ẋf (t) = Af xf (t) + Bf y(t) (16)

zf (t) = Cf xf (t) + Df y(t) (17)

where Af, Bf, Cf and Df are the filter parameters of appropriate
dimensions to be determined.

Define h(t) = x(t)
xf (t)

[ ]
, and e(t) ¼ z(t) 2 zf(t). Combining

(12)–(14), (16) and (17), we can obtain the filtering-error
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system

ḣ(t) = Ãh(t) + b(t)Ãdx(t − t1(t))

+ (1 − b(t))Ãdx(t − t2(t)) + B̃w(t) (18)

e(t) = C̃h(t) + b(t)C̃dx(t − t1(t))

+ (1 − b(t))C̃dx(t − t2(t)) + D̃w(t) (19)

where

Ã = A 0
Bf C Af

[ ]
, Ãd = Ad

Bf Cd

[ ]
, B̃ = B

Bf D

[ ]

C̃ = L − Df C −Cf

[ ]
, C̃d = Ld − Df Cd

D̃ = Lw − Df D

Before giving the main result, we need the following
definitions and lemma.

Definition 1: The system (2)–(4) is said to be exponentially
stable in the mean-square sense (ESMSS), if there exist
constants a . 0, l . 0, such that t . 0

E{‖x(t)‖2 } ≤ ae−lt sup
−tM ,s,0

{‖f(s)‖2 } (20)

Definition 2: System (18) and (19) is said to be asymptotically
stable with an H1 norm bound g, if the following conditions
hold:

† The filtering-error system (18) and (19) with w(t) ¼ 0 is
asymptotically stable.
† Under the assumption of zero initial condition, the
controlled output e(t) satisfies ‖e(t)‖2 ≤ g‖w(t)‖2 for any
non-zero w(t) [ L2[t0, 1).

Since the augmented system (12)–(14) contains the
stochastic quantity (i.e. b(t)), we need to introduce the
notion of stochastic stability in the mean-square sense and
the infinitesimal operator L(·).

Definition 3: For a given function V : Cb
F0−t2, 0

[ ]
, Rn( )

× S, its infinitesimal operator L} is
defined as

LV (h(t)) = lim
D�0+

1

D
[E(V (ht+D)|ht) − V (ht)] (21)

With Definition 1, our purpose is to develop filters of the
filtering-error system (18) and (19) such that

1. The filtering-error systems (18) and (19) are
asymptotically stable in the mean-square sense.
2. The filtering-error systems (18) and (19) guarantee a noise
attenuation level in an H1 sense, that is, under the assumption
of zero initial condition for all non-zero w(t) [ 0, 1

[ )
, it

should be guaranteed that ‖e(t)‖2 ≤ g‖w(t)‖2.

The following Lemma makes an effective way to reduce
the conservative of the result.
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Lemma 1 [28]: J1i, J2i (i ¼ 1, 2) and V are constant matrices
of appropriate dimensions, ti(t) is function of t and satisfies
0 ≤ t1(t) ≤ t1 ≤ t2(t) ≤ t2, i ¼ 1, 2, then

[t1(t)J11 + (t1 − t1(t))J21] + [(t2(t) − t1)J12

+ (t2 − t2(t))J22] +V , 0 (22)

if and only if the following four inequalities hold

t1J11 + (t2 − t1)J12 +V , 0 (23)

t1J11 + (t2 − t1)J22 +V , 0 (24)

t1J21 + (t2 − t1)J12 +V , 0 (25)

t1J21 + (t2 − t1)J22 +V , 0 (26)

3 Main results

The following result can be obtained for systems (18)
and (19).

