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Abstract

This paper is concerned with the event-based fault detection for the networked systems with
communication delay and nonlinear perturbation. We propose an event-triggered scheme, which has some
advantages over existing ones. The sensor data is transmitted only when the specified event condition
involving the sampled measurements of the plant is violated. An event-based fault detection model is firstly
constructed by taking the effect of event-triggered scheme and the network transmission delay into
consideration. The main purpose of this paper is to design an event-based fault detection filter such that, for
all unknown input, communication delay and nonlinear perturbation, the error between the residual signal
and the fault signal is made as small as possible. Sufficient conditions for the existence of the desired fault
detection filter are established in terms of linear matrix inequalities. Based on these conditions, the explicit
expression is given for the designed fault detection filter parameters. A numerical example is employed to
illustrate the advantage of the introduced event-triggered scheme and the effectiveness of the proposed
method.
& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fault detection and isolation (FDI) has been an active field of research over the past decades,
in response to an increasing demand for higher performance, higher safety and reliability
standards of modern dynamic systems. In general, the aim of FDI is to construct a residual signal
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and compare it with a predefined threshold. When the residual signal exceeds the threshold, an
alarm is generated. Recently, the model-based approaches to FDI problems for dynamic systems
have received more and more attention, as it makes use of the mathematical model for designing
a fault detection filter/observer to detect the fault signal. So far, FDI problems have been widely
investigated and lots of outstanding results have been made [1–5]. For example, in [1], the
authors investigated the robust fault detection problem for a class of discrete-time networked
systems with unknown input and multiple state delays. The authors in [2] are concerned with the
fault detection problem for a class of discrete-time systems with randomly occurring
nonlinearities, mixed stochastic time-delays as well as measurement quantization. In [3], the
robust fault detection filter (RFDF) was designed for a class of linear systems with some
nonlinear perturbations and mixed neutral and discrete time-varying delays. Different from
robust control, the goal of robust fault detection is to make the error between the residual and the
fault signal as small as possible.
On the other hand, networked control systems (NCSs) have received a great deal of research

attention, which have many advantages such as low cost, reduced weight and power
requirements, simple installation and maintenance, and high reliability. However, the insertion
of network in the control systems can also bring about new interesting and challenging issues as
to the limited capacity of the network cable, for example, the transmission delay, packet dropout,
signal quantization, scheduling confusion, etc. Recently, many efforts have been made on NCSs.
Due to the output signal of the plant is often measured at sampled points in many practical
situations, most of the available results use a periodic triggered method (also called a time-
triggered control). However, this might be a conservative choice. For example, the issues of
limited resource and insufficient communication bandwidth and the case of inadequate
computation power for fast systems are problems that often have to be dealt with. It is therefore
of great need to build mechanisms for sampling that do not rely on periodicity or time-triggering
techniques. Recently, event-triggered method , advocating the use of action only when some
function of the system exceeds a threshold, has received considerable attention. Event-triggered
method provides a useful way to determine when the sampling action is carried out. Compared
with time-triggered method, it has the following advantages: (1) it only samples when necessary;
(2) the burden of the network communication is reduced; (3) the computation cost of the
controller and the occupation of the sensor and actuator are reduced. So far, many outstanding
results under event-triggered method have been reported. In [6], the authors proposed an event-
triggered control for linear systems with an external disturbance and derived the criteria to
guarantee the uniform boundedness of the system. The authors in [7] proposed event-triggered
strategies for control of discrete-time systems, in which the plant was assumed input-to-state
stable with respect to measurement errors and the control law was updated once a triggering
condition involving the norm of a measurement error was violated. The methods for design or
implementation of controllers in the event-triggered form based on dissipation inequalities were
proposed for both linear and nonlinear systems in [8]. In [9], the authors were concerned with the
problem of event-based H1 filtering for networked systems with communication delay under a
novel event-triggered scheme upon which the sensor data transmitted only when the specified
event condition involving the sampled measurements of the plant was violated. Up to now, to the
best of the authors' knowledge, little attention has been paid to the FDI problem for networked
control system under event-triggered scheme. This situation has motivated our current
investigation with the hope to shorten such a gap by addressing the fault detection with
transmission delay under the event-triggered scheme.
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In this paper, the event-based fault detection problem is studied for networked systems with
communication delay, unknown input and nonlinear perturbation. The event generator is used to
determine whether the newly sampled sensor data to be carried out is constructed between the
sensor and the fault detection filter. Unlike the cases in [6–8], the implementation of our event-
triggered scheme only needs a supervision in discrete instants. Similar to [9], there is no need to
retrofit the existing system by using our method. By augmenting the states of the original system
and the fault detection filter, the fault detection problem addressed is converted into an auxiliary
H1 filtering problem.

The paper is organized in the following way. Section 2 presents the system description, the
event triggered scheme and the formation of the overall fault detection dynamic system are
described. In Section 3, a sufficient condition for the existence of the desired fault detection filter
is established in terms of linear matrix inequalities (LMIs) and a fault detection filter design
method is provided. In the final part, a numerical example is provided to show the effectiveness
and applicability of the proposed method.

Notation: Rn and Rn�m denote the n-dimensional Euclidean space and the set of n�m real
matrices, respectively; the superscript “T” stands for matrix transposition; I is the identity matrix
of appropriate dimension; ∥ � ∥ stands for the Euclidean vector norm or the induced matrix 2-
norm as appropriate; the notation X40 (respectively, X≥0), for X∈Rn�n means that the matrix X
is real symmetric positive definite (respectively, positive semi-definite). For a matrix B and two
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Fig. 1. The structure of a fault detection filtering system.
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Fig. 2. Residual evaluation function J(k).
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symmetric matrices A and C, A
B

n

C

� �
denotes a symmetric matrix, where n denotes the entries

implied by symmetry.

