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SUMMARY

In this paper, we propose and investigate a new general model of fuzzy genetic regulatory networks
described by the Takagi–Sugeno (T-S) fuzzy model with time-varying delays. By using a Lyapunov
functional approach and linear matrix inequality (LMI) techniques, the stability criteria for the delayed
fuzzy genetic regulatory networks are expressed as a set of LMIs, which can be solved numerically by
LMI toolbox in Matlab. Two fuzzy genetic network example are given to verify the effectiveness and
applicability of the proposed approach. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the past decades, genetic regulatory networks have received more attention in the biological
and biomedical sciences, a few results have been done in this area [1–6]. Nowadays, one of
the main challenges in systems biology is to understand the genetic regulatory networks, for
example, how genes and proteins interact to form a complex network that performs complicated
biological functions. Recently, mathematical modeling of genetic networks as dynamical system
models provides a powerful tool for studying gene regulation processes in living organisms, genetic
network models in literature can be roughly classified into two types, i.e. the Boolean model
(or discrete model) and the differential equation model (or continuous model) [7, 8]. In Boolean
models, the activity of each gene is expressed in one of two states: ON or OFF, and the state of a
gene is determined by a Boolean function of the states of other related genes. In the differential
equation models, the variables describe the concentrations of gene products, such as mRNAs and
proteins, as continuous values of the gene regulation systems. Using continuous values, the second
approach is considered more accurate, being able to provide more detailed understanding and
insights into the dynamic behavior exhibited by biological systems. In this paper, we consider
differential equation model of genetic network, in which the variables describe the concentrations
of mRNAs and proteins, as continuous values of the gene regulation systems.
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Recent studies on genetic regulatory networks are fruitful, and many important results have
been reported in the literature [9–12]. These results make significant contributions for discovering
higher order structure of an organism and for gaining deep insights into both static and dynamic
behaviors of genetic networks by extracting functional information from observation data. Based
on the theoretical analysis, several simple genetic networks have been successfully constructed by
means of experiments, for example, genetic switches [13], repressilator [14], and a single negative
feedback loop network [15]. However, time delay should be considered in the biological systems or
artificial genetic networks due to the slow processes of transcription, translation, and translocation
or the finite switching speed of amplifiers, theoretical models without consideration delay may
even provide wrong predictions [8, 14].

In reality, genetic regulatory networks may exhibit a special property called fuzzy reasoning.
Among various fuzzy systems models, one of the most famous models is the Takagi–Sugeno
(T-S) model [16]. Recently, the stability and stabilization problems for T-S fuzzy delayed systems
have been investigated widely [17–21] and some delay-independent or delay-dependent conditions
have been obtained using linear matrix inequalities (LMIs). However, to the best of the authors’
knowledge, so far, the problem of stability for T-S fuzzy genetic regulatory networks has not been
addressed in the literature, not to mention the time-varying delay is also involved. This work is
the first attempt to explore the problem of asymptotic and robust stability for T-S fuzzy genetic
regulatory networks.

This paper aims to investigate the robust stability of the fuzzy regulatory networks with time-
varying delays, and the time delays are assumed to belong to the given intervals. Employing the
convexity property of the matrix inequality, sufficient conditions of the asymptotic stability and
robust stability are derived in terms of LMIs which are easy to be verified via the LMI toolbox.
Two examples are employed to show the effectiveness and less conservativeness of the proposed
method.

The remainder of this paper is organized as follows. In Section 2, genetic network model and
preliminaries are given. In Section 3, asymptotic stability condition is derived for genetic networks
with time-varying delays. In Section 4, robust stability condition is derived for genetic networks
with time-varying delays and uncertainties. In Section 5, two genetic network examples are given
to show the effectiveness of the proposed results. Finally, conclusions are given in Section 6.

Notation: Rn denotes the n-dimensional Euclidean space, Rn×m is the set of real n×m matrices,
I is the identity matrix of appropriate dimensions, The notation X>0 (respectively, X<0), for
X ∈Rn×n means that the matrix X is a real symmetric positive-definite square matrix (respectively,
negative-definite square matrix). The asterisk ∗ in a matrix is used to denote term that is induced
by symmetry.

