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Abstract

This paper proposes a class of Hy, filter design for continue-time systems with time-varying delay.
Firstly, by exploiting a new Lyapunov function and using the convexity property of the matrix
inequality, some delay-dependent stability conditions can be obtained for the asymptotical stability
of the filtering-error system, which can lead to much less conservative analysis results. Secondly,
based on the obtained conditions, the filter parameter matrixes can be obtained in terms of linear
matrix inequalities (LMIs). Finally, two examples are given to demonstrate the effectiveness and the
merit of the proposed method.
© 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The H filtering problem has been extensively discussed over the past decades and its
applications in a variety of areas such as signal processing, signal estimation, pattern
recognition, communications, control application and many practical control systems have
been studied. The problem of filtering can be briefly described as the design of an estimator
from the measured output to estimate the state of the given systems. One of its main
advantages is that it is insensitive to the exact knowledge of the statistics of the noise
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signals. During the last few decades, the H, filtering technique introduced in [1] has received
increasing attention, for example [2-10] and the references therein. A number of useful results
have appeared for analyzing the H,, filtering criterion without a time-varying delay [11-13].
However, time delays are frequently encountered in many practical engineering systems, for
example, chemical, electronics, hydraulic or process control systems and networked control
systems [14,15]. Recently, considerable researchers focus on studying various systems with
time-varying delays, for examples, T-S fuzzy systems [16,17], Markovian jump systems [18,10],
singular systems [19,20], neutral systems [21], stochastic systems [22,23], switched systems
[24,25], and uncertain case of the above systems, etc.

Recently, the problem of H filtering of linear/nonlinear time-delay systems has also
received much attention due to the fact that for many practical filtering applications, time-
delays cannot be neglected in the procedure of filter design and their existence usually
results in a poor performance [26-28]. Some nice results on H,, filtering for time-delay
systems have been reported in the literature and there are two kinds of results, namely
delay-independent filtering [29] and delay-dependent [9,10,30-33]. The delay-dependent
results are usually less conservative, especially when the time-delay is small. The main
objective of the delay-dependent H, filtering is to obtain a filter such that the filtering
error system allows a maximum delay bound for a fixed H,, performance or achieves a
minimum H,, performance for a given delay bound.

This paper addressed the problem of H,, filter design for time delay systems with
interval time-varying delay. The restriction on the derivative of the interval time-varying
delay is removed, which means that a fast interval time-varying delay is allowed [34-36].
Compared to the existing methods, the main features of our method can be highlighted as:

1. A new Lyapunov function is constructed, which includes the lower and upper delay
bound of interval time-varying delay.

2. Jessen’s inequality (Lemma 1) and Projection theorem (Lemma 3) are employed in the
derivation of our results.

3. Convexity of the matrix function (Lemma 2) for cross terms is employed to reduce the
conservation.

Notation: R" and R denote the n-dimensional Euclidean space, and the set of n x m
real matrices, the superscript 7" stands for matrix transposition, [ is the identity matrix of
appropriate dimension. Il - I stands for the Euclidean vector norm or the induced matrix
2-norm as appropriate. The notation X >0 (respectively, X >0), for X € R™" means that
the matrix X is real symmetric positive definite (respectively, positive semi-definite). For a
matrix B and two symmetric matrices 4 and C, [g &] denote a symmetric matrix, where s
denotes the entries implied by symmetry.

2. Systems description and preliminaries

Consider the following linear systems with time-varying delay:
X(t) = Aox(t) + A1 x(t—1(2)) + A,y 0(2)
y(t) = Cox(t) + Cix(t—1(2)) + Cyyo(2)
z(t) = Lox(¢) + L1x(t—(?)) + L,o(?)
x(0)=¢(0), VO € [—12,—11]

()
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where x(¢) € R” is the state vector, y(¢) € R" is the measurement vector, w(z) € L,[0,00) is
the exogenous disturbance signal, z(¢) € R” is the signal to be estimated, 4, 41, A, Co, Ci,
Cy,, Ly, L1 and L, are constant matrices with appropriate dimensions, time delay ©(¢) is a
time-varying continuous function satisfying the following assumption:

0<t<1(t) <12 <00, V>0 2)
where 71 is the lower bound and 1, is the upper bound of the communication delay.

In this paper, the aim is to design a stable and order 7, linear filter of the state-space
representation

Xr(t) = Arxp(t) + Bry(2) )
24(1) = Cyxy (1) + Dyy(0) (

where Ay, By, Cj, Dy are filter parameters to be determined.