2. System description

Consider a discrete-time networked system with the structure shown in Fig. 1.
The system consists of a plant with smart sensor, a fault detection filter and network channel,

which can be described as the following discrete-time systems with nonlinearities and time-
delay:

xðk þ 1Þ ¼ AxðkÞ þ Ad1xðk�d1ðkÞÞ þ D1wðkÞ þ Gf ðkÞ þ gðk; xðkÞÞ
yðkÞ ¼ CxðkÞ

(
ð1Þ

where xðkÞ∈Rn is the state vector; d1ðkÞ is time-varying delay; wðkÞ∈Rn is the unknown input
belonging to L2½0;1Þ; f ðkÞ∈Rl is the fault signal to be detected; gðk; xðkÞÞ is a known nonlinear
function, yðkÞ∈Rm is the process output, and A, Ad1, D1, G, C are all constant matrices with
appropriate dimensions. Throughout this paper, similar to [10,11], we make the following
assumptions:

Assumption 1. gðk; 0Þ ¼ 0; for all k∈N.

Assumption 2.

½gðk; xÞ�gðk; yÞ�Ξ1ðx�yÞ�T ½gðk; xÞ�gðk; yÞ�Ξ2ðx�yÞ�≤0
where Ξ1 and Ξ2 are known real constant matrices.

Remark 1. From Assumptions 1 and 2, we can obtain that

xðkÞ
gðk; xðkÞÞ

" #T
Ω1 n

Ω2 In

" #
xðkÞ

gðk; xðkÞÞ

" #
≤0 ð2Þ

where

Ω1 ¼
ΞT
1Ξ2 þ ΞT

2Ξ1

2
; Ω2 ¼�Ξ1 þ Ξ2

2

Assumption 3. The time-varying delay d1ðkÞ satisfies dm1 ≤d1ðkÞ≤dM1 , where dm1 and dM1 are
constant positive scalars representing the lower and upper bounds, respectively.

Consider the following discrete-time full-order fault detection filter:

x̂ðk þ 1Þ ¼ AFx̂ðkÞ þ BFŷðkÞ
rðkÞ ¼ CFx̂ðkÞ þ DFŷðkÞ

(
ð3Þ

where x̂ðkÞ∈Rn is the state of the fault detection filter; rðkÞ∈Rl is the so-called residual that is
compatible with f(k); ŷðkÞ is the real input of the fault detection filter. AF, BF, CF and DF are
appropriately the dimensioned filter matrices to be determined.

Remark 2. For traditional fault detection filtering problem, the effect of the communication
network is neglected. However, due to the existence of the network-induced delays, it is quite
common that ŷðkÞ≠yðkÞ.



J. Liu, D. Yue / Journal of the Franklin Institute 350 (2013) 2791–2807 2795
As is well known, periodic sampling mechanism has been widely used in many practical
systems, however, it may often lead to transmitting many unnecessary signals through the
network, which in turn will increase the load of network transmission and wastes in the network
bandwidth. As stated in [12], the event-triggered sampling scheme is an effective way for
network systems. Therefore, for networked systems shown in Fig. 1, in order to save network
resources such as network bandwidth, it is significant to introduce an event triggered mechanism
which decides whether the newly sampled sensor data should be sent out to the fault detection
filter. As is shown in Fig. 1, the sensor data feeds into an Event Generator that decides when to
transmit the sensor data to the fault detection filter via a network medium by a specified trigger
condition, which will be given in sequel. The following function of network architecture in Fig. 1
is expected:
1.
 As shown in Fig. 1, the event generator is constructed between the sensor and the fault
detection filter which is used to determine whether the newly sampled sensor data y(k)
should be sent out to the fault detection filter by using the following judgement algorithm
[13]:

½yðkÞ�yðsiÞ�TΩ yðkÞ�yðsiÞ½ �≤syT ðkÞΩyðkÞ ð4Þ

where Ω∈Rm�m is a positive matrix, s∈½0; 1Þ, yðsiÞ is the previously transmitted sensor
data. If the current sensor data y(k) satisfy the inequality (4), it will not be transmitted. Only
the one that exceeds the threshold in Eq. (4) will be sent to the fault detection filter.
2.
 When the sampled data has been transmitted (or released) by the event generator, it is
forwarded to the ZOH through network channel, introducing a communication delay τðkÞ.
Under the event triggered (4), the release times are assumed to be s0; s1; s2;…, where s0 ¼ 0 is
the initial time. ti ¼ siþ1�si denotes the release period of event generator in Eq. (4). Considering
the effect of the transmission delay on the network system, the released signals will arrive at the
fault detection filter at the instants s0 þ τðs0Þ; s1 þ τðs1Þ; s2 þ τðs2Þ;…, where τð0Þ ¼ 0.

Remark 3. From event triggering (4), it is easy to see that the set of the release instants, i.e.,
fs0; s1; s2;…g is a subset of f0; 1; 2;…g. The amount of fs0; s1; s2;…g depends on not only the
value of s, but also the variation of the state. When s¼ 0, fs0; s1; s2;…g ¼ f0; 1; 2;…g, it reduces
to the case with periodic release times.

Assumption 4. The time-varying delay in the network communication is τðkÞ and τðkÞ∈½0; τMÞ,
where τM is apositive real number.

