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Abstract

This paper is concerned with the event-based fault detection for the networked systems with
communication delay and nonlinear perturbation. We propose an event-triggered scheme, which has some
advantages over existing ones. The sensor data is transmitted only when the specified event condition
involving the sampled measurements of the plant is violated. An event-based fault detection model is firstly
constructed by taking the effect of event-triggered scheme and the network transmission delay into
consideration. The main purpose of this paper is to design an event-based fault detection filter such that, for
all unknown input, communication delay and nonlinear perturbation, the error between the residual signal
and the fault signal is made as small as possible. Sufficient conditions for the existence of the desired fault
detection filter are established in terms of linear matrix inequalities. Based on these conditions, the explicit
expression is given for the designed fault detection filter parameters. A numerical example is employed to
illustrate the advantage of the introduced event-triggered scheme and the effectiveness of the proposed
method.
© 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Fault detection and isolation (FDI) has been an active field of research over the past decades,
in response to an increasing demand for higher performance, higher safety and reliability
standards of modern dynamic systems. In general, the aim of FDI is to construct a residual signal
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and compare it with a predefined threshold. When the residual signal exceeds the threshold, an
alarm is generated. Recently, the model-based approaches to FDI problems for dynamic systems
have received more and more attention, as it makes use of the mathematical model for designing
a fault detection filter/observer to detect the fault signal. So far, FDI problems have been widely
investigated and lots of outstanding results have been made [1-5]. For example, in [1], the
authors investigated the robust fault detection problem for a class of discrete-time networked
systems with unknown input and multiple state delays. The authors in [2] are concerned with the
fault detection problem for a class of discrete-time systems with randomly occurring
nonlinearities, mixed stochastic time-delays as well as measurement quantization. In [3], the
robust fault detection filter (RFDF) was designed for a class of linear systems with some
nonlinear perturbations and mixed neutral and discrete time-varying delays. Different from
robust control, the goal of robust fault detection is to make the error between the residual and the
fault signal as small as possible.

On the other hand, networked control systems (NCSs) have received a great deal of research
attention, which have many advantages such as low cost, reduced weight and power
requirements, simple installation and maintenance, and high reliability. However, the insertion
of network in the control systems can also bring about new interesting and challenging issues as
to the limited capacity of the network cable, for example, the transmission delay, packet dropout,
signal quantization, scheduling confusion, etc. Recently, many efforts have been made on NCSs.
Due to the output signal of the plant is often measured at sampled points in many practical
situations, most of the available results use a periodic triggered method (also called a time-
triggered control). However, this might be a conservative choice. For example, the issues of
limited resource and insufficient communication bandwidth and the case of inadequate
computation power for fast systems are problems that often have to be dealt with. It is therefore
of great need to build mechanisms for sampling that do not rely on periodicity or time-triggering
techniques. Recently, event-triggered method , advocating the use of action only when some
function of the system exceeds a threshold, has received considerable attention. Event-triggered
method provides a useful way to determine when the sampling action is carried out. Compared
with time-triggered method, it has the following advantages: (1) it only samples when necessary;
(2) the burden of the network communication is reduced; (3) the computation cost of the
controller and the occupation of the sensor and actuator are reduced. So far, many outstanding
results under event-triggered method have been reported. In [6], the authors proposed an event-
triggered control for linear systems with an external disturbance and derived the criteria to
guarantee the uniform boundedness of the system. The authors in [7] proposed event-triggered
strategies for control of discrete-time systems, in which the plant was assumed input-to-state
stable with respect to measurement errors and the control law was updated once a triggering
condition involving the norm of a measurement error was violated. The methods for design or
implementation of controllers in the event-triggered form based on dissipation inequalities were
proposed for both linear and nonlinear systems in [8]. In [9], the authors were concerned with the
problem of event-based H, filtering for networked systems with communication delay under a
novel event-triggered scheme upon which the sensor data transmitted only when the specified
event condition involving the sampled measurements of the plant was violated. Up to now, to the
best of the authors' knowledge, little attention has been paid to the FDI problem for networked
control system under event-triggered scheme. This situation has motivated our current
investigation with the hope to shorten such a gap by addressing the fault detection with
transmission delay under the event-triggered scheme.
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In this paper, the event-based fault detection problem is studied for networked systems with
communication delay, unknown input and nonlinear perturbation. The event generator is used to
determine whether the newly sampled sensor data to be carried out is constructed between the
sensor and the fault detection filter. Unlike the cases in [6—8], the implementation of our event-
triggered scheme only needs a supervision in discrete instants. Similar to [9], there is no need to
retrofit the existing system by using our method. By augmenting the states of the original system
and the fault detection filter, the fault detection problem addressed is converted into an auxiliary
H, filtering problem.