2. MODEL AND PRELIMINARIES

The fuzzy system was proposed to represent a nonlinear system [16]. The system dynamics can
be captured by a set of fuzzy rules which can characterize local correlations in the state space.
Based on the T-S fuzzy model concept, a general class of T-S fuzzy genetic regulatory networks
is considered here. The model of T-S fuzzy genetic regulatory networks is described as follows.

Plant rule i :

IF �1(t) is Fi1, . . . ,�r (t) is Fir,

THEN

⎧⎨
⎩
Ṁ(t)=−AiM(t)+Wi f (P(t))+Bi

Ṗ(t)=−Ci P(t)+Di M(t)

where �1(t), . . . ,�r (t) are the premise variables; Fi1, . . . , Fir are the fuzzy sets; i ∈{1,2, . . . ,r} �=S,
r is the number of IF-THEN rules; Ai , Wi , Bi , Ci , Di are known constant matrices with appropriate
dimensions.
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By using center-average defuzzifier, product interference and singleton fuzzifier, the T-S fuzzy
systems can be inferred as

Ṁ(t) = −A(�i )M(t)+W (�i ) f (P(t))+B(�i )

Ṗ(t) = −C(�i )P(t)+D(�i )M(t)
(1)

where A(�i )=
∑r

i=1�i Ai , W (�i )=
∑r

i=1�iWi , B(�i )=
∑r

i=1�i Bi , C(�i )=
∑r

i=1�iCi , D(�i )=∑r
i=1�i Di and

�i (�(t))=
�i (�(t))∑r
i=1�i (�(t))

, �i (�(t))=
g∏
j=1

Wi
j (� j (t))

Wi
j (� j (t)) is the grade membership value of � j (t) in Wi

j and �i (�(t)) satisfies

�i (�(t))�0,
r∑

i=1
�i (�(t))=1

For notational simplicity, we use �i to represent �i (�(t)) in the following description.
Let M∗

i and P∗
i (i ∈S) be an equilibrium of (1), that is (M∗

i , P
∗
i ) is the solution of equation

−A(�i )M
∗
i +W (�i ) f (P

∗
i )+B(�i ) = 0

−C(�i )P
∗
i +D(�i )M

∗
i = 0

(2)

For convenience, we will always shift an intended equilibrium point (M∗
i , P∗

i ) of the system (1)
to the origin by letting

m(t)=M(t)−M∗
i , p(t)= P(t)−P∗

i

then, we have

ṁ(t) = −A(�i )m(t)+W (�i )gi (p(t))

ṗ(t) = −C(�i )p(t)+D(�i )m(t)
(3)

where gi (p(t))= f (p(t)+P∗
i )− f (P∗

i ), since f (x) represents the feedback regulation of the protein
on the transcription, which is generally a monotonically increasing function with saturation [7, 8],
it satisfies, for all a,b∈ R, with a �=b

0� f (a)− f (b)

a−b
<k

where f (x) is the differentiable, the above inequality is equivalent to 0�(d f (a)/da)�k, from the
relationship of f (·) and gi (·), we know that gi (·) satisfies the sector condition 0�(gi (a)/a)�k, or
equivalently

gi (a)(gi (a)−ka)�0 (a �=0) (4)

Recall that a Lur’e system is linear dynamic system, feedback interconnected to a static nonlin-
earity f (·) that satisfies a sector condition [22]. Hence, the genetic network (3) can be seen as a
kind of Lur’e system, and can be investigated by using fruitful Lur’e system theory.