Let e(f) = [;;((’t))] and Z(f) = z(£)—z,(¢). Then we have the following filtering error system:

e(t) = Aoe(t) + A1 Ee(1—1(1)) + A,or()
2(1) = Loe(t) + Ly Ee(t—1(0) + Lyoo(1) )
e(0)=[4"(0).0", V0 € [-12,—11]

where E =[I, 0] and

Ay=ETAyE + HKB
A1 =ETA, + HKFC,
I:Im = ETA(/) + HKFC(/)

Lo

LyE + DKB

L, =L, + DKFC,

L,=L,+ DKFC,
in which D =[—1Ip 0] and
Dy G

k= By Ay

- - #=[o]
0
The H filtering problem addressed in this paper is to design a filter of form (3) such
that

bl

0 I, 0 I,

C 0 0 0
’H:

e The filtering error systems (4) with w(z) =0 is asymptotically stable.
e The H,, performance IZ(¢)ll, <yllw(?)ll, is guaranteed for all nonzero w(¢) € L,[0,00)
and a prescribed y>0 under the condition e(0) =0, VO € [—12,—11].

The following lemmas are needed in the proof of our main results.

Lemma 1 (Jessen’s inequality, Gu et al. [37]). For any constant matrix R e R™",
R=RT>0, constant 1,>0 and vector function % :[—1;,0]=R" such that the following
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integration is well defined, it holds that

x(1)

x(t—71) )

T
—R %
R -R
Lemma 2 (Convexity of the matrix function, Yue et al. [38]). Suppose 0 <1, <t(t)<tp,
E\, By and Q are constant matrices of appropriate dimensions, then

(T(D)—tm)E1 + (tu—T())E2 + Q<0 (6)
if and only if
(ty—tm)E1 + 2<0

x(1) 1

x(t—11)

—11 /t xT(s)Rx(s) ds< l

and
(TM_Tm)EZ + Q<0
hold.

Lemma 3 (Projection theorem, Gahinet and Apkarian [39]). Consider a symmetric matrix
Z € R™" and two matrices Il and I" with column dimension n. Then there exist a matrix © of
compatible dimensions such that

E+n'er+rte’m<o (7)
if and only if

() EI, <0
and

(rHfer, <o

hold, where I1, and I | denote the orthogonal complements of Il and I'; respectively.
3. Main results

Theorem 1. For some given constants 0<t, <ty and vy, the augmented systems (4) are
asymptotically stable with a prescribed Hy, performance y if there exist P>0, Q; >0, 0, >0,
R; >0, Ry>0 and M;,N; (i=1,2...5) with appropriate dimensions such that

Zn % %
Y=| En En % |<0, s=1,2 )
Z5(s) 0 —R;
where
r Y % % % %
RE+ NI Y5 % % %
2, = | A P-NT + MT N3—NI + MT Y3 " #
-MT Ny—MT —Ng+ My—MT —0r—My—M]
i alp N —Ns + M; — M 1




188 J. Liu et al. | Journal of the Franklin Institute 349 (2012) 184-200

Ly 0 L 0 L,
= ‘L'lRlE,/:l() 0 11R1E211 0 ‘L'lRlEzzlw
4/‘Ez]RzEzzl() 0 4/’Ez]RzE.:‘i] 0 Q/’L'Q]RzEz:lw

By =diag{—1,—R;,— Ry}

En(D =[N vorN, Ny JaiN, JaiN5]
EnQ) =aaM{ JoaM] JoiM] JoiM] JtaiM!]
Yi = P4 +1210TP+ET(Q1 + O—R)E
Yo=—01—R, + N>+ NI

Ys = M3+ M{ —N;—N7{

T2 =1T2—T1
Proof. Construct a Lyapunov functional candidate as

V(t’el) - Vl([’ef) + Vz(tael) + V3(t,€[) (9)
where

Vi(t,e)) = el (t)Pe(r)