The paper is organized in the following way. Section 2 presents the system description, the
event triggered scheme and the formation of the overall fault detection dynamic system are
described. In Section 3, a sufficient condition for the existence of the desired fault detection filter
is established in terms of linear matrix inequalities (LMIs) and a fault detection filter design
method is provided. In the final part, a numerical example is provided to show the effectiveness
and applicability of the proposed method.

Notation: R" and R™™ denote the n-dimensional Euclidean space and the set of n x m real
matrices, respectively; the superscript “7”’ stands for matrix transposition; / is the identity matrix
of appropriate dimension; || - || stands for the Euclidean vector norm or the induced matrix 2-
norm as appropriate; the notation X >0 (respectively, X>0), for XeR"*" means that the matrix X
is real symmetric positive definite (respectively, positive semi-definite). For a matrix B and two
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Fig. 1. The structure of a fault detection filtering system.
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Fig. 2. Residual evaluation function J(k).
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symmetric matrices A and C, [‘g 2] denotes a symmetric matrix, where % denotes the entries
implied by symmetry.

2. System description

Consider a discrete-time networked system with the structure shown in Fig. 1.
The system consists of a plant with smart sensor, a fault detection filter and network channel,
which can be described as the following discrete-time systems with nonlinearities and time-

delay:
{ x(k + 1) = Ax(k) + Ag1x(k—dy(k)) + Dyw(k) + Gf (k) + g(k, x(k))

¥k = Cx(k) )

where x(k)ER" is the state vector; d;(k) is time-varying delay; w(k)€R" is the unknown input
belonging to L,[0, 00); f(k)ER' is the fault signal to be detected; g(k, x(k)) is a known nonlinear
function, y(k)eR™ is the process output, and A, Ay, D;, G, C are all constant matrices with
appropriate dimensions. Throughout this paper, similar to [10,11], we make the following
assumptions:

Assumption 1. g(k,0) =0; for all kEN.

Assumption 2.
[g(k, x)—g(k, y)—Z1 (x—y)]" [g(k, x)—g(k, y)—E(x—y)] <O

where = and =, are known real constant matrices.

Remark 1. From Assumptions | and 2, we can obtain that

T
x(k 0 % x(k
(k) 1 (k) < )
gk, x(k)) | |22 1, || gk, x(k))
where
T = T = —_ —
15+ 55 21+ 5
Q= 1=2 2 Q)= —
1 2 2 2 2

Assumption 3. The time-varying delay d;(k) satisfies d'' <d, (k) <d", where dy" and 0111w are
constant positive scalars representing the lower and upper bounds, respectively.

Consider the following discrete-time full-order fault detection filter:

{ %k + 1) = Apx(k) + By (k)

r(k) = Crx(k) + Dry(k) 3

where %(k)ER" is the state of the fault detection filter; r(k)ER’ is the so-called residual that is
compatible with f(k); y(k) is the real input of the fault detection filter. Ay, Br, Cr and Dy are
appropriately the dimensioned filter matrices to be determined.

Remark 2. For traditional fault detection filtering problem, the effect of the communication
network is neglected. However, due to the existence of the network-induced delays, it is quite
common that y(k)#y(k).
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As is well known, periodic sampling mechanism has been widely used in many practical
systems, however, it may often lead to transmitting many unnecessary signals through the
network, which in turn will increase the load of network transmission and wastes in the network
bandwidth. As stated in [12], the event-triggered sampling scheme is an effective way for
network systems. Therefore, for networked systems shown in Fig. 1, in order to save network
resources such as network bandwidth, it is significant to introduce an event triggered mechanism
which decides whether the newly sampled sensor data should be sent out to the fault detection
filter. As is shown in Fig. 1, the sensor data feeds into an Event Generator that decides when to
transmit the sensor data to the fault detection filter via a network medium by a specified trigger
condition, which will be given in sequel. The following function of network architecture in Fig. |
is expected:

1. As shown in Fig. 1, the event generator is constructed between the sensor and the fault
detection filter which is used to determine whether the newly sampled sensor data y(k)
should be sent out to the fault detection filter by using the following judgement algorithm
[13]:

[y(k)—y(s)]" QLy(k)—y(s:)] <oy’ (k)2y(k) 4)

where Q€R™™ is a positive matrix, o€[0, 1), y(s;) is the previously transmitted sensor
data. If the current sensor data y(k) satisfy the inequality (4), it will not be transmitted. Only
the one that exceeds the threshold in Eq. (4) will be sent to the fault detection filter.