To have the accurate predictions, time delay should be considered in the biological systems due
to the slow processes of transcription, translation, and translocation or the finite switching speed of
amplifiers. It should be noted delay may play an important role in dynamics of genetic networks,
and theoretical models without consideration of these factors may even provide wrong predictions
[23]. In the following, we consider asymptotic stability of genetic networks with time-varying
delays

ṁ(t) = −A(�i )m(t)+W (�i )gi (p(t−�(t)))

ṗ(t) = −C(�i )P(t)+D(�i )m(t−�(t))
(5)
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where �(t), �(t) are the time-varying delays, which satisfy the following conditions:

0� �m��(t)��M , (6)

0� �m��(t)��M . (7)

Remark 1
To the best of the authors’ knowledge, the genetic regulatory networks model is described by
T-S fuzzy logic for the first time. When r =1, system (1) deduces into general genetic regulatory
networks. It is also worth mentioning that, compared with the well-studied works [2, 6, 10, 23],
the delayed coupling is also investigated here.

Remark 2
T-S fuzzy model can represent the local dynamics in different state–space regions by many linear
models, which present a way to utilize the mature theories and analysis methods to study the
nonlinear systems. As a useful approach, in the past few decades, the T-S fuzzy model has been
demonstrated to be effective in dealing with a variety of complex nonlinear systems, which has
therefore received a great deal of attention in the literature [17–21].

To obtain the main results, the following lemmas are needed.

Lemma 1 ([24])
Suppose �m��(t)��M , and x(t)∈ Rn , for any positive matrix R∈ Rn×n , R= RT >0, then

−(�M −�m)
∫ t−�m

t−�M
ẋT (s)Rẋ (s)ds�

[
x(t−�m)

x(t−�M )

]T [−R R

R −R

][
x(t−�m)

x(t−�M )

]
(8)

Lemma 2 (Han and Yue [25])
Suppose 0��m��(t)��M , �1, �2 and � are constant matrices of appropriate dimensions, then

(�(t)−�m)�1+(�M −�(t))�2+�<0 (9)

if and only if the following inequalities hold:

(�M −�m)�1+� < 0 (10)

(�M −�m)�2+� < 0 (11)

Lemma 3 (Hale and Verduyn Lunel [26])
Suppose that �, �, �: R+ →R+ are continuous, strictly monotonically increase functions, and that
�(s), �(s), �(s) are positive for s>0, �(0)=�(0)=0, with �(s)→∞ as s→∞. If there exists a
continuous function V :R×Rn →R and a positive number q>1 such that

�(‖x‖)�V (t, x)��(‖x‖) ∀t ∈R, x ∈Rn (12)

and that

v̇(t, x(t))�−�(‖x‖) if ‖x(t+�)‖<q‖x‖ ∀−����0 (13)

where v̇(t, x(t)) is the derivative of V along the solutions of system (5), � is the upper bound of
the time delay, then system (5) is asymptotically stable.

3. ASYMPTOTIC STABILITY CONDITION OF GENETIC NETWORKS WITH
TIME-VARYING DELAYS

In this section, by using convexity property of the matrix inequality and the Lyapunov stability
theorem, we analyze the stability of the fuzzy genetic network with time-varying delays.
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Theorem 1
The origin of system (5) is asymptotically stable for any given 0��m��(t)��M , 0��m��(t)��M
and k, if there exist positive-definite matrices Qi>0, Ri>0(i =1,2, . . . ,5), �i =diag(�i1,�i2, . . . ,
�in)>0 (i ∈S), Mi , Ni , Ti , Vi (i ∈S) and Ui , Si(i =1,2,3,4,5) of appropriate dimensions such
that the following LMIs hold:

�(i, j, l)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11+�+�T ∗ ∗ ∗ ∗
�21 �22+�+�T ∗ ∗ ∗
�31 �32 −2�i ∗ ∗

�41( j ) 0 0 −Q5 ∗
0 �52(l) 0 0 −R5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 ( j, l=1,2) (14)

where

�11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�1 ∗ ∗ ∗ ∗
−S2Ai 0 ∗ ∗ ∗

Q4−S3Ai 0 −Q2−Q4 ∗ ∗
−S4Ai 0 0 −Q3 ∗

−S5Ai −ST1 −ST2 −ST3 −ST4 �2mQ4+	1Q5−S5−ST5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 R1Di +U1Di 0 0 0