Theorem 1: For some given constants 0 ≤ t1 ≤ t2 and g, the
systems (18) and (19) is ESMSS if there exist matrices
P . 0, Q1 . 0, Q2 . 0, R1 . 0, R2 . 0 and matrices Ni,
Mi, Vi, Si(i ¼ 1, 2, . . . , 5) of appropriate dimensions such
that

J(l) =

J11 +V+VT ∗ ∗ ∗
J21 J22 ∗ ∗
J31 J32 J33 ∗
J

(l)
41 0 0 J44

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ , 0,

l = 1, 2, 3, 4 (27)

where

J11 =

G1 ∗ ∗ ∗ ∗
b0Ã

T
d P 0 ∗ ∗ ∗

0 0 −Q1 ∗ ∗
(1 − b0)Ã

T
d P 0 0 0 ∗

0 0 0 0 −Q2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

J21 =
B̃

T
1P���
b0

√
L0����������

(1 − b0)
√

L1

⎡
⎢⎣

⎤
⎥⎦, J22 =

−g2I ∗ ∗���
b0

√
D̃ −I ∗��������

1 − b0

√
D̃ 0 −I

⎡
⎢⎣

⎤
⎥⎦

J31 =

�����
t1b0

√
R1HA0������������

t1(1 − b0)
√

R1HA1�������������
(t2 − t1)b0

√
R2HA0�������������������

(t2 − t1)(1 − b0)
√

R2HA1

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

J32 =

�����
t1b0

√
R1HB������������

t1(1 − b0)
√

R1HB�������������
(t2 − t1)b0

√
R2HB�������������������

(t2 − t1)(1 − b0)
√

R2HB

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
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J33 = diag −R1 −R1 −R2 −R2

( )
J44 = diag −R1 −R2

( )
J

(1)
41 =

���
t1

√
NT��������

t2 − t1
√

V T

[ ]
, J

(2)
41 =

���
t1

√
NT��������

t2 − t1
√

ST

[ ]

J
(3)
41 =

���
t1

√
MT��������

t2 − t1
√

V T

[ ]
, J

(4)
41 =

���
t1

√
MT��������

t2 − t1
√

ST

[ ]

A0 = Ã Ãd 0 0 0
[ ]

, A1 = Ã 0 0 Ãd 0
[ ]

B = B̃ 0 0
[ ]

, P = P 0 0 0 0
[ ]

L0 = C̃ C̃d 0 0 0
[ ]

, L1 = C̃ 0 0 C̃d 0
[ ]

G1 = PÃ + Ã
T
P + HT(Q1 + Q2)H + N1H + HTN1

V = NH −N + M −M + V −V + S −S
[ ]

H = I 0
[ ]

NT = NT
1 NT

2 NT
3 NT

4 NT
5

[ ]
MT = MT

1 MT
2 MT

3 MT
4 MT

5

[ ]
V T = V T

1 V T
2 V T

3 V T
4 V T

5

[ ]
ST = ST

1 ST
2 ST

3 ST
4 ST

5

[ ]
Proof: The Lyapunov–Krasovskii functional candidate is
chosen as

V (xt) = V 1(xt) + V 2(xt) + V 3(xt) (28)

where

V 1(xt) = hT(t)Ph(t)

V 2(xt) =
∫t

t−t1

xT(s)Q1x(s) ds +
∫t

t−t2

xT(s)Q2x(s) ds

V 3(xt) =
∫t

t−t1

∫t

s

ẋT(v)R1ẋ(v) dv ds

+
∫t−t1

t−t2

∫t

s

ẋT(v)R2ẋ(v) dv ds

Using the infinitesimal operator (21), we obtain

LV 1(xt) = 2hT(t)P(Ãh(t) + b0Ãdx(t − t1(t))

+ (1 − b0)Ãdx(t − t2(t)) + B̃w(t)) (29)

LV 2(xt) = xT(t)(Q1 + Q2)x(t) − xT(t − t1)Q1x(t − t1)

− xT(t − t2)Q2x(t − t2) (30)

LV 3(xt) = ẋT(t)(t1R1 + (t2 − t1)R2)ẋ(t)

−
∫t

t−t1

ẋT(s)R1ẋ(s) ds −
∫t−t1

t−t2

ẋT(s)R2ẋ(s) ds

(31)
760
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By employing the free matrix method [29, 30], we obtain

LV (xt) = 2hT(t)P(Ãh(t)+b0Ãdx(t − t1(t))

+ (1−b0)Ãdx(t − t2(t))+ B̃w(t))