Based on the above analysis, considering the behavior of ZOH, the input of the fault detection
filter can be described as

ŷðkÞ ¼ yðsiÞ; t∈½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1� ð5Þ
Similar to [14], for technical convenience, we consider the following two cases:
Case 1: If si þ 1þ τM≥siþ1 þ τðsiþ1Þ�1, define a function d2ðkÞ as

d2ðkÞ ¼ k�si; k∈½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1� ð6Þ
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clearly,

τðsiÞ≤d2ðkÞ≤ðsiþ1�siÞ þ τðsiþ1Þ�1≤1þ τM ð7Þ
Case 2: If si þ 1þ τM ≤siþ1 þ τðsiþ1Þ�1, consider the following two intervals:

½si þ τðsiÞ; si þ τM �; ½si þ τM þ l; si þ τM þ lþ 1� ð8Þ
Since τðkÞ≤τM , it can be easily shown that there exists d such that

si þ d þ τMosiþ1 þ τðsiþ1Þ�1≤si þ d þ 1þ τM ð9Þ
Moreover, yðsiÞ and yðsi þ lÞ with l¼ 1; 2;…; d satisfy Eq. (4). Let

I0 ¼ ½si þ τðsiÞ; si þ τM þ 1Þ
Il ¼ ½si þ τM þ l; si þ τM þ lþ 1Þ
Id ¼ ½si þ d þ τM ; siþ1 þ τðsiþ1Þ�1�

8><
>: ð10Þ

where l¼ 1; 2;…; d�1. One can see that

½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1� ¼ ⋃
i ¼ d

i ¼ 0
Ii ð11Þ

Define d2ðkÞ as

d2ðkÞ ¼
k�si; k∈I0
k�si�l; k∈Il; l¼ 1; 2;…; d�1

k�si�d; k∈Id

8><
>: ð12Þ

Then, we have

τðsiÞ≤d2ðkÞ≤1þ τM≜dM2 ; k∈I0
τðsiÞÞ≤τM ≤d2ðkÞ≤dM2 ; k∈Il; l¼ 1; 2;…; d�1

τðsiÞ≤τM ≤d2ðkÞ≤dM2 ; k∈Id

8><
>: ð13Þ

where the third row in Eq. (13) holds because siþ1 þ τðsiþ1Þ�1≤si þ d þ 1þ τM . Obviously,

τðsiÞ≤τM ≤d2ðkÞ≤dM2 ; k∈Id ð14Þ
In Case 1, for k∈½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1�, define eiðkÞ ¼ 0. In Case 2, define

eiðkÞ ¼
0; k∈I0
yðsiÞ�yðsi þ lÞ; k∈Il; l¼ 1; 2;…; d�1

yðsiÞ�yðsi þ dÞ; k∈Id

8><
>: ð15Þ

From the definition of ei(k) and the triggering algorithm (4), it can be easily seen that for
k∈½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1�,

eTi ðkÞΩeiðkÞ≤syT ðk�d2ðkÞÞΩyðk�d2ðkÞÞ ð16Þ
Utilizing d2ðkÞ and ei(k), the input of the fault detection filter ~yðkÞ can be expressed as

ŷðkÞ ¼ yðsiÞ ¼ yðk�d2ðkÞÞ þ eiðkÞ; k∈½si þ τðsiÞ; siþ1 þ τðsiþ1Þ�1� ð17Þ
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Then, combining Eqs. (1) and (17), Eq. (3) can be rewritten as

x̂ðk þ 1Þ ¼ AFx̂ðkÞ þ BFCxðk�d2ðkÞÞ þ BFeiðkÞ
rðkÞ ¼ CFx̂ðkÞ þ DFCxðk�d2ðkÞÞ þ DFeiðkÞ

(
ð18Þ

From Eqs. (1) and (18), we have the overall fault detection dynamics governed by the
following system:

xðk þ 1Þ ¼ AxðkÞ þ Ad1xðk�d1ðkÞÞ þ Ad2xðk�d2ðkÞÞ þ D1vðkÞ þ ~BFeiðkÞ þ HT
1gðk; xðkÞÞ

rðkÞ ¼ ~CFxðkÞ þ DFCxðk�d2ðkÞÞ þ DFeiðkÞ þ H2uðkÞ

(

ð19Þ
where

xðkÞ ¼ ½xT ðkÞ x̂T ðkÞ�T ; rðkÞ ¼ rðkÞ�f ðkÞ; vðkÞ ¼ ½wT ðkÞ f T ðkÞ�T

A ¼
A 0

0 AF

" #
; Ad1 ¼

Ad1

0

� �
; Ad2 ¼

0

BFC

" #
; D1 ¼

D1 G

0 0

� �

~BF ¼
0

BF

" #
; H1 ¼ ½I 0�; ~C ¼ ½0 CF�; H2 ¼ ½0 �I�

After the above manipulations, the problem of event-based fault detection filter design can
now be formulated as an auxiliary H1 filtering problem: design a filter of the type (3) that makes
the error between residual and fault signal as small as possible. The aim of this paper can be
restated as finding the filter parameters AF, BF, CF and DF such that the following two
requirements are satisfied: (i) the overall fault detection dynamics (19) is exponentially stable in
the mean square [15]; (ii) under zero initial condition, the infimum of γ is made as small as
possible in the feasibility of

sup
vðkÞ≠0

∥rðkÞ∥2
∥vðkÞ∥2 oγ2; γ40 ð20Þ

We further adopt a residual evaluation function JðkÞ and a threshold Jth of the following form:

JðkÞ ¼ ∑
k

h ¼ 0
rT ðhÞrðhÞ

� �1=2

; Jth ¼ sup
wðkÞ∈l2;f ðkÞ ¼ 0

JðkÞ ð21Þ

Based on Eq. (21), the occurrence of faults can be detected by comparing J(k) with Jth
according to the following rules:

JðkÞ4Jth⇒with faults⇒alarm
JðkÞ≤Jth⇒no faults

In the following, we need to introduce two lemmas, which will help us in deriving the main
results.