Va(t.e) = /t X0 0i1x(1) dl+/ X1 (1) Qax(1) dr

0 t —1  pt
Vi(t,e;) =1 / / xT ()R x(v) dv ds + / / xT(v)Rox(v) dv ds
—11 Jt+s t—12 K

and P,0,0,,R|,R,,R; are to be determined. Taking the time derivative of V(z,e,;) with
respect to ¢ along the trajectory of Eq. (4) yields, we have

b1(t,e) = 2T () Pe(t) = 2¢T ()p[Age(t) + A1 Ee(t—1(1)) + A, ()] (10)

ba(t.e) = xT(1)(Q1 + Qo)x(t)—x" (1—11) Q1 x(1—11)—xT (1—12) Qo x(1—15)
=" (VET(Q1 + 02)Ele(t)—xT (t—11) Q1 x(1—11)—x" (1—12) Q2x(t—12) (11)
3(t,e) = 2eT()ET R Ee(t)—1y / t xT(s)R x(s) ds

-1
-1

+106T()ET RyEé(f)— / xT(s)Ryx(s) ds (12)

-
Applying Lemma 1 (Jessen’s inequality), we have

' ey 17
—‘El/ xT(s)Rix(s) dsﬁl ]

x(t—11)

—ETR\E ETR,
RIE  —R

e(?) 1 13)

x(t—11)
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Employing the free-weighting matrices method, we have

-1

2T (N {x(l—rl)—x(t—‘c(t))— x(s) ds] =0 (14)

t—1(1)

t—1(1)

ZCT(I)M[x(l—r(t))—x(t—rz)— / (s) ds} =0 (15)

-
where
@0y=[e"@) x"(t—n) x"(t=2(0) X" (1—72) " (0)]
NT=[N{ Ni Ni N N{]
MT=[M{ M) M{ M{ M)
There exists R, such that

—2tT ()N o x(s) ds< / o xT(5)Ryx(s) ds + (z() =) ()NR ' NTL(2) (16)
t—1(t) t—1(1)

t—1(t) 1—1(f)
20T (M / x(s) ds< / 1T (5)Rox(s) ds + (a—t(O)T (MR ' MTL(r)  (17)

-1

Adding Egs. (14) and (15) to the right side of ¥ (t,¢;,) and substituting Egs. (13), (16),
(17) into it, we have
V(t,e;)<2e” (1)P[Age(r) + A1 Ee(t—1(1)) + Awo(D)] + e (ET(Q1 + 02)Ele(r)
—xT(t=11) Q1 x(t—11)—x" (t—12) Qo x(t—12) + 116" (DET R1Eé(2)
T
T T . €(l) —ETRlE ETR1 e(l)
+116" (NE" RyEé(t) + X(i—11) R\E _R X(i—11)
20T (N (=) =x(t=2(0)] + 20T () Mx(t—(1) —x(1—12)]
() =) (ONRy 'NTL(0) + (=) ()MRy ' MT((1) (18)
By Schur complement, from Eq. (18), we can obtain
V(t,e)—y*wT (tyw(0) + 2T (D)2 (0)
<{T"(EnL) + 11T (DETRIEe(t) + 11T (DET R E + 2T (1)2(2)
+ ()=t ONR;'NTU(0) + (=) () MR M7 (1) (19)
By using Lemma 2 (Convexity of the matrix function) and Schur complement, from
Eq. (19), it is easy to see that Eq. (8) with s=1, 2 can lead to

Vite)<=2T(02(1) + o' (1) (20)

Under zero initial condition, integrating both sides of Eq. (20) from ¢, to ¢ and letting
t— 00, we have IZ(f)ll <yllw(o)ll;.

Next, we consider the asymptotical stability of the systems (4). When w(¢)=0,
combining Egs. (8) and (20) together, we have V' (z,e,)<0, which gives V' (,¢,)<—plix(0)I?
for a sufficiently small p >0, and ensures the asymptotical stability of the systems (4) for
any delay satisfying Eq. (2). This completes the proof. [
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Remark 1. Using the methods in [40,41], the time-varying delay t(¢) often appears in the
derivation of the Lyapunov functional or the introduced free weighing matrix equations,

such as f,lr(t)xT(s)Rx(s) ds and t()(T()X () (R>0 and X >0), which is enlarged to
ff_rz xT(s)Rx(s) ds and (T (1) X{(7) by using the method in [40,41], then the estimation
errors [ xT(s)Rx(s) ds and (r2—t(0))(T ()X () are ignored, which will unavoidably

-1
lead to some degree of conservativeness. However, from the proof of Theorem 1, it can be
seen that there is no enlargement for 7(¢) by using Lemma 2 (Convexity of the matrix

function), therefore the conservatism caused by enlarging t(¢) to 1, can be avoided.