2. When the sampled data has been transmitted (or released) by the event generator, it is
forwarded to the ZOH through network channel, introducing a communication delay z(k).

Under the event triggered (4), the release times are assumed to be so, 51, 57, ..., Where so = 0 is
the initial time. #; = 54| —s; denotes the release period of event generator in Eq. (4). Considering
the effect of the transmission delay on the network system, the released signals will arrive at the
fault detection filter at the instants so + z(s9), s1 + 7(s1), $2 + 7(52), ..., where 7(0) = 0.

Remark 3. From event triggering (4), it is easy to see that the set of the release instants, i.e.,
{s0, 51,82, ...} is a subset of {0, 1,2, ...}. The amount of {so, s, s>, ...} depends on not only the
value of g, but also the variation of the state. When o =0, {s9, 51, 52, ...} ={0, 1,2, ...}, it reduces
to the case with periodic release times.

Assumption 4. The time-varying delay in the network communication is z(k) and z(k)€[0, 7),
where 7™ is apositive real number.

Based on the above analysis, considering the behavior of ZOH, the input of the fault detection
filter can be described as

(k) =y(si), t€[s; +7(s1), siv1 + T(siy1)—1] (5

Similar to [14], for technical convenience, we consider the following two cases:
Case 1: If s; + 1 + t>s5;, 1 + 7(siy1)—1, define a function d,(k) as

dz(k) = k—Si, kE[S,‘ + T(S,'), Siy1 + T(S,'_H)—l] (6)
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clearly,
t(s;) <dp(k) <(sip1—51) + (si41)—1 <1 + 7 (7
Case 2: If s; + 1 + 7™ <s;11 + ©(si11)—1, consider the following two intervals:
[si + 7(si), s + 21 [si+ ™+ Lsi+ 27 +141] ®)
Since 7(k) <z™, it can be easily shown that there exists d such that
si+d+ M <si +r(sip)—1<s; +d+ 1+ 9)
Moreover, y(s;) and y(s; + [) with [=1,2, ...,d satisfy Eq. (4). Let

Iy =[si +2(si), 50 + 7% + 1)
L=[si+™M+Lsi+™M+1+1) (10)
Li=[si+d+ ™, si1 + t(siy)—1]

where [=1,2,...,d—1. One can see that

i=d
[si + 7(s0), s5it1 + 2(sipny—11= U I; (11)
i=0
Define d,(k) as
k—Si, kEI()
dr(k) = k—si—1, kel 1=1,2,...,d—1 (12)
k—s;—d, kel

Then, we have

o(s;) <da(k) <1+ M2dY, kel
w(s) <M <dr (k) <dY', kel 1=1,2,...,d—1 (13)
7(s;) <M <dp(k) <d¥, kel

where the third row in Eq. (13) holds because s, + 7(sipn—1<s; +d + 1 + ™. Obviously,

o(s;) <7 <da(k) <d,  kely (14)
In Case 1, for k€[s; + 7(s;), si+1 + 7(si+1)—1], define ¢;(k) = 0. In Case 2, define
0, kel
eilk) = ys)—y(si + 1), kel 1=1,2,...,d—1 (15)

y(s)—y(si +d), kel

From the definition of e;(k) and the triggering algorithm (4), it can be easily seen that for
k€E[si + (), siv1 + 7(si11)—1],

el (k)Qei(k) <oy" (k—da(k))Q2y(k—d,(k)) (16)
Utilizing d,(k) and e,(k), the input of the fault detection filter y(k) can be expressed as
(k) = y(si) = y(k—da(k)) + ei(k), kE[si + 7(s1), Siv1 + T(si41)—1] 17
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Then, combining Egs. (1) and (17), Eq. (3) can be rewritten as

{ %(k + 1) = Apx(k) + BpCx(k—d»(k)) + Bre;(k)