0 U2Di 0 0 0

0 U3Di 0 0 0

0 U4Di 0 0 0

0 U5Di 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2 ∗ ∗ ∗ ∗
−U2Ci 0 ∗ ∗ ∗

R4−U3Ci 0 −R2−R4 ∗ ∗
−U4Ci 0 0 −R3 ∗

−UT
1 −U5Ci −UT

2 −UT
3 −UT

4 �2m R4+	2R5−U5−UT
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�31 = [WT
i Q1+WT

i ST1 WT
i ST2 WT

i ST3 WT
i ST4 WT

i ST5 ]

�32 = [0 k�i 0 0 0]

�41(1)=
√

	1M
T
i , �41(2)=

√
	1N

T
i

�52(1)=
√

	2T
T
i , �52(2)=

√
	2V

T
i

�1 = −Q1Ai −AT
i Q1+Q2+Q3−Q4−S1Ai −AT

i S
T
1

�2 = −R1Ci −CT
i R1−U1Ci −CT

i U
T
1 +R2+R3−R4

� = [0 −Mi +Ni Mi −Ni 0]

� = [0 −Ti +Vi Ti −Vi 0]

	1 = �M −�m, 	2=�M −�m
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Proof
Construct a Lyapunov–Krasovskii candidate as

V (t)=V1(t)+V2(t)+V3(t) (15)

where

V1(t)=mT(t)Q1m(t)+ pT(t)R1 p(t)

V2(t)=
∫ t

t−�m
mT(s)Q2m(s)ds+

∫ t

t−�M
mT(s)Q3m(s)ds+

∫ t

t−�m
pT(s)R2 p(s)ds

+
∫ t

t−�M

pT(s)R3 p(s)ds

V3(t)= �m

∫ t

t−�m

∫ t

s
ṁT(v)Q4ṁ(v)dv ds+

∫ t−�m

t−�M

∫ t

s
ṁT(v)Q5ṁ(v)dv ds

+�m

∫ t

t−�m

∫ t

s
ṗT(v)R4 ṗ(v)dv ds+

∫ t−�m

t−�M

∫ t

s
ṗT(v)R5 ṗ(v)dv ds

Calculating the derivative of V (t) leads to the following equality:

V̇ (t)= 2mT(t)Q1ṁ(t)+2pT(t)R1 ṗ(t)+mT(t)(Q2+Q3)m(t)−mT(t−�m)Q2m(t−�m)

−mT(t−�M )Q3m(t−�M )+ pT(t)(R2+R3)p(t)− pT(t−�m)R2 p(t−�m)

−pT(t−�M )R3 p(t−�M )+ṁT(t)(�2mQ4+	1Q5)ṁ(t)+ ṗT(t)(�2
m R4+	2R5) ṗ(t)

−�m

∫ t

t−�m
ṁT(s)Q4ṁ(s)ds−�m

∫ t

t−�m
ṗT(s)R4 ṗ(s)ds−

∫ t−�m

t−�M
ṁT(s)Q5ṁ(s)ds

−
∫ t−�m

t−�M

ṗT(s)R5 ṗ(s)ds (16)

Using Lemma 1, we can obtain

−�m

∫ t

t−�m
ṁT(s)Q4ṁ(s)ds�

[
m(t)

m(t−�m)

]T[−Q4 Q4

Q4 −Q4

][
m(t)

m(t−�m)

]
(17)

−�m

∫ t

t−�m
ṗT(s)R4 ṗ(s)ds�

[
p(t)

p(t−�m)

]T[−R4 R4

R4 −R4

][
p(t)

p(t−�m)

]
(18)

Noting the sector condition, for any �i j>0(i ∈S, j=1,2, . . . ,n), we have

−2
n∑
j=1

�i j gi (p j (t−�(t)))[gi (p j (t−�(t)))−kp j (t−�(t))]�0 (19)