Lemma 1 (Wang et al. [16]). For any vectors x, y∈Rn, and positive definite matrix Q∈Rn�n, the
following inequality holds:

2xTy≤xTQxþ yTQ�1y
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Lemma 2 (Yue et al. [17]). Ξ1i, Ξ2iði¼ 1; 2Þ and Ω are matrices with appropriate dimensions,
di(k) is a function of k and dm1 ≤d1ðkÞ≤dM1 , 0≤d2ðkÞ≤dM2 , then

½ðd1ðkÞ�dm1 ÞΞ11 þ ðdM1 �d1ðkÞÞΞ21� þ ½d2ðkÞΞ12 þ ðdM2 �d2ðkÞÞΞ22� þΩo0

if and only if the following four inequalities hold:

ðdM1 �dm1 ÞΞ11 þ dM2 Ξ22 þΩo0

ðdM1 �dm1 ÞΞ21 þ dM2 Ξ22 þΩo0

ðdM1 �dm1 ÞΞ11 þ dM2 Ξ12 þΩo0

ðdM1 �dm1 ÞΞ21 þ dM2 Ξ12 þΩo0

3. Main results

In this section, we will investigate both the analysis and synthesis problems for the fault
detection filter design of system (1) under the event trigger (4).

Theorem 1. Consider system (19) and suppose the parameters γ, dm1 , d
M
1 , d

M
2 and s are given,

the fault detection dynamics is exponentially stable in the mean square under the event trigger
scheme (4) if there exist matrices P40, Qi40 ði¼ 1; 2; 3Þ, Ri40 ði¼ 1; 2; 3Þ, Ω40, N2, N3 M3,
M4, S1, S5, T5 and T6 with appropriate dimensions satisfying

ΣðsÞ ¼

Σ11 n n n n

Σ21 Σ22 n n n

Σ31 0 Σ33 n n

Σ41 Σ42 Σ43 Σ44 n

Σ51ðsÞ 0 0 0 Σ55

2
6666664

3
7777775o0; s¼ 1; 2; 3; 4 ð22Þ

where

Σ11 ¼�Pþ HT
1 ðQ1 þ Q2 þ Q3�R1�Ω1ÞH1 þ S1H1 þ HT

1S
T
1

Σ21 ¼

R1H1

0

0

S5H1�ST1
0

2
6666664

3
7777775; Σ22 ¼

Γ1 n n n n

N3�NT
2 Γ2 n n n

0 M4�MT
3 Γ3 n n

0 0 0 Γ4 n

0 0 0 T6�TT
5 �Q3�T6�TT

6

2
6666664

3
7777775

Σ31 ¼ ½0 0 �HT
1Ω

T
2 �T ; Σ33 ¼ diagf�γ2I;�Ω;�Ig

Σ41 ¼

PA

dm1 R1ðA�IÞH1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2ðA�IÞH1ffiffiffiffiffiffi

dM2

q
R3ðA�IÞH1

~CF

2
6666666664

3
7777777775
; Σ42 ¼

0 PAd1 0 PAd2 0

0 dm1 R1R1Ad1 0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2Ad1 0 0 0

0
ffiffiffiffiffiffi
dM2

q
R3Ad1 0 0 0

0 0 0 DFC 0

2
666666664

3
777777775
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Σ43 ¼

PD1 P ~BF PHT
1

dm1 R1D2 0 dm1 R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2D2 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2ffiffiffiffiffiffi

dM2

q
R3D2 0

ffiffiffiffiffiffi
dM2

q
R3

H2 DF 0

2
666666664

3
777777775
;

Σ44 ¼ diagf�P;�R1;�R2;�R3;�Ig; H1 ¼ ½I 0�

Σ51ð1Þ ¼
0ffiffiffiffiffiffi
dM2

q
ST1

2
4

3
5; Σ51ð2Þ ¼ 0; Σ51ð3Þ ¼

0ffiffiffiffiffiffi
dM2

q
ST1

2
4

3
5; Σ51ð4Þ ¼ 0;

Σ52ð1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
NT

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
NT

3 0 0 0

0 0 0
ffiffiffiffiffiffi
dM2

q
ST5 0

2
64

3
75

Σ52ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
NT

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
NT

3 0 0 0

0 0 0
ffiffiffiffiffiffi
dM2

q
TT
5

ffiffiffiffiffiffi
dM2

q
TT
6

2
64

3
75

Σ52ð3Þ ¼
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
MT

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
MT

4 0 0

0 0 0
ffiffiffiffiffiffi
dM2

q
TT
5

ffiffiffiffiffiffi
dM2

q
TT
6

2
64

3
75

Σ52ð4Þ ¼
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
MT

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
MT

4 0 0

0 0 0
ffiffiffiffiffiffi
dM2

q
ST5 0

2
64

3
75

Σ55 ¼ diagf�R2;�R3g

Γ1 ¼�Q1�R1 þ N2 þ NT
2 ; Γ2 ¼�N3�NT

3 þM3 þMT
3 ; Γ3 ¼�Q2�M4�MT

4 ;

Γ4 ¼�S5�ST5 þ T5 þ TT
5 þ sΩ

Proof. Define

δðkÞ ¼ xðk þ 1Þ�xðkÞ ð23Þ

¼ ðA�IÞH1xðkÞ þ Ad1xðk�d1ðkÞÞ þ D2vðkÞ þ gðk; xðkÞÞ ð24Þ
where D2 ¼ ½D1 G��.