H(k) = Cr(k) + D Cx(k—ds(k)) + Drei(k) (18)

From Eqgs. (1) and (18), we have the overall fault detection dynamics governed by the
following system:

x(k + 1) = AX(k) + Ag1x(k—d (k) + Appx(k—da (k) + Dyv(k) + Brei(k) + HY g(k, x(k))
7(k) = Cpx(k) + DpCx(k—da(k)) + Dre;(k) + Hou(k)

(19)

where

X(k) =" (k) F R, TR = r(k)—f k), k) =[w' (k) [T k)]

A 0] _  rAal 0 D G
A:OAF’ Agn = Nt Ap = , D=

BrC 0 0
3 0
F=1 g,

After the above manipulations, the problem of event-based fault detection filter design can
now be formulated as an auxiliary H, filtering problem: design a filter of the type (3) that makes
the error between residual and fault signal as small as possible. The aim of this paper can be
restated as finding the filter parameters Ap, Br, Cr and Dy such that the following two
requirements are satisfied: (i) the overall fault detection dynamics (19) is exponentially stable in
the mean square [15]; (ii) under zero initial condition, the infimum of y is made as small as
possible in the feasibility of

sup ”i( )II2 A 70 (20)
w0 [V (R) |

We further adopt a residual evaluation function J(k) and a threshold J,, of the following form:

., Hi=[0], C=[0Crl, Hy=[0 —1]

k

1/2
J(k)={ zOrT(h)r(h)} , Ja= sup  J(k) (21)

w(k)€L,f(k) =0

Based on Eq. (21), the occurrence of faults can be detected by comparing J(k) with J,
according to the following rules:

J(k)>J,=>with faults=alarm
J(k) <Jy=no faults

In the following, we need to introduce two lemmas, which will help us in deriving the main
results.

Lemma 1 (Wang et al. [16]). For any vectors x, yER", and positive definite matrix QER"™", the
following inequality holds:

2y <" Ox+y"'07 'y
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Lemma 2 (Yue et al. [17]). Ey;, Z2:(i = 1,2) and Q2 are matrices with appropriate dimensions,
di(k) is a function of k and d7 <d, (k) <d}', 0 <d,(k) <d%!, then

[(d1()—d)E 1 + (@) =di(k)E2] + [da(k)E 12 + (dy —da(k)Zn] + 2<0
if and only if the following four inequalities hold:

(d—dME + dYEyp +2<0

(d/'—d])E + d5 Exn +2<0

(d/'—dE +dyE1n +2<0

(d/'—d])Ex + d5 21+ 2<0

3. Main results

In this section, we will investigate both the analysis and synthesis problems for the fault
detection filter design of system (1) under the event trigger (4).

Theorem 1. Consider system (19) and suppose the parameters y, dy', dllw , dg’l and o are given,
the fault detection dynamics is exponentially stable in the mean square under the event trigger
scheme (4) if there exist matrices P>0, 0;>0 (i=1,2,3),R;>0 (i=1,2,3), 2>0, N, N5 M3,
My, S, Ss, Ts and Tg with appropriate dimensions satisfying

S % % % %
Ss)=| T 0 Zy ok % | <0, s=1,2,3,4 (22)

2y 2 X3 X %
251(S) 0 0 0 255

where

Z=—P+H{(Q+ 0+ Q:—R —Q)H, + S\H, + H{ S|

RH, I * * * %
0 N3;—N?¥ I, % % %
3 = 0 . T = 0 My—M5 T * *
SsHl—SlT 0 0 0 I, %
0 0 0 0 Te¢—TY —Q3—T¢—TE

X =[0 0 —HTQI, X3 =diag{—y*1,—Q, -1}

PA 1 [0 PAy, 0 PAp 07

d"R\(A—DH, 0 d'RRA; 0 0 0

Sy = | VA —dIRA=DH, | 5, _ |0 \JdV~dRsAy O O 0O
dIZVIRB (A_I)Hl 0 djsz_gAd] 0 0

=)