In order to show the reduced conservatism of our stability criteria, we consider the
following systems as a special case of Eq. (1)

X(t) = Ax(t) + Aax(t—1(2))
x()=¢(1), te[-12,0]

where x(¢) € R”" is the state vector; ¢(¢) is a continuously differentiable vector-valued function;
A e R™" A, € R™" are constant system matrices; 7(¢) is a time-varying continuous function
satisfying Eq. (2).

Using the same method in Theorem 1, we can get the following results.

o2y

Corollary 1. Given scalars 0<t| <71y, system (21) with a time-varying delay satisfying
Eq. (2) is asymptotically stable if there exists matrices P>0, Q1>0, 0,>0, R; >0, R, >0
and N,M of appropriate dimensions such that the following LMIs hold.

On+r+r7 = %

Q) Q» % | <0, s=1,2 (22)
Q31(s) 0 —R
where
[PA+ATP+ Q) + 0,—R, % %
o = R, —O1—R; *
ALP 0 0 =%
0 0 0 -0

r=[0 N —N+M —M]

[ R4 0 T RA; O
B A/‘L'21R2A 0 A/TlezAd 0

Qy =diag{—R;,—R>}

() =N, Q0= taM"

Proof. Choose the Lyapunov functional as

V(x) = xT(£)Px(t) + / t xT(H) 0 x(1) dt + / t xT ()0 x(1) dt
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0 t -1 t
+11 / / xT ()R x(v) dv ds + / / xT(0)Ryx(v) dv ds (23)
—11 Jt+s —1) K
and the free weighting matrix as
-1
2T (N {x(t—rl)—x(t—r(t))— x(s) ds] =0 (24)
t—1(1)

t—1(1)
2T (M {x(l—r(r))—x(r—rg)— /

-1

x(s) ds} =0 (25)

where

F(@0y=le" ) x"(1—n1) x" (=) x"(1-12)]

NT=[N{ Nj Ni N{]
MT =m] m] Ml Mm])
Then, similar to the proof of Theorem 1, Eq. (22) can be obtained, hence omitted. [

Remark 2. From Corollary 1, we can obtain the admissible upper bounds 7, of the time
delay through solving the following maximum problem by using LMI SOLVER FEASP in
MATLAB LMI tool box [42].
max 1p
subject to LMI (22)

In the following, we are seeking to design the H, filtering based on Theorem 1.

Theorem 2. Let [W[ W] W] be the orthogonal complement of [Cy Cy C,]". For some
given constants 0 <71, <71, and y, the Hy filtering problem for system (1) is solvable if there
exist X/>0, Y>0, 0;>0, 0,>0, R >0, R,>0 and Nyo, Mo, N“, Mlla
M;,N; (i=2,3,...,5) of appropriate dimensions such that the following LMIs hold.

Q1 ES %

Qy Q»n % | <0, s=1,2 (26)
Qus) 0 —R;

M I & %
Iy, IIn % <0, s=1,2 (27)
| T51(s) 0 —Ry

Bt B
~ %

>0 (28)
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I £ &
Iy —Q1—Ri+ N>+ NY %
I Na—MT — Oy My—M]

[LoW) + LiW,+ L,W5 0 0
Iy 0 0
I's 0 0

Qy =diag{—1,—R;,—Ro}

Qu()=[T's TNy JraNil, QuQ2)=[7 VTaM] JaM]]

r=Wrydgw, + wlALYw, + WI(Q) + Qr—R)W + W] YA W,

+

WAL YW~ W] NigWr— W] N Wy + W MW, + Wl Mlw,

+wlyd,wy+ wlalyw, + wi M w, + wl MIw,—wl Ny w,

—WINIWy—WINsWy—WINIWs + WIMsw, + Wl MIw,—?>wlw,

I'y=RiW, +N1T0W1 +N3TW2—N2W2+M2W2+N5TW3

Iy =—M{Wi—NsWy + MyWr—M) Wr—MI W;

I's=1 R AW + 11 RiIAWr+ 11 RIAW3
I's =/t R Ao W1 + VT2 Ro A\ Wa + /121 R0 A W3
o= O NLWi + N Wa + o NI ws

Iy =i MW, + o M{ W+ o M{ Ws

I, =

I =

Al % S %
< T
Ri + NITO + Ny Ay * %
A3 N3—NT + mT Ay *
AT
_MITO_MII N4—M2T —N4+M4—M3T —Qz—M4—M4T
L As N5 —Ns + Ms —Ms
[ R4 0 R4 0 TRA,
SR Ay 0 St ReAr 0 /11 Re A,

Iy =diag{—R;,— Ry}

I31(1) =[/TaIN]y VT N7 JtaN{ VN J7aN!]