+ xT(t)(Q1 +Q2)x(t)− xT(t − t1)Q1x(t − t1)

− xT(t − t2)Q2x(t − t2)+ ẋT(t)(t1R1

+ (t2 − t1)R2)ẋ(t)−
∫t

t−t1

ẋT(s)R1ẋ(s) ds

−
∫t−t1

t−t2

ẋT(s)R2ẋ(s) ds+ 2zT(t)

×N

[
Hh(t)− x(t − t1(t)) −

∫t

t−t1(t)

ẋ(s) ds

]

+ 2zT(t)M

[
x(t − t1(t))− x(t − t1)−

∫t−t1(t)

t−t1

ẋ(s) ds

]

+ 2zT(t)V

[
x(t − t1)− x(t − t2(t))−

∫t−t1

t−t2(t)

ẋ(s) ds

]

+ 2zT(t)S

[
x(t − t2(t))− x(t − t2)−

∫t−t2(t)

t−t2

ẋ(s) ds

]

+ eT(t)e(t)− g2wT(t)w(t)− eT(t)e(t)+ g2wT(t)w(t)

(32)

where

zT(t) =
[
hT(t) xT(t − t1(t)) xT(t − t1) xT(t − t2(t))

xT(t − t2)
]

Note that

ḣ(t) = b(t)[Ãh(t) + Ãdx(t − t1(t)) + B̃w(t)]

+ (1 − b(t))[Ãh(t) + Ãdx(t − t2(t)) + B̃w(t)] (33)

e(t) = b(t)[C̃h(t) + C̃dx(t − t1(t)) + D̃w(t)]

+ (1 − b(t))[C̃h(t) + C̃dx(t − t2(t)) + D̃w(t)] (34)

From (33) and (34), we obtain

E{eT(t)e(t)} = b0
�z

T
(t)

LT
0

D̃
T

[ ]
L0 D̃

[ ]
�z(t)

+ (1 − b0)�z
T
(t)

LT
1

D̃
T

[ ]
L1 D̃

[ ]
�z(t) (35)
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E{ẋT(t)[t1R1+ (t2−t1)R2]ẋ(t)}

=E{ḣT(t)HT[t1R1+ (t2−t1)R2]H ḣ(t)}

=b0
�z

T
(t)

AT
0

B̃
T

[ ]
HT[t1R1+ (t2−t1)R2]H A0 B̃

[ ]
�z(t)

+ (1−b0)�z
T
(t)

AT
1

B̃
T

[ ]
HT[t1R1+ (t2−t1)R2]H A1 B̃

[ ]
�z(t)

(36)

where �z
T
(t) = zT(t) wT(t)

[ ]
.

From (32), (35) and (36), we can obtain

LV (xt) + eT(t)e(t) − g2wT(t)w(t)

≤ �z
T
(t)

J11 +V+VT ∗ ∗
J21 J22 ∗
J31 J32 J33

⎡
⎢⎣

⎤
⎥⎦�z(t)

+ t1(t)zT(t)NR−1
1 NTz(t) + [t1 − t1(t)]zT(t)MR−1

1 MTz(t)

+ [t2(t) − t1]zT(t)VR−1
2 V Tz(t)

+ [t2 − t2(t)]zT(t)SR−1
2 STz(t) (37)

Using Lemma 1, it is easy to see that the condition (27) is a
sufficient condition to guarantee

�z
T
(t)

J11 +V+VT ∗ ∗
J21 J22 ∗
J31 J32 J33

⎡
⎢⎣

⎤
⎥⎦�z(t)

+ t1(t)zT(t)NR−1
1 NTz(t)

+ [t1 − t1(t)]zT(t)MR−1
1 MTz(t)

+ [t2(t) − t1]zT(t)VR−1
2 V Tz(t)

+ [t2 − t2(t)]zT(t)SR−1
2 STz(t) , 0 (38)

By Schur complement, it can be concluded from (37) that

LV (xt) ≤ −eT(t)e(t) + g2vT(t)v(t) (39)

Integrating both sides of (39) from 0 to t yields

E{V (t)} − E{V (0)} ≤ −
∫t

0

eT(s)e(s) ds +
∫t

0

g2vT(s)v(s) ds

(40)