Cr 0 0 0 DyC
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251(4) =0,

0

d;'Tg

0

&;'Tg

PD, PBp PHT ]
dTR]EQ 0 d’lnR]
Si= | V' —diRDy 0 \/dY—d[R; |,
\/dYRsD> 0 d R,
i H, Dy 0 |
2y =diag{—P,—R,,—Ry, —R;, -1}, H;=[I 0]
o 0
Zsi(1)= aust |- 251(2)=0, Z53)= avst |-
[\Jdl=dNT L\ Jat-arNT 0 0 0
Zs(1) =
0 0 0 /d¥st o
[ \Jdl-dNT L Jat-arNT 0 o
Z(2)=
0 0 0 +/dyTE
0 /dV'—dyMmy  \/aY —dM} 0
Z5(3)= .
0 0 0 dyT!
0 /dV'—ayMmy  \/aY —dM} 0 0
Zs(4) =
0 0 0 dyst o

Xss =diag{—R>, —R3}
I''=—0Q,—R; + N, + N3,

Fy=—85—5; +Ts+T§ +0oQ

Proof. Define

8(k) = x(k + 1)—x(k)

Iy =—N3—N} + M5 + M;,

= (A=DH %(k) + Anx(k—d:(k)) + Dov(k) + g(k, x(k))

where D, = [D; G]).

Choose the following Lyapunov functional candidate as:

V(k) =V (k) + Va(k) + V3(k)

I3=—0,—M;—M},

2799

(23)

(24)

(25)



2800 J. Liu, D. Yue / Journal of the Franklin Institute 350 (2013) 2791-2807

where

Vi(k) =" (k)Px(k)
k—1 k—1 k—1

Vo= Y XO0x()+ Y X0+ XY x()Osx(i)
i = k—d} i = k—dy! i=lk—d!

—di=1 (-1

k—1 —1 k=1
Vil =di Y ¥ & (ORi60) + > SRS+ Y X 8 (DR:8()

i=—d'j=k+i = —d¥j=k+i = —d¥j=k+i
Let AVi(k)=Vi(k + 1)—=V(k),i=1,2,3, then along the system (19), we have

AV (k) =% (k + 1)Px(k + 1)—x" (k)Px(k) (26)

AV (k) = x"(DH](Q) + Qr + Q3)H1x(k)—x" (k—d})Q\x(k—d)
—x' (k=d{")Qyx(k—dy')—x" (k=5 ) Qsx(k—d3) @7)

AVA(D) = @RS ORG-S 5 ORS + (@ —d)T (IRs5(0)

i=k—d}'
k—d}'—1 —
— Y 8 (D)RS() + dY 8T (k)R38(k)— kzl 8T ())R36(i) (28)
i=k—d)! i=k—dy

where P>0, Q;>0, and R; >0 (i=1,2,3).
By using Jessen's inequality [18], we have

k=1 x(k) ] !

—d i =§ld;ln 8T ()R18(i) < [x(k—d’{’)

—HTR\H, HTR,

29
RiH,| —R, 29)

(k)
x(k—d™)

Employing the free-weighting matrices method [19,20] and combining Egs. (25)-(28), we
have

AV(k) = AV (k) + AVa(k) + AV5(k)

k—d"—1
+2¢" (k)N [X(k—dT)—X(k—dl(k))— ) 5(!’)]

i = k—d, (k)
k—d, (k)—1
+2¢" (k)M lx(k—dl(k»—x(k—d%— > 5@]
i=k—d)
k—1
+2¢7(k)S [Hlf(k)—x(k—dz(k))— x> 5@1
i = k—d,(k)
k—d»(k)—1
+26" (k)T lx(k—dxk))—x(k—df{’))— Y 6(:')] (30)
i=k—d

where
Sk =[x"(k) x"(k—=d}) x"(k—di(k)) x"(k—d}') x"(k—d,(k))
xl(k=dy') v(k) el (k) g" (k,x(k))]
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There exist R, and R3, such that

k—di'—1 k—di'—1

=20 (kN E 8(i) <(d1(k)—d)¢" ()NRy 'NT S (k) + Z 8" ()R8(i) (31)
i = k—d, (k) i = k—d (k)
k—d, (k)—1 k—d, (k)—1

=257 (M Y, 8() <(dY —dy (k)T (MR M & (k) + Z 8" ()R25(i) (32)
i=k—d)! i=k—d)

=247 (k)S i 8(i) <dr (k)T (k)SR3 ' ST (k) + Z 5T(i)R36(i) (33)
i = k—d,(k) i = k—d(
k—ds(k)—1 k—dy(k)—1