Choose the following Lyapunov functional candidate as:

VðkÞ ¼ V1ðkÞ þ V2ðkÞ þ V3ðkÞ ð25Þ
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where

V1ðkÞ ¼ xT ðkÞPxðkÞ
V2ðkÞ ¼ ∑

k�1

i ¼ k�dm1

xT ðiÞQ1xðiÞ þ ∑
k�1

i ¼ k�dM1

xT ðiÞQ2xðiÞ þ ∑
k�1

i ¼ k�dM2

xT ðiÞQ3xðiÞ

V3ðkÞ ¼ dm1 ∑
�1

i ¼ �dm1

∑
k�1

j ¼ kþi
δT ðiÞR1δðiÞ þ ∑

�dm1 �1

i ¼ �dM1

∑
k�1

j ¼ kþi
δT ðiÞR2δðiÞ þ ∑

�1

i ¼ �dM2

∑
k�1

j ¼ kþi
δT ðiÞR3δðiÞ

Let ΔViðkÞ ¼ Viðk þ 1Þ�ViðkÞ; i¼ 1; 2; 3, then along the system (19), we have

ΔV1ðkÞ ¼ xT ðk þ 1ÞPxðk þ 1Þ�xT ðkÞPxðkÞ ð26Þ

ΔV2ðkÞ ¼ xT ðkÞHT
1 ðQ1 þ Q2 þ Q3ÞH1xðkÞ�xT ðk�dm1 ÞQ1xðk�dm1 Þ

�xT ðk�dM1 ÞQ2xðk�dM1 Þ�xT ðk�dM2 ÞQ3xðk�dM2 Þ ð27Þ

ΔV3ðkÞ ¼ ðdm1 Þ2δT ðkÞR1δðkÞ�dm1 ∑
k�1

i ¼ k�dm1

δT ðiÞR1δðiÞ þ ðdM1 �dm1 ÞδT ðkÞR2δðkÞ

� ∑
k�dm1 �1

i ¼ k�dM1

δT ðiÞR2δðiÞ þ dM2 δ
T ðkÞR3δðkÞ� ∑

k�1

i ¼ k�dM2

δT ðiÞR3δðiÞ ð28Þ

where P40, Qi40, and Ri40 (i¼1,2,3).
By using Jessen's inequality [18], we have

�dm1 ∑
k�1

i ¼ k�dm1

δT ðiÞR1δðiÞ≤
xðkÞ

xðk�dm1 Þ

" #T �HT
1R1H1 HT

1R1

R1H1 �R1

" #
xðkÞ

xðk�dm1 Þ

" #
ð29Þ

Employing the free-weighting matrices method [19,20] and combining Eqs. (25)–(28), we
have

ΔVðkÞ ¼ΔV1ðkÞ þ ΔV2ðkÞ þ ΔV3ðkÞ

þ2ζT ðkÞN xðk�dm1 Þ�xðk�d1ðkÞÞ� ∑
k�dm1 �1

i ¼ k�d1ðkÞ
δðiÞ

" #

þ2ζT ðkÞM xðk�d1ðkÞÞ�xðk�dM1 Þ� ∑
k�d1ðkÞ�1

i ¼ k�dM1

δðiÞ
" #

þ2ζT ðkÞS H1xðkÞ�xðk�d2ðkÞÞ� ∑
k�1

i ¼ k�d2ðkÞ
δðiÞ

" #

þ2ζT ðkÞT xðk�d2ðkÞÞ�xðk�dM2 ÞÞ� ∑
k�d2ðkÞ�1

i ¼ k�dM2

δðiÞ
" #

ð30Þ

where

ζT ðkÞ ¼ ½xT ðkÞ xT ðk�dm1 Þ xT ðk�d1ðkÞÞ xT ðk�dM1 Þ xT ðk�d2ðkÞÞ
xT ðk�dM2 Þ vT ðkÞ eTi ðkÞ gT ðk; xðkÞÞ�
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There exist R2 and R3, such that

�2ζT ðkÞN ∑
k�dm1 �1

i ¼ k�d1ðkÞ
δðiÞ≤ðd1ðkÞ�dm1 ÞζT ðkÞNR�1

2 NTζðkÞ þ ∑
k�dm1 �1

i ¼ k�d1ðkÞ
δT ðiÞR2δðiÞ ð31Þ

�2ζT ðkÞM ∑
k�d1ðkÞ�1

i ¼ k�dM1

δðiÞ≤ðdM1 �d1ðkÞÞζT ðkÞMR�1
2 MTζðkÞ þ ∑

k�d1ðkÞ�1

i ¼ k�dM1

δT ðiÞR2δðiÞ ð32Þ

�2ζT ðkÞS ∑
k�1

i ¼ k�d2ðkÞ
δðiÞ≤d2ðkÞζT ðkÞSR�1

3 STζðkÞ þ ∑
k�1

i ¼ k�d2ðkÞ
δT ðiÞR3δðiÞ ð33Þ

�2ζT ðkÞT ∑
k�d2ðkÞ�1

i ¼ k�dM3

δðiÞ≤ðdM2 �d2ðkÞÞζT ðkÞTR�1
3 TTζðkÞ þ ∑

k�d2ðkÞ�1

i ¼ k�dM2

δT ðiÞR3δðiÞ ð34Þ

Also, notice that xðkÞ ¼H1xðkÞ, it follows from Eq. (2) that

xðkÞ
gðk; xðkÞÞ

" #T �HT
1Ω1H1 n

�Ω2H1 �In

" #
xðkÞ

gðk; xðkÞÞ

" #
≥0 ð35Þ

Combining Eqs. (26)–(35) and the relation (4), we have

ΔVðkÞ�γ2vT ðkÞvðkÞ þ rT ðkÞrðkÞ
≤xT ðk þ 1ÞPxðk þ 1Þ�xT ðkÞPxðkÞ þ xT ðkÞHT

1 ðQ1 þ Q2 þ Q3ÞH1xðkÞ
�xT ðk�dm1 ÞQ1xðk�dm1 Þ�xT ðk�dM1 ÞQ2xðk�dM1 Þ�xT ðk�dM2 ÞQ3xðk�dM2 Þ

þ ðdm1 Þ2δT ðkÞR1δðkÞ þ
xðkÞ

xðk�dm1 Þ

" #T �HT
1R1H1 HT

1R1

R1H1 �R1

" #
xðkÞ

xðk�dm1 Þ

" #
þ ðdM1 �dm1 ÞδT ðkÞR2δðkÞ þ dM2 δ

T ðkÞR3δðkÞ þ 2ζT ðkÞN½xðk�dm1 Þ�xðk�d1ðkÞÞ�
þ 2ζT ðkÞM½xðk�d1ðkÞÞ�xðk�dM1 Þ� þ 2ζT ðkÞS½H1xðkÞ�xðk�d2ðkÞÞ�
þ 2ζT ðkÞT½xðk�d2ðkÞÞ�xðk�dM2 ÞÞ� þ ðd1ðkÞ�dm1 ÞζT ðkÞNR�1