Then, letting t � 1 and under zero initial condition, we can
show from (40) that∫t

0

eT(s)e(s) ds ≤
∫t

0

g2vT(s)v(s) ds (41)

thus, ‖e(t)‖2 ≤ g ≤ ‖v(t)‖2.
Next, we prove the ESMSS of the systems (18) and (19). In

this situation, the external perturbation v(t) is assumed to be
zero. Then, similar to the above analysis, we can conclude that

E{LV (xt)} ≤ −l||z(t)||
IET Signal Process., 2011, Vol. 5, Iss. 8, pp. 757–766
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where l ¼ lmin{J(l )}(l ¼ 1, 2, 3, 4). Define a new function as

W (xt) = e1tV (xt) (42)

Its infinitesimal operator L is given by

LW (xt) = 1e1tV (xt) + e1tLV (xt) (43)

Then, we can obtain from (43) that

E{W (xt)} − E{W (x0)} =
∫t

0

1e1sE{V (xs)} ds

+
∫t

0

e1sE{LV (xs)} ds (44)

Using the similar method of [31], we can see that there exists a
positive number a such that for t ≥ 0

E{V (xt)} ≤ a sup
−2t2≤s≤0

E{||c̃(s)||2}e−1t (45)

Since V(xt) ≥ {lmin ≤ (P)}hT(t)h(t), it can be shown from
(45) that for t ≥ 0

E{hT(t)h(t)} ≤ �ae−1t sup
−2t2≤s≤0

E{||c̃(s)||2} (46)

where �a = {a/(lmin(P))}. Recalling Definition 1, the proof
can be completed. A

Remark 3: Using the methods in [19, 22], the time-varying
delay t(t) often appears in the derivation of the Lyapunov
functional or the introduced free-weighing matrix equations,
such as

�t

t−t(t)
ẋT(s)Rẋ(s) ds and t(t)zT(t)Xz(t) (R . 0 and

X . 0), which is expanded to
�t

t−t2
ẋT(s)Rẋ(s) ds and

t2z
T(t)Xz(t) by using the method in [19, 22], then the

estimation errors
�t−t(t)

t−t2
ẋT(s)Rẋ(s) ds and (t2 2 t(t)) zT(t)X

z(t) are ignored, which will unavoidably lead to some
degree of conservativeness. However, from the proof of
Theorem 1, it can be seen that there is no expansion for
t(t), therefore the conservatism caused by expanding t(t) to
t2 can be avoided.

As a special case, we consider b(t) ; 1, that is, the
information of probability distribution is not taken into
consideration, and in this case, the systems (18) and (19)
reduce to the system

ḣ(t) = Ãh(t) + Ãdx(t − t(t)) + B̃w(t) (47)

e(t) = C̃h(t) + C̃dx(t − t(t)) + D̃w(t) (48)

Similar to Theorem 1, the following result can be obtained.

Corollary 1: For some given constants t2 and g, the systems
(47) and (48) are asymptotically stable if there exist matrices
P . 0, Q2 . 0, R2 . 0 and matrices Ni, Si(i ¼ 1, 2) of
appropriate dimensions such that

C =
C11 ∗ ∗
C21 C22 ∗
C

(l)
31 C

(l)
32 −R2

⎡
⎣

⎤
⎦ , 0, l = 1, 2 (49)
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where (see equations at the bottom of the page)

Proof: Choose the Lyapunov functional as

V (xt) = hT(t)Ph(t) +
∫t

t−t2

hT(s)HTQ2Hh(s) ds

+
∫t

t−t2

∫t

s

ẋT(v)R2ẋ(v) dv ds (50)

and the free-weighing matrix as

2zT(t)N Hh(t) − Hh(t − t(t)) −
∫t

t−t(t)

ẋ(s) ds

[ ]
= 0 (51)

2zT(t)S x(t − t(t)) − x(t − t2) −
∫t−t(t)

t−t2

ẋ(s) ds

[ ]
= 0 (52)

where

zT(t) = hT(t) xT(t − t(t)) xT(t − t2)
[ ]
NT = NT

1 NT
2 NT

3

[ ]
(53)