* % % %

~
5]
~N
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I3(2) = [VearM{y oMy JirMs oM oM
A =YAg+ ALY + 01 + Qo—Ri + X Ao+ A] X —YA—A Y
Ay=—Q1—R; + N, + NI
As=ATY-NT 4 M 4+ ATR—ATYT-N| + 81,
Ay=—N3—NI + M3 + MY

As=ATY + AT X -4l YT

w

Proof. Define

Y N = X M
NT @ 5 = MT @
where X >0,Y >0 € R, and symbol & denotes the irrelevant part.

From Eq. (29), we have
XY +MNT =1

P=

From Eq. (30) and letting
N =[Nl Nl M{ =My M
then, rewrite Eq. (8) as
Y=¥,+3UKOT + (CUKOT)T

where

2315) 0 —Ry

2 =diag{P,I,...,I},
8

r0 07 ¢l o
0 I 0 I
0 0 0 0
0 0 cr o
0 0 0 0

U= , 0=
0 0 cl oo

-1 0 0 0
0 0 0 0
0 0 0 0

L0 ol 0 0]

193

(29)

(30)

(31
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in which
[ Ay * %* %* %* %]
NT 4 0 * * * *
R+ N{; N{ 4, * * *
NS ATY NT ML ATN-NT + MY, Ny—NT + MF 45 * *
—MIT(; —MITi N4—M2T —Ny + M4—M3T Ay %
A)];Y A{N Ns —Ns+ Ms —Ms —“,'21
Ly 0 0 L 0 L,
2y = T1R 1Ay 0 0 T1R1 A4 0 T1R A4,

SRy Ay 0 0 /T RoA1 0 /T2 Ry A,
2y =diag{—I1,—R;,— Ry}
() =[VarNjy VauN) VaiNy JaiNy oV oy
Q) =WaiMy VoM JoiMy JoiMy JaiMy oM
M=YAg+ ALY + Q1+ =Ry, Ay=—Q1—R; + N>+ N]
Ay=—N3—N{ + My + M, Ay=—-0r—My—M]
By using Lemma 2 (projection theorem), inequality (31) is solvable for some K if and only if
0Tv,0,<0 (32)
Ur's='w,>7'U, <0 (33)

To simplify Egs. (32) and (33), we can choose
r W 0 00
0
0
W,
0
UZ

1
~

0.

|
S O O O O O O N O O
S O O O O N O O O
S O O N O O O O O
S O N O O O O o O
S N O O O O O o o o
S O O O O o o o o
S O O O O o o o o
S O O O O O ~N O©o O
S O O O O O N O O O
S O O O O N O O O O
S O O O N O O O O O
S O N O O O O O o O
~N O O O O O o o o
~ O O O O O O O o o

oS O O O
~N

=]
o

After some simple algebraic manipulation, inequality (32) is equivalent to Eq. (26). Setting
X =x"!
My =MIM'X
Ny=NiM'X
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and introducing ] = diag{X.7,...,I}, then, [[" UTZ~'¥,=~'U, [] <0 is equivalent to
Eq. (27). —

Finally, using a method similar to that in [39], we can see that there exist a positive
definite matrix P satisfying Eq. (29) if and only if X—Y~!>0, that is

>0

X-Y'>0 = ro >0 <
- I Y|~ ¥ Y

which yields Eq. (28) . This completes the proof. [l

Moreover, by using a method similar to that given in [8], the filter parameters
K= [gj/ jff] can be obtained as follows:

Remark 3. If LMISs (26)—~(28) are feasible for matrix variables (X, Y, Oy, Q», Ry, R»), then
the filter parameters K = [g’ f’ ] can be obtained by the following procedure:
® Compute two full- column rank matrixes M.N € R"™™  such that MNT =1-X~ y.
@ Calculate the matrix P by solving the matrix equation

Y I ;I X!
=P . 34
{N ' 0] lo MT] 9
® Derive K by solving matrix inequality (8) with known matrices (P, R, R», R3).

4. Example

In this section, two numerical examples are given to show the effectiveness and
conservatism of our proposed results.