Rewriting the above inequalities into a compact matrix form, we obtain

−2gTi (p(t−�(t)))�i gi (p(t−�(t)))+2kgTi (p(t−�(t)))�i p(t−�(t))�0 (20)

where �i =diag(�i1,�i2, . . . ,�in)>0
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From (16)–(20), we can get

V̇ (t)� 2mT(t)Q1

{
r∑

i=1
�i [−Aim(t)+Wigi (p(t−�(t)))]

}

+2pT(t)R1

{
r∑

i=1
�i [−Ci p(t)+Dim(t−�(t))]

}
+mT(t)(Q2+Q3)m(t)

−mT(t−�m)Q2m(t−�m)−mT(t−�M )Q3m(t−�M )+ pT(t)(R2+R3)p(t)

−pT(t−�m)R2 p(t−�m)− pT(t−�M )R3 p(t−�M )−2gTi (p(t−�(t)))�i gi (p(t−�(t)))

+2kgTi (p(t−�(t)))�i p(t−�(t))+
[

m(t)

m(t−�m)

]T[−Q4 Q4

Q4 −Q4

][
m(t)

m(t−�m)

]

+
[

p(t)

p(t−�m)

]T[−R4 R4

R4 −R4

][
p(t)

p(t−�m)

]
−

∫ t−�m

t−�M
ṁT(s)Q5ṁ(s)ds

−
∫ t−�m

t−�M

ṗT(s)R5 ṗ(s)ds (21)

By using Lemma 1, we have

−
∫ t−�m

t−�M
ṁT(s)Q5ṁ(s)� 1

	1

[
m(t−�m)

m(t−�M )

]T[−Q5 Q5

Q5 −Q5

][
m(t−�m)

m(t−�M )

]
(22)

−
∫ t−�m

t−�M

ṗT(s)R5 ṗ(s)�
1

	2

[
p(t−�m)

p(t−�M )

]T[−R5 R5

R5 −R5

][
p(t−�m)

p(t−�M )

]
(23)

Employing the free matrix method, we have

r∑
i=1

�i

{
2
T1 (t)Mi

[
m(t−�m)−m(t−�(t))−

∫ t−�m

t−�(t)
ṁ(v)dv

]}
= 0 (24)

r∑
i=1

�i

{
2
T1 (t)Ni

[
m(t−�(t))−m(t−�M )−

∫ t−�(t)

t−�1
ṁ(v)dv

]}
= 0 (25)

r∑
i=1

�i

{
2
T2 (t)Ti

[
p(t−�m)− p(t−�(t))−

∫ t−�m

t−�(t)
ṗ(v)dv

]}
= 0 (26)

r∑
i=1

�i

{
2
T2 (t)Vi

[
p(t−�(t))− p(t−�M )−

∫ t−�(t)

t−�1
ṗ(v)dv

]}
= 0 (27)

r∑
i=1

�i {2
T1 (t)S[−Aim(t)+Wigi (p(t−�(t)))−ṁ(t)]} = 0 (28)

r∑
i=1

�i {2
T2 (t)U [−Ci p(t)+Dim(t−�(t)))− ṗ(t)]} = 0 (29)
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where


T1 (t)= [mT(t) mT(t−�(t)) mT(t−�m) mT(t−�M ) ṁT(t)]


T2 (t)= [pT(t) pT(t−�(t)) pT(t−�m) pT(t−�M ) ṗT(t)]

MT
i = [MT

i1 MT
i2 MT

i3 MT
i4 MT

i5]

NT
1 = [NT

i1 NT
i2 NT

i3 NT
i4 NT

i5]

T T
1 = [T T

i1 T T
i2 T T

i3 T T
i4 T T

i5]

V T
1 = [V T

i1 V T
i2 V T

i3 V T
i4 V T

i5]

ST = [ST1 ST2 ST3 ST4 ST5 ]

UT = [UT
1 UT

2 UT
3 UT

4 UT
5 ]

There exist Q5, R5 such that

−2
r∑

i=1
�i


T
1 (t)Mi

∫ t−�m

t−�(t)
ṁ(v)dv

�(�(t)−�m)
r∑

i=1
�i


T
1 (t)MiQ

−1
5 MT

i 
1(t)+
∫ t−�m

t−�(t)
ṁT(v)Q5ṁ(v)dv (30)