=207 Y () @~k TR T )+ Y 8" (DR38() (34)
i=k—d¥ i=k—d

Also, notice that x(k) = H,x(k), it follows from Eq. (2) that
xk) 1" [-HTQH, % (k)
[g(k, x(k))] [ o, —zn] [g(k, x(k))] =0 2
Combining Egs. (26)—(35) and the relation (4), we have
AV (k) —y*VT (k)w(k) + 7T (k)7 (k)
<x"(k + )Px(k 4+ 1)=x" (k)Px(k) + x" () H| (Q; + Q> + Q3)H x(k)
—x" (k—d) 0 x(k—d])—x" (k—d}") Qox(k—d} ) —x" (k—d5") Q3 x(k—d5)
2 T x(k) ~H'R\H, HIR, %(k)
(@) (DRioK) + x(k—d7') RiH, —R; lx(k—dyfl)]
+ (d) =d1)3" (kK)Ry5(k) + dy 8 (k)R38(k) + 2¢" ()N [x(k—d')—x(k—d, (K))]
+ 2T (k)M [x(k—d, (k) —=x(k—d|")] + 27 (k) S[H % (k) —x(k—d. (k)]
+ 2T () Tx(k—do (k) —x(k—d )] + (d1 (k) —d} )T (NR; ' N (k)
+ (@' —d\ (k)T (MR; ' M £ (k) + da (k)T (k)SR; ST ¢ (k)
+(dY —dy (k)T (K)TR3 ' T (k)
+ ax” (k—da (k) Q2x(k—d (k) —e! (k)Qei(k)—y*v! (k)v(k) + 7 (k)F(k)
x(k) —-H{QH, = x(k)
" [g(k, x(k))] ~QH, 1, || 8k, x(k))]
=T () PL(k) + 37 (k + D)Px(k + 1) + +(d™)?8T (k)R 5(k) + (dY —d"™)6" (k)R26(k)
+ dy 8" (k)R38(k) + 7" (k)7 (k) (36)

where

21 £ %
Y= |2n Zn % | +(di(k)—d")NRy'N" + (d¥—d,(k)) MR, ' M"
3 0 X3
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+dy(k)SRy ' ST + (dY —dy (k) TR; ' TT

Then, by using well-known Schur complement and Lemma 2, from Eq. (36), one can easily
see that Eq. (22) with s =1,2,3,4 can lead AV(k)—y*v! (k)v(k) + 7! (k)7(k) <0. The remaining
part of the proof is similar to those in [10,21] and so omitted here for simplicity. The proof is
complete. O

Remark 4. It is worth to point out that some other methods such as Monte Carlo Simulation
Methods can be used to choose the threshold. Notice that the threshold should be adopted
suitably. If the threshold is selected larger, some alarms may miss in the fault detection system;
otherwise more false alarms may occur.

Remark 5. The possible conservatism in Theorem 1 is twofold: firstly, Jessen's inequality,
convexity of the matrix function and the free-weighting matrices are used in our derivation,
which will bring conservatism in the design procedure; secondly, we firstly introduce the event-
triggered mechanism we proposed in Ref. [13] to fault detection filter in this paper. Also, it can
be seen that the proposed mechanism is superior to some existing event-triggered mechanism in
the literature by comparison (see [13]). From the above, we can see that our results can provide
less conservation.

Based on analysis results in Theorem 1, sufficient conditions for the existence of the desired
fault detection filters are provided in Theorem 2.

Theorem 2. Consider the nominal system (19), and let y>0, d7', dllw s d12\4 and >0 be given
parameters. There exists a desired full-order fault detection filter in the form of Eq. (18) if there
exist matrices Py, P3, Q;, R; (i=1,2,3) and Ap, Br, Cr, Dp, 2>0, N5, N3 M3, My, S10, S11, Ss,
Ts and Tg with appropriate dimensions such that

b % ox ow %
Dy Ty % % %
D3 0 X3 % %
Dy Dy Dyz Dyy %

<0, s=1,2,3,4. (37)
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P,A Ar]
P5A Ar
dTRiA—d'R, 0