ST = ST
1 ST

2 ST
3

[ ]
(54)

Then, (49) can be obtained similar to the proof of Theorem 1.
In the inequality (27,49), matrices P . 0 and filter

parameters Af, Bf, Cf and Df, that are included in the matrix
Ã, Ãd, B̃, C̃, C̃d and D̃ are unknown and occur in non-linear
fashion. Hence, the inequality (27,49) cannot be considered
762
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as a linear matrix inequality (LMI) problem. In the
following, a result is proposed to change variables such that
the inequality can be solved.

Theorem 2: For some given constants 0 ≤ t1 ≤ t2 and g, the
systems (18) and (19) are ESMSS if there exist matrices
P1 . 0, �P3 . 0, Qi . 0, Ri . 0, (i ¼ 1, 2) and matrices
�Af , �Bf , �Cf , �Df , N10, N11, M10, M11, V10, V11, S10, S11,
Mi, Ni, Vi, Si(i ¼ 2, 3, . . . , 5), of appropriate dimensions
such that the following LMIs hold

P11 ∗ ∗ ∗
P21 P22 ∗ ∗
P31 P32 J33 ∗
P

(l)
41 0 0 J44

⎡
⎢⎢⎣

⎤
⎥⎥⎦ , 0, l = 1, 2, 3, 4 (55)

P1 − �P3 . 0 (56)

where (see equation at the bottom of the page)

P22 =
−g2I ∗ ∗���

b0

√
(Lw − �Df D) −I ∗��������

1 − b0

√
(Lw − �Df D) 0 −I

⎡
⎢⎣

⎤
⎥⎦

(see equation at the bottom of the page)

P32 =

�����
b0t1

√
R1B 0 0������������

(1 − b0)t1

√
R1B 0 0�������������

b0(t2 − t1)
√

R2B 0 0�������������������
(1 − b0)(t2 − t1)

√
R2B 0 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
C11 = PÃ + Ã
T
P + HTQ2H + N1H + HTNT

1

C21 =

Ã
T
d P + N2H − NT

1 + ST
1

N3H − ST
1

B̃
T
P���

t2
√

R2HÃ

C̃

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦, C22 =

S2 ∗ ∗ ∗ ∗
−N3 + S3 − ST

2 −Q2 − S3 − ST
3 ∗ ∗ ∗

0 0 −g2I ∗ ∗���
t2

√
R2Ad 0

���
t2

√
R2B −R2 ∗

Ld − Df Cd 0 Lw − Df D 0 −I

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦,

C
(1)
31 = ���

t2
√

NT
1 , C

(2)
31 = ���

t2
√

ST
1 , C

(1)
32 = ���

t2
√

NT
2

���
t2

√
NT

3 0 0 0
[ ]

, C
(2)
32 = ���

t2
√

ST
2

���
t2

√
ST

3 0 0 0
[ ]

,

S2 = −N2 − NT
2 + S2 + ST

2 , H = I 0
[ ]

P11 =

L1 ∗ ∗ ∗ ∗ ∗
L2

�Af + �A
T
f ∗ ∗ ∗

L3 L4 L5 ∗ ∗ ∗
N3 − MT

10 + V T
10 −MT

11 + V T
11 L6 L7 ∗ ∗

L8 L9 L10 L11 L12 ∗
N5 − ST

10 −ST
11 −N5 + M5 − ST

2 −M5 + V 5 − ST
3 −V 5 + S5 − ST

4 −Q2 − S5 − ST
5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

P21 =
BTP1 + DT�B

T
f BT�P3 + DT�B

T
f 0 0 0 0���

b0

√
(L − �Df C) −

���
b0

√
�Cf

���
b0

√
(Ld − �Df Cd) 0 0 0��������

1 − b0

√
(L − �Df C) −

��������
1 − b0

√
�Cf 0 0

��������
1 − b0

√
(Ld − �Df Cd) 0

⎡
⎢⎣

⎤
⎥⎦

P31 =

�����
b0t1

√
R1A 0

�����
b0t1

√
R1Ad 0 0 0������������

(1 − b0)t1

√
R1A 0 0 0

������������
(1 − b0)t1

√
R1Ad 0�������������

b0(t2 − t1)
√

R2A 0
�������������
b0(t2 − t1)