−2
r∑

i=1
�i


T
1 (t)Ni

∫ t−�(t)

t−�M
ṁ(v)dv

�(�M −�(t))
r∑

i=1
�i


T
1 (t)Ni Q

−1
5 NT

i 
1(t)+
∫ t−�(t)

t−�1
ṁT(v)Q5ṁ(v)dv (31)

−2
r∑

i=1
�i


T
2 (t)Ti

∫ t−�m

t−�(t)
ṗ(v)dv

�(�(t)−�m)
r∑

i=1
�i


T
2 (t)Ti R

−1
5 T T

i 
2(t)+
∫ t−�m

t−�(t)
ṗT(v)R5 ṗ(v)dv (32)

−2
r∑

i=1
�i


T
2 (t)Vi

∫ t−�(t)

t−�M

ṗ(v)dv

�(�M −�(t))
r∑

i=1
�i


T
2 (t)Vi R

−1
5 V T

i 
2(t)+
∫ t−�(t)

t−�1
ṗT(v)R5 ṗ(v)dv (33)

Adding (24)–(29) to the right of (21) and substituting (22), (23), and (30)–(33) into (21), we have

V̇ (t)�
r∑

i=1
�i

{

T(t)

[
�11+�+�T ∗

�21 �22+�+�T

]

(t)+(�(t)−�m)


T
1 (t)Mi Q

−1
5 MT

i 
1(t)

+(�M −�(t))
T1 (t)Ni Q
−1
5 NT

i 
1(t)+(�(t)−�m)

T
2 (t)Ti R

−1
5 T T

i 
2(t)

+(�M −�(t))
T2 (t)Vi R
−1
5 V T

i 
2(t)

}
(34)

where 
T(t)= [
T1 (t) 
T2 (t) gTi (p(t−�(t)))].
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Using Lemma 2 and Schur complement, it is easy to see that (14) with j, l=1,2 can lead V̇ (t)�0.
This implies that V̇ (t)�−�‖x(t)‖2 for a sufficiently small �>0, thereby revealing Lemma 3, the
origin of system (5) is asymptotically stable. �

4. ROBUSTLY ASYMPTOTIC STABILITY CONDITION OF FUZZY GENETIC
NETWORKS WITH TIME-VARYING DELAYS

Consider robust stability for fuzzy genetic networks with time-varying delays

ṁ(t) = −(Ai +	Ai (t))m(t)+(Wi +	Wi (t))gi (P(t−�(t)))

ṗ(t) = −(Ci +	Ci (t))P(t)+(Di +	Di (t))m(t−�(t))
(35)

where the time-varying delay �(t), �(t) satisfy (11), (12). The time-varying uncertain matrices
	Ai (t), 	Wi (t), 	Ci (t), 	Di (t) are defined as follows:

	Ai (t)= E1i F1i (t)T1i , 	Wi (t)= E2i F2i (t)T2i , 	Ci (t)= E3i F3i (t)T3i ,

	Di (t)= E4i F4i (t)T4i (36)

where E1i , E2i , E3i , E4i , T1i , T2i , T3i and T4i are known constant real matrices with appropriate
dimensions, F1i (t), F2i (t), F3i (t), and F4i (t) are unknown time-varying matrices satisfying

FT
1i (t)F1i (t)�I, FT

2i (t)F2i (t)�I, FT
3i (t)F3i (t)�I, FT

4i (t)F4i (t)�I (37)

Based on (35)–(37), a sufficient condition for delay-dependent asymptotical stability of the system
(35) is given in the following theorem.