Example 1. Consider the system (21) with [43,44]

0 1 0 0
A= , Ag=
I 7S

For various 71, the admissible upper bounds 7, of the time delay are shown in Table 1.
As shown in Table 1, it is clear that the results obtained in this paper are less conservative
than those in [43,44].

Table 1
Allowable upper bound of 1, for various ;.

Method 7] 0.3 0.5 0.8 1 2
[43] T2 0.9431 1.0991 1.3476 1.5187 2.4000
[44] ) 1.0715 1.2191 1.4539 1.6169 2.4798

Corollary 1 T2 1.2448 1.3806 1.6008 1.7555 2.5875
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Example 2. Consider systems (1) with [§]

(2 0 0 0 0 -1 0 0 0 0] 1
I =09 0 0 0 -1 -1 0 0 0 1
A= 0 1 2 0 0|, 4=|0 -1 -1 0 0], 4,=|0
0 0 1 —09 0 0 0 -1 -1 0 1
0o 0 0 1 I 0 0 0 -1 -1 0
-1 -1 1 1 -1 1 11 1
“=lo 1 0 -1 —1]’ C‘Z{l 0 11 0}’ C‘”Z_l}
(05 0 05 0 05
Ly=|-05 05 0 05 05|, L;=0, L,=0.
0.5 0.5 0.5 05 0

Let ©(¢) € [0.2,0.6],y =8 , in terms of Remark 1, the corresponding filter parameters of
Eq. (3) are obtained as

[—2.5612 —0.2394 —0.3501 —13429  0.5941
12096 —5.1486 —12477 —0.3368  0.0937
Ar=|—03014 —09563 —2.1545 —82770 —59241
—1.8589 —0.6903 02398 —12430  1.5222
| 37383 51382 42137 —14.0870 —14.5547
[—0.7235 —1.6114
—7.4243 59016
By= | —5.5086  4.4904
0.1553  —0.3160
| 43165  —0.1600
[—0.0461 —0.1393 —0.1318 —0.2513 —0.2375
Cr=|—00714 —02112 —02036 —0.3943 —0.3796
| —0.0277 —0.0922 —0.0853 —0.1569 —0.1569
[0.0554  —0.0760
D= 00131  —0.0697
| —0.0318  —0.0759

For this example, we calculated the achieved minimum H, performances y,,;, of the
filtering-error system for various delays 7, when 7; =0.2 by using Theorem 2, and the
calculated results are listed in Table 2.

With this filter, Fig. 1 shows the time-varying delay, Fig. 2 shows the state responses for
the system (1) with the initial condition ¢(r)=[—0.5 —0.2 0 0.2 0.5]” and the following
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Table 2
The achieved H,, performances 7y,,, for various delay v, when 7; =0.2.

Method T2 0.3 0.5 0.8 1

[5] Vonin 1.5121 1.7821 1.8763 1.9864
Theorem 2 Vonin 1.2315 1.3321 1.4369 1.6547

0.65

0.55 ]
0.5 1

~ 0.45 1
0.4

0.35

0.25 1

0.2

0 5 10 15 20 25 30
Time (s)

Fig. 1. Interval time-varying delay.

0 5 10 15 20 25 30
Time (s)

Fig. 2. State responses for the system (1).

exogenous disturbance input w(¢):

o 0.5, 5s<t<10s
Y= 0 otherwise
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Fig. 3. Estimated signals for z(z).
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Fig. 4. Estimated signals with the designed filter.

Fig. 3 shows estimated signals for z(¢), Fig. 4 shows the error estimation signal of
&(#) = z(t)—zs(¢). It can be seen from Fig. 4 that using the designed filter of Eq. (3) to
estimate the signal can achieve the good effect. As can be seen in Figs. 2-4, the
effectiveness of the proposed method is apparent. It is also clear to see that the designed
H, filter has achieved well robustness with disturbance. It should be noted that the
proposed approach is executed in the mode of off-line, which means that the
computational burden of this method does not limit its applicability.
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5. Conclusion

In this paper, we have studied the problem of H, filter design for time delay systems with
fast time-varying delay. A new method has been proposed to solve H, filter design problem
by employing convexity of the matrix function and projection theorem. With the proposed
approach, an LMI-based sufficient condition for the existence of the desired H, filter has been
derived. Two examples have been carried out to demonstrate the effectiveness and the merit of
the proposed method.

Acknowledgment

This work was supported by the Natural Science Foundation of China (NSFC) under
Grants 61074025, 61074024, 60834002, 60904013, and 60774060.