√
R2Ad 0 0 0�������������������

(1 − b0)(t2 − t1)
√

R2A 0 0 0
�������������������
(1 − b0)(t2 − t1)

√
R2Ad 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦
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P
(1)
41 =

���
t1

√
Ñ

T����������
(t2 − t1)

√
Ṽ

T

[ ]
, P

(2)
41 =

���
t1

√
Ñ

T����������
(t2 − t1)

√
S̃

T

[ ]

P
(3)
41 =

���
t1

√
M̃

T����������
(t2 − t1)

√
Ṽ

T

[ ]
, P

(2)
41 =

���
t1

√
M̃

T����������
(t2 − t1)

√
S̃

T

[ ]

L1 = P1A + ATP1 + Q1 + Q2 + N10 + NT
10 + �Bf C + CT�B

T
f

L2 = �P3A + �A
T
f + N11 + �Bf C

L3 = b0(AT
d P1 + CT

d
�B

T
f ) + N2 − NT

10 + MT
10

L4 = b0(AT
d
�P3 + CT

d
�B

T
f ) − NT

11 + MT
11

L5 = −N2 − NT
2 + M2 + MT

2

L6 = −N3 + M3 − MT
2 + V T

2

L7 = −Q1 − M3 − MT
3 + V 3 + V T

3

L8 = (1 − b0)(AT
d P1 + CT

d
�B

T
f ) + N4 − V T

10 + ST
10

L9 = (1 − b0)(AT
d
�P3 + CT

d
�B

T
f ) − V T

11 + ST
11

L10 = −N4 + M4 − V T
2 + ST

2

L11 = −M4 + V 4 − V T
3 + ST

3

L12 = −V 4 − V T
4 + S4 + ST

4

Ñ
T = NT

10 NT
11 NT

2 NT
3 NT

4 NT
5

[ ]
M̃

T = MT
10 MT

11 MT
2 MT

3 MT
4 MT

5

[ ]
and J33, J44 are defined as the same in Theorem 1.

Moreover, a suitable filter of the form (16) and(17) is given as

Af = �Af
�P
−1
3

Bf = �Bf

Cf = �Cf
�P
−1
3

Df = �Df

⎧⎪⎪⎪⎨
⎪⎪⎪⎩ (57)

Proof: Since �P3 . 0, there exist non-singular matrix P2 and
P3 . 0 such that �P3 = PT

2 P−1
3 P2. Defining

P = P1 PT
2

P2 P3

[ ]
, J = I 0

0 PT
2 P−1

3

[ ]
(58)

it is easy to see that P . 0 is equivalent to P1 − �P3 =
P1 − PT

2 P−1
3 P2 . 0.

Pre- and post-multiplying (27) with P = diag
{J , I , I , . . . , I︸�����︷︷�����︸

13

} and its transpose and letting

�Af = Âf
�P3, Âf = PT

2 Af P−T
2

�Bf = PT
2 Bf

�Cf = Ĉf
�P3, Ĉf = Cf P−T

2

�Df = Df

NT
1 J T = NT

10 NT
11

[ ]
, MT

1 J T = MT
10 MT

11

[ ]
V T

1 J T = V T
10 V T

11

[ ]
, ST

1 J T = ST
10 ST

11

[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)

we can conclude (55).
Next, we will show that, if (55) and (56) are solvable for �Af ,

�Bf , �Cf , �Df and �P3, then, the parameter matrices of the filter
(16) and(17) can be chosen as in (57).