2 NTζðkÞ
þ ðdM1 �d1ðkÞÞζT ðkÞMR�1

2 MTζðkÞ þ d2ðkÞζT ðkÞSR�1
2 STζðkÞ

þðdM2 �d2ðkÞÞζT ðkÞTR�1
3 TTζðkÞ

þ sxT ðk�d2ðkÞÞΩxðk�d2ðkÞÞ�eTi ðkÞΩeiðkÞ�γ2vT ðkÞvðkÞ þ rT ðkÞrðkÞ

þ
xðkÞ

gðk; xðkÞÞ

" #T �HT
1Ω1H1 n

�Ω2H1 �In

" #
xðkÞ

gðk; xðkÞÞ

" #
¼ ζT ðkÞΨζðkÞ þ xT ðk þ 1ÞPxðk þ 1Þ þ þðdm1 Þ2δT ðkÞR1δðkÞ þ ðdM1 �dm1 ÞδT ðkÞR2δðkÞ

þ dM2 δ
T ðkÞR3δðkÞ þ rT ðkÞrðkÞ ð36Þ

where

Ψ ¼
Σ11 n n

Σ21 Σ22 n

Σ31 0 Σ33

2
64

3
75þ ðd1ðkÞ�dm1 ÞNR�1

2 NT þ ðdM1 �d1ðkÞÞMR�1
2 MT
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þd2ðkÞSR�1
2 ST þ ðdM2 �d2ðkÞÞTR�1

3 TT

Then, by using well-known Schur complement and Lemma 2, from Eq. (36), one can easily
see that Eq. (22) with s¼ 1; 2; 3; 4 can lead ΔVðkÞ�γ2vT ðkÞvðkÞ þ rT ðkÞrðkÞo0. The remaining
part of the proof is similar to those in [10,21] and so omitted here for simplicity. The proof is
complete. □

Remark 4. It is worth to point out that some other methods such as Monte Carlo Simulation
Methods can be used to choose the threshold. Notice that the threshold should be adopted
suitably. If the threshold is selected larger, some alarms may miss in the fault detection system;
otherwise more false alarms may occur.

Remark 5. The possible conservatism in Theorem 1 is twofold: firstly, Jessen's inequality,
convexity of the matrix function and the free-weighting matrices are used in our derivation,
which will bring conservatism in the design procedure; secondly, we firstly introduce the event-
triggered mechanism we proposed in Ref. [13] to fault detection filter in this paper. Also, it can
be seen that the proposed mechanism is superior to some existing event-triggered mechanism in
the literature by comparison (see [13]). From the above, we can see that our results can provide
less conservation.

Based on analysis results in Theorem 1, sufficient conditions for the existence of the desired
fault detection filters are provided in Theorem 2.

Theorem 2. Consider the nominal system (19), and let γ40, dm1 , d
M
1 , d

M
2 and s40 be given

parameters. There exists a desired full-order fault detection filter in the form of Eq. (18) if there
exist matrices P1, P3, Qi, Ri ði¼ 1; 2; 3Þ and AF , BF , CF , DF, Ω40, N2, N3 M3, M4, S10, S11, S5,
T5 and T6 with appropriate dimensions such that

Φ11 n n n n

Φ21 Σ22 n n n

Φ31 0 Σ33 n n

Φ41 Φ42 Φ43 Φ44 n

Φ51ðsÞ 0 0 0 Σ55

2
6666664

3
7777775o0; s¼ 1; 2; 3; 4: ð37Þ

where

Φ11 ¼
Π n

�P3 þ S11 �P3

" #
; Π ¼�P1 þ Q1 þ Q2 þ Q3�R1�Ω1 þ S10 þ S

T
10

Φ21 ¼

R1 0

0 0

0 0

S5�S10 �S11
0 0

2
6666664

3
7777775; Φ31 ¼

0

0

�Ω2

2
64

3
75
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Φ41 ¼

P1A AF

P3A AF

dm1 R1A�dm1 R1 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2 0ffiffiffiffiffiffi

dM2

q
R3A�

ffiffiffiffiffiffi
dM2

q
R3 0

0 CF

2
666666666664

3
777777777775

Φ51ð1Þ ¼Φ51ð3Þ ¼
0 0ffiffiffiffiffiffi
dM2

q
ST10

ffiffiffiffiffiffi
dM2

q
ST11

2
4

3
5; Φ51ð2Þ ¼Φ51ð4Þ ¼ 0

Φ42 ¼

0 P1Ad1 0 BFC 0

0 P3Ad1 0 BFC 0

0 dm1 R1R1Ad1 0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2Ad1 0 0 0

0
ffiffiffiffiffiffi
dM2

q
R3Ad1 0 0 0

0 0 0 DFC 0

2
666666666664

3
777777777775

Φ43 ¼

P1D1 P1G BF P1

P3D1 P3G BF P3

dm1 R1D1 dm1 R1G 0 dm1 R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2D1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2G 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dM1 �dm1

q
R2ffiffiffiffiffiffi

dM2

q
R3D1

ffiffiffiffiffiffi
dM2

q
R3G 0

ffiffiffiffiffiffi
dM2

q
R3

0 �I DF 0

2
666666666664

3
777777777775

Φ44 ¼ diagf�P1;�P3;�R1;�R2;�R3;�Ig ð38Þ
Moreover, if the above conditions are feasible, the parameter matrices of the filter are given

by

AF ¼ AFP
�1
3

BF ¼ BF

CF ¼ CFP
�1
3

DF ¼DF

8>>>><
>>>>:

ð39Þ

Proof. Since P340, there exist P2 and P340 satisfying P3 ¼ PT
2P

�1
3 P2.