Theorem 2
The origin of system (35) is robustly asymptotically stable for any given 0��m��(t)��M ,
0��m��(t)��M and k, if there exist positive-definite matrices Qi>0, Ri>0(i =1,2, . . . ,5),
�i =diag(�i1,�i2, . . . ,�in)>0, Mi , Ni , Ti , Vi (i ∈S), Ui , Si (i =1,2,3,4,5) and scalars lij(i =
1,2,3,4, j ∈S) of appropriate dimensions such that the following LMIs hold:

�(i, j, l)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11+�+�T+�1 ∗ ∗ ∗ ∗ ∗
�21 �22+�+�T+�2 ∗ ∗ ∗ ∗
�31 �32 −2�i +l4i T

T
2i T2i ∗ ∗ ∗

�3 �4 0 �5 ∗ ∗
�41( j ) 0 0 0 −Q5 ∗

0 �52(l) 0 0 0 −R5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0

( j, l=1,2) (38)

where

�1 = diag{l1i T T
1i T1i , l2i T

T
4i T4i ,0,0,0}

�2 = diag{l3i T T
3i T3i ,0,0,0,0}

�3 =

⎡
⎢⎢⎢⎢⎢⎣

−ET
1i Q1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

ET
2i Q1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦
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�4 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0

ET
4i R1 0 0 0 0

−ET
3i R1 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

�5 = diag{−l1i I,−l2i I,−l3i I,−l4i I }

and �11, �21, �22, �31, �32, �41( j ), �52(l), �, � are defined in Theorem 1.

Proof
Take the same Lyapunov functional as that in the proof of Theorem 1, and replace Ai , Wi , Ci , and
Di by Ai +E1i F1i (t)T1i , Wi +E2i F2i (t)T2i , Ci +E3i F3i (t)T3i , and Di +E4i F4i (t)T4i . Note that

l1im
T(t)T T

1i T1im(t)−l1i [F1i (t)T1im(t)]T[F1i (t)T1im(t)]�0 (39)

l2im
T(t−�(t))T T

4i T4im(t−�(t))−l2i [F4i (t)T4im(t−�(t))]T[F4i (t)T4im(t−�(t))]�0 (40)

l3i p
T(t)T T

3i T3i p(t)−l3i [F3i (t)T3i p(t)]
T[F3i (t)T3i p(t)]�0 (41)

l4i g
T(p(t−�(t)))T T

2i T2i gi (p(t−�(t)))−l4i [F2i (t)T2i gi (p(t−�(t)))]T[F2i (t)T2i g(p(t−�(t)))]�0

(42)

Using the above inequalities, we have

V̇ (t)� �T(t)

⎡
⎢⎢⎢⎢⎢⎣

�11+�+�T+�1 ∗ ∗ ∗
�21 �22+�+�T+�2 ∗ ∗
�31 �32 −2�i +l4i T

T
2i T2i ∗

�3 �4 0 �5

⎤
⎥⎥⎥⎥⎥⎦�(t)

+(�(t)−�m)

T
1 (t)M1Q

−1
5 MT

1 
1(t)+(�1−�(t))
T1 (t)N1Q
−1
5 NT

1 
1(t)

+(�(t)−�m)

T
2 (t)T1R

−1
5 T T

1 
2(t)+(�1−�(t))
T2 (t)V1R
−1
5 V T

1 
2(t) (43)

where

�T(t)=[
T(t) [F1i (t)T1im(t)]T [F4i (t)T4im(t−�(t))] [F3i (t)T3i p(t)]
T [F2i (t)T2i gi (p(t−�(t)))]T],

From (38) and (43), using Lemma 2 and the Schur complement, it is easy to see that the
conditions (38) can lead V̇ (t)�0. This implies that V̇ (t)�−�‖x(t)‖2 for a sufficiently small �>0,
thereby revealing Lemma 3, the origin of system (35) is asymptotically stable. �

5. EXAMPLE

In this section, we will present two examples to illustrate our theoretical results.