Replacing (Af, Bf, Cf, Df) by (P−T
2 Âf P

T
2 , P−T

2
�Bf , Ĉf PT

2 , �Df )
in (55) and then pre- and post-multiplying them with P and its
transpose, we can also obtain (55), obviously (P−T

2 Âf PT
2 ,

P−T
2

�Bf , Ĉf PT
2 , �Df ) can be chosen as the filter parameters,
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that is, the following filter

�̇xf (t) = P−T
2 Âf PT

2�xf (t) + P−T
2

�Bf ŷ(t) (60)

�zf (t) = Ĉf P
T
2�xf (t) + �Df ŷ(t) (61)

can guarantee the filtering-error system (18) and (19) is
asymptotically stable with the H1 performance bound g.
Defining xf (t) = PT

2�xf (t), (60) and (61) become

ẋf (t) = Âf xf (t) + �Bf ŷ(t) (62)

zf (t) = Ĉf xf (t) + �Df ŷ(t) (63)

Then, we can complete the proof. A

Remark 4: From Theorems 1 and 2, it can be seen that the
feasibility of LMIs (55) and (56) depend on not only t1 and
t2 but also the probability distribution of the delay taking
values in the interval. Therefore more information of the
time delay is involved in (55) and (56) that may lead to a
larger allowable upper bound of the time delay.

Similarly, the following result can be obtained for the
stabilisation of the systems (47) and (48).

Corollary 2: The systems (47) and (48) are asymptotically
stable if there exist matrices P1 . 0, �P3 . 0, Q2 . 0,
R2 . 0, N10, N11, S10, S11, N2, S2 and matrices
�Af , �Bf , �Cf , Df of appropriate dimensions such that the
following LMIs hold

Ĉ =
Ĉ11 ∗ ∗
Ĉ21 C22 ∗
Ĉ

(l)
31 C

(l)
32 C33

⎡
⎢⎣

⎤
⎥⎦ , 0, l = 1, 2 (64)

P1 − �P3 . 0 (65)

Fig. 1 Estimated signals error e(t) ¼ z(t) 2 zf(t)

Table 1 Allowable upper bound of t2 with g ¼ 0.43

t1 0.05 0.20 0.40 0.60 0.80 1

b0 ¼ 0.1 1.06 1.06 1.06 1.05 1.04 1.03

b0 ¼ 0.5 1.52 1.51 1.47 1.38 1.23 1.04

b0 ¼ 0.9 5.07 4.91 4.52 3.81 2.73 1.06
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where (see equations at the bottom of the page)

and C22, C(l)
32, C33 are defined as the same in Corollary

1. Moreover, a suitable filter of the form (16) and (17) is
given as (57).

4 Numerical example

Example 1: Consider the systems (2)–(4) with parameter
matrices [23]

A =
0 1

0 −0.1

[ ]
, Ad =

0

0.1

[ ]
K, B =

0.1

0.1

[ ]
, C = 0 1

[ ]
Cd = 0.2K , D = 1, L = 0 1

[ ]
, Ld = 0.1K , Lw = 0.2

K = −3.75 −11.5
[ ]

(66)

To the same g ¼ 0.43 in Jiang and Han [23], the upper-delay
bound is t2 ¼ 0.9412 when the lower-delay bound is
t0 ¼ 0.2. By using Theorem 2 with different b0 and t1, the
computation results for the allowable upper bound t2 are
given in Table 1.

For example when g ¼ 0.43, b0 ¼ 0.5, t1 ¼ 0.2,
t2 ¼ 1.51, we can obtain the parameter matrices of the
filter

Af =
0.0763 0.2459

−1.7777 −0.6578

[ ]
, Bf =

0.0197

−0.1243

[ ]

Cf = −0.9957 −0.7552
[ ]

, Df = 0.4992

To illustrate the performance of the designed filter, choose
the disturbance function as follows

v(t) =
−0.1, 5s ≤ t ≤ 10s
0.2, 15s ≤ t ≤ 20s
0, otherwise

⎧⎨
⎩

Fig. 1 shows the error-estimation signal of
e(t) ¼ z(t) 2 zf(t), Fig. 2 shows the state of filtering-error

system with the initial values x(0) = 0.5
−0.5

[ ]
.

This example was also considered by [24], when the
upper-delay bound t2 ¼ 2.20, the lower-delay bound
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t0 ¼ 0.2 and g ¼ 0.43. Whereas our lower-delay bound
t0 ¼ 0, obviously, our result is much better than that
obtained in [23, 24].