References

[1] A. Elsayed, M. Grimble, A new approach to the H,, design of optimal digital linear filters, IMA Journal of
Mathematical Control and Information 6 (2) (1989) 233-251.

[2] D. Zhang, L. Yu, H filtering for linear neutral systems with mixed time-varying delays and nonlinear
perturbations, Journal of the Franklin Institute 347 (7) (2010) 1374-1390.

[3] H. Karimi, M. Zapateiro, N. Luo, A linear matrix inequality approach to robust fault detection filter design
of linear systems with mixed time-varying delays and nonlinear perturbations, Journal of the Franklin
Institute 347 (6) (2010) 957-973.

[4] X. Luan, F. Liu, P. Shi, H,, filtering for nonlinear systems via neural networks, Journal of the Franklin
Institute 347 (6) (2010) 1035-1046.

[5] C. Peng, D. Yue, E. Tian, Y. Zhang, Improved network-based robust H,, filtering for uncertain linear
systems, International Journal of Innovative Computing, Information and Control 5 (4) (2009) 961-970.

[6] C. Peng, Y. Tian, Delay-dependent robust stability criteria for uncertain systems with interval time-varying
delay, Journal of Computational and Applied Mathematics 214 (2) (2008) 480—494.

[7] X. Zhang, M. Wu, J. She, Y. He, Delay-dependent stabilization of linear systems with time-varying state and
input delays, Automatica 41 (8) (2005) 1405-1412.

[8] X. Zhang, Q. Han, A less conservative method for designing H filters for linear time-delay systems,
International Journal of Robust and Nonlinear Control 19 (12) (2009) 1376-1396.

[9] J. Liu, W. Yu, Z. Gu, S. Hu, H filtering for time-delay systems with Markovian jumping parameters: delay
partitioning approach, Journal of the Chinese Institute of Engineers 33 (3) (2010) 357-365.

[10] J. Liu, S. Hu, E. Tian, A novel method of H,, filter design for time-varying delay systems, International
Journal of Innovative Computing, Information and Control 7 (3) (2011) 1299-1310.

[11] E. Fridman, U. Shaked, Delay-dependent stability and H,, control: constant and time-varying delays,
International Journal of Control 76 (1) (2003) 48-60.

[12] S. Xu, T. Chen, An LMI approach to the H,, filter design for uncertain systems with distributed delays,
IEEE Transactions on Circuits and Systems II: Express Briefs 51 (4) (2004) 195-201.

[13] S.Xu, J. Lam, T. Chen, Y. Zou, A delay-dependent approach to robust Hy, filtering for uncertain distributed
delay systems, IEEE Transactions on Signal Processing 53 (10) (2005) 3764-3772.

[14] D. Yue, Q. Han, C. Peng, State feedback controller design of networked control systems, IEEE Transactions
on Circuits and Systems II: Express Briefs 51 (11) (2004) 640—644.

[15] D. Yue, Q. Han, J. Lam, Network-based robust H,, control of systems with uncertainty, Automatica 41 (6)
(2005) 999-1007.

[16] E. Tian, D. Yue, Z. Gu, Robust H,, control for nonlinear systems over network: a piecewise analysis
method, Fuzzy Sets and Systems 161 (21) (2010) 2731-2745.

[17] F. Liu, M. Wu, Y. He, R. Yokoyama, New delay-dependent stability criteria for TS fuzzy systems with time-
varying delay, Fuzzy Sets and Systems 161 (15) (2010) 2033-2042.



200 J. Liu et al. | Journal of the Franklin Institute 349 (2012) 184-200

[18] Y. Zhang, Y. He, M. Wu, J. Zhang, Stabilization for Markovian jump systems with partial information on
transition probability based on free-connection weighting matrices, Automatica (Journal of IFAC) 47 (1)
(2011) 79-84.

[19] J. Kim, Delay-dependent robust H, filtering for uncertain discrete-time singular systems with interval time-
varying delay, Automatica (Journal of IFAC) 46 (3) (2010) 591-597.

[20] J. Kim, Delay-dependent robust H, filtering for uncertain discrete-time singular systems with interval time-
varying delay, Automatica 46 (3) (2010) 591-597.

[21] Q. Quan, D. Yang, K. Cai, Linear matrix inequality approach for stability analysis of linear neutral systems
in a critical case, Control Theory & Applications, IET 4 (7) (2010) 1290-1297.