Define

P¼ P1 PT
2

P2 P3

" #
; J ¼

I 0

0 PT
2P

�1
3

" #
; ϒ ¼ diagfJ; I;…; I|fflfflffl{zfflfflffl}

8

; J; I;…; I|fflfflffl{zfflfflffl}
6

g ð40Þ

By Schur complement, P40 is equivalent to P1�P3 ¼ P1�PT
2P

�1
3 P240.
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Pre- and post-multiplying Eq. (22) by ϒ and ϒT , respectively, and define variables

AF ¼ ÂFP
�1
3 ; ÂF ¼ PT

2AFP�T
2

BF ¼ PT
2BF

CF ¼ ĈFP
�1
3 ; ĈF ¼CFP�T

2

DF ¼DF

ST1 J
T ¼ ½ST10 S

T
11�

8>>>>>>><
>>>>>>>:

ð41Þ

Then, Eq. (22) for s¼ 1; 2; 3; 4 is equivalent to Eq. (37) for s¼ 1; 2; 3; 4, respectively.
Next, we will show that if Eq. (37) is solvable for AF , BF , CF , DF and P3, then the parameter

matrices of the fault detection filter (3) can be chosen as in Eq. (39).
Replacing ðAF ;BF ;CF ;DFÞ by ðP�T

2 ÂFPT
2 ;P

�T
2 BF ; ĈFPT

2 ;DFÞ in Eq. (3) and then pre-and
post-multiplying them with ϒ and ϒT , we can also obtain Eq. (39). Obviously,
ðP�T

2 ÂFPT
2 ;P

�T
2 BF ; ĈFPT

2 ;DFÞ can be chosen as the fault detection filter parameters. That is,
the following fault detection filter:

~xðk þ 1Þ ¼ P�T
2 ÂFPT

2 ~xðkÞ þ P�T
2 BF ~yðkÞ

~rðkÞ ¼ ĈFPT
2 ~xðkÞ þ DF ~yðkÞÞ

(
ð42Þ

can guarantee that the fault detection filter system (19) is asymptotically stable with the H1
performance bound γ. Defining x̂ðkÞ ¼ PT

2 ~xðkÞ, Eq. (42) becomes

x̂ðk þ 1Þ ¼ ÂFx̂ðkÞ þ BF ~yðkÞ
rðkÞ ¼ ĈFx̂ðkÞ þ DF ~yðkÞ

(
ð43Þ

Then, from Eqs. (41) and (43) we can obtain Eq. (39). This completes the proof. □

Remark 6. In most cases, we can know that the issues of limited resource and insufficient
communication bandwidth and the case of inadequate computation power are problems that often
have to be dealt with. Therefore, it is necessary to build a mechanism which provides a useful
way to determine when the sampling action is carried out. In this sense, we propose an event-
triggered mechanism which only samples when some function of the system exceeds a threshold,
thus it has the main advantage to reduce the burden of the network communication and the
computation cost of the controller and the occupation of the sensor and actuator. Under the
event-triggered mechanism, Theorem 2 provides us with a fault detection filter design method.

4. Simulation examples

Consider the discrete-time systems (1) with nonlinearities and time-delay, in which the system
parameters are given as follows:

A¼ 0:1 0:1

�0:3 0:1

� �
; Ad1 ¼

0:2 0

0:7 0:1

� �
; D1 ¼

0:2

�0:1

� �
; G¼ �1

2

� �
; C¼ ½�1 1�

ð44Þ
Let the time-varying communication delays satisfy 1≤d1ðkÞ≤3, 0≤d2ðkÞ≤2 and assume

s¼ 0:1, Ξ1 ¼ diagf0:1; 0:2g, Ξ2 ¼ diagf0:2; 0:1g, and γ ¼ 4. Then, by using Theorem 2, the
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Fig. 3. Residual signal r(k).
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event-based fault detection filter parameters can be obtained as follows:

AF ¼
0:5256 1:3573

�0:2788 �0:3282

� �
; BF ¼

�0:0026

0:0004

� �
;

CF ¼ ½0:1400 0:8473�; DF ¼�0:0019 ð45Þ
and the minimal performance index of γ is γopt ¼ 1:0399.

To illustrate the effectiveness of the designed event-based fault detection filter, assume that the
fault signal f(k) is satisfied as

f ðkÞ ¼ 5; 20≤k≤40
0 else

�
ð46Þ

for k ¼ 0; 1; 2;…; 100.
When wðkÞ ¼ 0, choose the initial conditions to be xð0Þ ¼ ½0:5 �0:5�T , x̂ð0Þ ¼ ½0:3 �0:3�T ,

chose the event-based fault detection filter parameters of Eq. (45), the residual
evaluation function J(k) and residual signal r(k) are shown in Figs. 2 and 3, respectively.
From Figs. 2 and 3, we can see that the fault can be easily detected. Select a threshold as Jth ¼
fsupf ðkÞ ¼ 0 ∑k

h ¼ 0r
T ðhÞrðhÞg1=2, after 200 runs of the simulations, we can get an average value of

Jth ¼ 0:3325. From Fig. 2, we can see that 0:3238¼ Jð23ÞoJthoJð24Þ ¼ 0:3577, which means
that the fault can be detected in 4 time steps after its occurrence.
5. Conclusion

This paper has investigated the event-based fault detection for networked systems with
communication delay and nonlinear perturbation. In order to reduce the communication load in
the network and gear up its efficiency, we introduce a novel event-triggered scheme, which can
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determine when the sensor data is transmitted. Under this event-triggered scheme, the event-
based fault detection system has been developed into a networked control system with network-
induced delay. A fault detection filter has been designed such that the overall fault detection
dynamics is exponentially stable in the mean square and the error between the residual signal and
the fault signal is made as small as possible. Sufficient conditions for the existence of the desired
fault detection have been derived. Then the explicit expression of the desired filter parameters
has been obtained. A numerical example has been provided to show the usefulness and
effectiveness of the proposed method.