Example 1
We consider the following T-S fuzzy genetic regulatory networks with time-varying delays
consisting of two modes, the deterministic parameters of (5) are given as: �1(t)= sin2(t),
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�2(t)=cos2(t), A1=C1= I5, D1=0.8I5, A2=C2=D2= I5,

W1=0.5×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 0 0

−1 0 0 1 1

0 1 0 0 0

1 −1 0 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, W2=0.3×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 1 0 0

−1 0 0 1 1

0 1 0 0 0

1 −1 0 0 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The time-varying delays are chosen as �m =0.10, �(t)=0.5+0.1sin(t), which means �m =0.40,
�M =0.60; The nonlinear regulatory functions gi (·) are taken as the usually used Hill form, that
is, g1(x)=g2(x)= x2/(1+x2).

According to Theorem 1, by using the MATLAB LMI Toolbox, the T-S fuzzy genetic regulatory
networks with time-varying delays can achieve asymptotic stability under the allowable maximum
delay of �M =4.19, when �m =0.10.

The computational simulation results of trajectories pi (t) and mi (t) are shown in Figure 1,
Figure 2 with the initial values m(0)= [0.1 0.2 0.3 0.4 0.5]T, p(0)= [0.5 0.4 0.3 0.2 0.1]T

when �m =0.1, �M =4.19.

Example 2
Based on Example 1, we consider the following uncertain parameters:

E11 = E21=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.4 0.1 −0.2 −0.1 0.1

0.1 0.4 −0.1 0.1 0.2

−0.2 −0.1 0.3 0.1 0

−0.1 0.1 0.1 0.4 0.1

0.1 0.2 0 0.1 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

m
i(t

)(
i=

1,
2,

3,
4,

5)

Figure 1. Transient response of mi (t) (i =1,2,3,4,5).
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0 5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (s)

p i
(t

)(
i=

1,
2,

3,
4,

5)

Figure 2. Transient response of pi (t) (i =1,2,3,4,5).

E31 = E41=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.04 0.01 −0.02 −0.01 0.01

0.01 0.04 −0.01 0.01 0.02

−0.02 −0.01 0.03 0.01 0

−0.1 0.1 0.1 0.4 0.1

0.01 0.02 0 0.01 0.04

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E12 = E22=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.2 0.2 −0.1 −0.2 0.1

0.2 0.3 −0.1 0.1 0.2

−0.1 −0.1 0.5 0.1 0

−0.2 0.1 0.1 0.4 0.2

0.1 0.2 0 0.2 0.4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

E32 = E42=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.02 0.02 −0.01 −0.02 0.01

0.02 0.03 −0.01 0.01 0.02

−0.01 −0.01 0.05 0.01 0

−0.02 0.01 0.01 0.04 0.02

0.01 0.02 0 0.02 0.04

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T11 = E11,T12= E12,T21= E21,T22= E22,T31= E31,T32= E32,T41= E41,T42= E42

F11(t)= F12(t)= F21(t)= F22(t)= F31(t)= F32(t)= F41(t)= F42(t)

= diag{sin(t),cos(2t),cos(t),− sin(t),sin(t)}
From Theorem 2, by using the Matlab LMI toolbox, we can easily obtain that the uncer-

tain fuzzy genetic regulatory networks (35) is robustly asymptotically stable when �m =0.1,
�M =4.19.

With the given initial condition m(0)= [1 0.8 0.6 0.4 0.2]T and p(0)= [0.2 0.4 0.6 0.8 1]T

for fuzzy genetic regulatory networks, the simulation results are presented in Figures 3 and 4.
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Figure 3. Transient response of mi (t) (i =1,2,3,4,5).
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0.4

0.6
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1

1.2

Time (s)

p i
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)(
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1,
2,
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4,

5)

Figure 4. Transient response of pi (t) (i =1,2,3,4,5).

6. CONCLUSION

In this paper, we have proposed a model of T-S fuzzy genetic networks with time-varying delays and
investigated the robustly asymptotic stability of the proposed fuzzy genetic networks. To analyze
the asymptotic stability of the fuzzy genetic network systems, the convexity of the matrix function
technique has been used. Based on the free-weighting matrix method and the LMI techniques,
stability conditions have been developed in terms of LMIs. Two examples with simulation results
have been carried out to demonstrate the effectiveness of the proposed method.
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