[22] H. Dong, Z. Wang, D. Ho, H. Gao, Variance-constrained H, filtering for a class of nonlinear time-varying
systems with multiple missing measurements: the finite-horizon case, IEEE Transactions on Signal Processing
58 (5) (2010) 2534-2543.

[23] Q. Zhou, S. Xu, B. Chen, Y. Chu, H, filtering for stochastic systems with time-varying delay, International
Journal of Systems Science 42 (1) (2011) 235-244.

[24] L. Vu, K. Morgansen, Stability of time-delay feedback switched linear systems, IEEE Transactions on
Automatic Control 55 (10) (2010) 2385-2390.

[25] L. Zhang, H. Gao, Asynchronously switched control of switched linear systems with average dwell time,
Automatica 46 (5) (2010) 953-958.

[26] Z. Wang, D. Ho, Filtering on nonlinear time-delay stochastic systems, Automatica 39 (1) (2003) 101-109.

[27] S. Nguang, P. Shi, Delay-dependent H./filtering for uncertain time delay nonlinear systems: an LMI
approach, Control Theory & Applications, IET 1 (1) (2007) 133-140.

[28] Z. Wang, D. Ho, X. Liu, Robust filtering under randomly varying sensor delay with variance constraints,
IEEE Transactions on Circuits and Systems II: Express Briefs 51 (6) (2004) 320-326.

[29] C. de Souza, R. Palhares, P. Peres, Robust filter design for uncertain linear systems with multiple time-
varying state delays, IEEE Transactions on Signal Processing 49 (3) (2001) 569.

[30] F. Wang, Q. Zhang, B. Yao, LMI-based reliable H, filtering with sensor failure, International Journal of
Innovative Computing, Information and Control 2 (4) (2006) 737-748.

[31] M. Basin, E. Sanchez, R. Martinez-Zuniga, Optimal linear filtering for systems with multiple state and
observation delays, International Journal of Innovative Computing, Information and Control 3 (5) (2007)
1309-1320.

[32] C. Gong, B. Su, Robust L,—L. filtering of convex polyhedral uncertain time-delay fuzzy systems,
International Journal of Innovative Computing Information and Control 4 (4) (2008) 793-802.

[33] D. Yue, Q. Han, Network based robust H,, filtering for uncertain linear systems, IEEE Transactions on
Signal Processing 11 (2006) 4293-4301.

[34] X. Jiang, Q. Han, New stability criteria for linear systems with interval time-varying delay, Automatica 44
(10) (2008) 2680-2685.

[35] X. Jiang, Q. Han, Delay-dependent robust stability for uncertain linear systems with interval time-varying
delay, Automatica 42 (6) (2006) 1059-1065.

[36] X. Jiang, Q. Han, On H,, control for linear systems with interval time-varying delay, Automatica 41 (12)
(2005) 2099-2106.

[37] K. Gu, V. Kharitonov, J. Chen, Stability of Time-delay Systems, Birkhéduser, 2003.

[38] D. Yue, E. Tian, Y. Zhang, C. Peng, Delay-distribution-dependent stability and stabilization of T-S fuzzy
systems with probabilistic interval delay, IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 39 (2) (2009) 503-516.

[39] P. Gahinet, P. Apkarian, A linear matrix inequality approach to H.,, control, International Journal of
Robust and Nonlinear Control 4 (4) (1994) 421-448.

[40] S. Xu, J. Lam, Y. Zou, New results on delay-dependent robust H,, control for systems with time-varying
delays, Automatica 42 (2) (2006) 343-348.

[41] Y. Lee, Y. Moon, W. Kwon, P. Park, Delay-dependent robust H, control for uncertain systems with a state-
delay, Automatica 40 (1) (2004) 65-72.

[42] P. Gahinet, A. Nemirovskii, A. Laub, M. Chilali, The LMI control toolbox, Proceedings of the 33rd IEEE
Conference on Decision and Control 1994, vol. 3, IEEE, 1995, pp. 2038-2041.

[43] Y. He, Q. Wang, C. Lin, M. Wu, Delay-range-dependent stability for systems with time-varying delay,
Automatica 43 (2) (2007) 371-376.

[44] H. Shao, New delay-dependent stability criteria for systems with interval delay, Automatica 45 (3) (2009)
744-749.



	A new approach to Hinfin filtering for linear time-delay systems
	Introduction
	Systems description and preliminaries
	Main results
	Example
	Conclusion
	Acknowledgment
	References