Example 2: Consider the system (47) and (48) with parameter
matrices as (66).

When g ¼ 0.43, by using Corollary 2, we can obtain the
upper bound of time delay t2 ¼ 1.0032, and the parameter
matrices of the filter are obtained as follows

Af =
0.1329 0.3800

−2.0929 −1.3817

[ ]
, Bf =

0.0378

−0.1506

[ ]

Cf = −1.3433 −1.5543
[ ]

, Df = 0.4359

Example 3: Now, we consider a mechanical system
borrowed from [32] with small modifications, shown in
Fig. 3.

In this system, x1 and x2 are the positions of masses m1 and
m2, respectively, and k1 and k2 are the spring constants. The
viscous friction coefficient between the massed and the
horizontal surface is denoted by c. A state-space realisation

Fig. 2 State curves of filtering-error system
Ĉ11 =
Q1 ∗

�P3A + �A
T
f + N11 + �Bf C �Af + �A

T
f

[ ]

Ĉ21 =

AT
d P1 + CT

d
�B

T
f + N2 − NT

10 + ST
10 AT

d
�P3 + CT

d
�B

T
f − NT

11 + ST
11

N3 − ST
10 −ST

11

BTP1 + DT�B
T
f BT�P3 + DT�B

T
f���

t2
√

R2A 0

L − Df C −�Cf

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

Ĉ
(1)

31 = ���
t2

√
NT

10
���
t2

√
NT

11

[ ]
, Ĉ

(2)

31 = ���
t2

√
ST

10
���
t2

√
ST

11

[ ]
Q1 = P1A + ATP1 + Q2 + N10 + NT

10 + �Bf C + CT�B
T
f
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Fig. 3 Mass-spring system
of this system is given by the equations in (2)–(4) with

A =

0 0 1 0

0 0 0 1

− k1 + k2

m1

k2

m1

− c

m1

0

k2

m2

− k2

m2

0 − c

m2

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦, B =

0

0
1

m1

0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

C = 1 0 0 0
[ ]

, L = 0 1 0 0
[ ]

D = d, Ad = Cd = Ld = Lv = 0

where d is a constant.
It is assumed that the position of mass m1 is measured by a

device with disturbance v(t). The parameters are chosen as
the same in [32] of m1 ¼ 1, m2 ¼ 0.5, k1 ¼ k2 ¼ 1, c ¼ 0.5
and d ¼ 0.1. Thus, the matrices for the equations of (2)–(4)
are given as follows

A =

0 0 1 0
0 0 0 1
−2 1 −0.5 0
2 −2 0 −1

⎡
⎢⎢⎣

⎤
⎥⎥⎦, B =

0
0
1
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦

By using Theorem 2, we can obtain the following filtering
parameters of (57) when g ¼ 1

Af =

−0.7442 2.3550 23.2524 −0.1325

−0.0433 −0.9939 −0.9366 2.5538

−0.9831 −0.0498 −0.6931 0.0252

0.0540 −0.7471 0.0728 −0.4414

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Bf =

−0.5187

−0.8864

−11.0284

−1.2007

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

Cf = −0.0117 −0.4837 −0.0650 0.2586
[ ]

Df = 0.0769

5 Conclusion

This paper has investigated the problem of filtering design for
linear time-delay system. Different from the common
assumption in the existing references, the time delay
considered here is fast time-varying delay satisfying a
certain stochastic characteristic, and the probability
IET Signal Process., 2011, Vol. 5, Iss. 8, pp. 757–766
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distribution of the delay taking values in some intervals is
assumed to be known a priori. Corresponding to the
probability of the delay taking value in different intervals, a
stochastic variable satisfying Bernoulli random binary
distribution has been introduced and a new system model
was built by employing the information of the probability
distribution. Then delay-distribution-dependent criteria has
been derived via filtering-error system. It should be noted
that the solvability of the obtained criteria depend not only
on the size of the delay, but also the probability distribution
of it. Examples have been given to illustrate the feasibility
and effectiveness of the proposed method.
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