Acknowledgments

This work is partly supported by the National Natural Science Foundation of China (nos.
11226240, 61074025, 60834002, 60904013, 61273115), the Natural Science Foundation of
Jiangsu Province of China (nos. BK2012469, BK2012847), the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China (no. 12KJD120001) and A Project Funded by
the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

[1] X. He, Z. Wang, D. Zhou, Robust fault detection for networked systems with communication delay and data
missing, Automatica 45 (11) (2009) 2634–2639.

[2] H. Dong, Z. Wang, H. Gao, On design of quantized fault detection filters with randomly occurring nonlinearities and
mixed time-delays, Signal Processing 92 (2012) 1117–1125.

[3] H. Karimi, M. Zapateiro, N. Luo, A linear matrix inequality approach to robust fault detection filter design of linear
systems with mixed time-varying delays and nonlinear perturbations, Journal of the Franklin Institute 347 (6) (2010)
957–973.

[4] H. Dong, Z. Wang, H. Gao, Fault detection for Markovian jump systems with sensor saturations and randomly
varying nonlinearities, IEEE Transactions on Circuits and Systems I 59 (2012) 2354–2362.

[5] H. Dong, Z. Wang, J. Lam, H. Gao, Fuzzy-model-based robust fault detection with stochastic mixed time delays and
successive packet dropouts, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42 (2)
(2012) 365–376.

[6] J. Lunze, D. Lehmann, A state-feedback approach to event-based control, Automatica 46 (1) (2010) 211–215.
[7] A. Eqtami, D. Dimarogonas, K. Kyriakopoulos, Event-triggered control for discrete-time systems, in: American

Control Conference (ACC), 2010, IEEE, 2010, pp. 4719–4724.
[8] X. Wang, M. Lemmon, Event-triggering in distributed networked systems with data dropouts and delays, Hybrid

Systems: Computation and Control (2009) 366–380.
[9] S. Hu, D. Yue, Event-based H1 filtering for networked system with communication delay, Signal Processing 92 (9)

(2012) 2029–2039.
[10] Z. Wang, Y. Liu, X. Liu, Y. Shi, Robust state estimation for discrete-time stochastic neural networks with

probabilistic measurement delays, Neurocomputing 74 (1) (2010) 256–264.
[11] J. Liang, Z. Wang, X. Liu, Distributed state estimation for discrete-time sensor networks with randomly varying

nonlinearities and missing measurements, IEEE Transactions on Neural Networks 22 (3) (2011) 486–496.
[12] S. Li, D. Sauter, B. Xu, Fault isolation filter for networked control system with event-triggered sampling scheme,

Sensors 11 (1) (2011) 557–572.
[13] D. Yue, E. Tian, Q. Han, A delay system method for designing event-triggered controllers of networked control

systems, IEEE Transactions on Automatic Control 58 (2013) 475–481.
[14] S. Hu, D. Yue, Event-triggered control design of linear networked systems with quantizations, ISA Transactions 51

(1) (2011) 153–162.
[15] Z. Wang, F. Yang, D. Ho, X. Liu, Robust H1 filtering for stochastic time-delay systems with missing

measurements, IEEE Transactions on Signal Processing 54 (7) (2006) 2579–2587.

http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref1
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref1
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref2
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref2
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref3
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref3
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref3
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0005
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0005
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref5
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref5
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref5
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref6
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0010
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0010
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref8
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref8
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref9
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref9
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref9
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref10
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref10
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref11
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref11
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref12
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref12
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref13
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref13
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref14
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref14
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref15
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref15
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref15


J. Liu, D. Yue / Journal of the Franklin Institute 350 (2013) 2791–2807 2807
[16] Y. Wang, L. Xie, C. de Souza, Robust control of a class of uncertain nonlinear systems, Systems & Control Letters
19 (2) (1992) 139–149.

[17] D. Yue, E. Tian, Y. Zhang, C. Peng, Delay-distribution-dependent stability and stabilization of T–S fuzzy systems
with probabilistic interval delay, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39 (2)
(2009) 503–516.

[18] X. Jiang, Q. Han, X. Yu, Stability criteria for linear discrete-time systems with interval-like time-varying delay, in:
American Control Conference, 2005, Proceedings of the 2005, IEEE, 2005, pp. 2817–2822.

[19] Y. He, M. Wu, J. She, G. Liu, Parameter-dependent Lyapunov functional for stability of time-delay systems with
polytopic-type uncertainties, IEEE Transactions on Automatic Control 49 (5) (2004) 828–832.

[20] D. Yue, Q. Han, J. Lam, Network-based robust H1 control of systems with uncertainty, Automatica 41 (6) (2005)
999–1007.

[21] Z. Wang, D. Ho, Y. Liu, X. Liu, Robust H1 control for a class of nonlinear discrete time-delay stochastic systems
with missing measurements, Automatica 45 (3) (2009) 684–691.

http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref16
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref16
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref16
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref17
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref17
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref17
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0015
http://refhub.elsevier.com/S0016-0032(13)00247-0/othref0015
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref19
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref19
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref20
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref20
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref20
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref21
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref21
http://refhub.elsevier.com/S0016-0032(13)00247-0/sbref21

	Event-based fault detection for networked systems with communication delay and nonlinear perturbation
	Introduction
	System description
	Main results
	Simulation examples
	Conclusion
	Acknowledgments
	References