Pu= |\ Jal—diRoA—\JdY ~dRs 0

dYRyA—/dY Ry 0
0

L CF
0 0
Ps1(1) = ®51(3) = , D51(2) = D5 (4) =0
51( ) 51( ) dg/lSlTO d}z‘/[SlTl Sl( ) 51( )
[0 PiAa 0 BrC 0]
0 P3Aa 0 BrC 0
0 d'RRAy 0 0 0
Po=10 \Jd"-d"R,A; O 0 0
0 d&'RAn 00
0 0 0 DrC 0]
i P\D, PG Br Py ]
P3D, PsG Br P
d"R\D; d'R\G 0 dT'R,
Pia= 1 JaM_g"R,D, \[dY—d"RyG 0 \/dY—d"R,
dYRsD; &'RG 0 &' R;
0 —I Dr 0 |

@44 = diag{—Pl, —F3, _Rl, _RZ) —R3, _I}

2803

(38)

Moreover, if the above conditions are feasible, the parameter matrices of the filter are given

by

Ap=ApP;
Br =By
Cr=CrP;
Dp =Dy

Proof. Since P3 >0, there exist P, and P; >0 satisfying P3 = P} P;'P;.
Define

P, P}
P, P

I 0
, J= 1|, Y=diag{J,1,....1,J,1,....1
8 6

By Schur complement, P>0 is equivalent to P;—P3 = P1—PgP3’1P2 >0.

(39)

(40)
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Pre- and post-multiplying Eq. (22) by ¥" and Y7, respectively, and define variables

ZF ZAFF;I,AF =P§AFP£T

Br =P§BF
EF=C'FF3_1,6F=CFP2_T (41)
5F=DF

—T =T
SlTJT:[Slo Sil

Then, Eq. (22) for s =1,2,3,4 is equivalent to Eq. (37) for s = 1,2, 3,4, respectively.

Next, we will show that if Eq. (37) is solvable for Ag, Br, Cr, Dr and P3, then the parameter
matrices of the fault detection filter (3) can be chosen as in Eq. (39).

Replacing (Ar, B, Cr, Dr) by (PyTApPY, PyTBr, CrPY,Dy) in Eq. (3) and then pre-and
post-multiplying them with ¥ and Y7, we can also obtain Eq. (39). Obviously,
(Py TA FP; Py TBr, C pPg ,Dr) can be chosen as the fault detection filter parameters. That is,
the following fault detection filter:

{ %k + 1) = Py TApPLR(k) + Py TBry(k)

N — — (42)

F(k) = CpP3x(k) + Dry(k))
can guarantee that the fault detection filter system (19) is asymptotically stable with the H,
performance bound y. Defining (k) = P1%(k), Eq. (42) becomes

i(k 4 1) = Api(k) 4+ Bry(k) (43)
r(k) = C rX(k) + Dpy(k)

Then, from Egs. (41) and (43) we can obtain Eq. (39). This completes the proof. O

Remark 6. In most cases, we can know that the issues of limited resource and insufficient
communication bandwidth and the case of inadequate computation power are problems that often
have to be dealt with. Therefore, it is necessary to build a mechanism which provides a useful
way to determine when the sampling action is carried out. In this sense, we propose an event-
triggered mechanism which only samples when some function of the system exceeds a threshold,
thus it has the main advantage to reduce the burden of the network communication and the
computation cost of the controller and the occupation of the sensor and actuator. Under the
event-triggered mechanism, Theorem 2 provides us with a fault detection filter design method.

4. Simulation examples

Consider the discrete-time systems (1) with nonlinearities and time-delay, in which the system
parameters are given as follows:

0.1 0.1 02 0 0.2 —1
A: s Ad1: 5 D1= 5 G= s C:[_l 1]
-0.3 0.1 0.7 0.1 —0.1 2

(44)

Let the time-varying communication delays satisfy 1 <d;(k)<3, 0<d,(k)<2 and assume
g=0.1, £y =diag{0.1,0.2}, =, =diag{0.2,0.1}, and y =4. Then, by using Theorem 2, the
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0.1

-0.05

Residual signal r(k)

-0.15

-0.2

-0.25
Time(s)

Fig. 3. Residual signal r(k).

event-based fault detection filter parameters can be obtained as follows:

0.5256  1.3573 ~0.0026
P71 202788 —03282|° “F 7| 0.0004 |’
Cr =[0.1400 0.8473], Dp=—0.0019 (45)

and the minimal performance index of y is y,,, = 1.0399.
To illustrate the effectiveness of the designed event-based fault detection filter, assume that the
fault signal f(k) is satisfied as

5, 20<k<40

46
0 else (46)

flk) = {
for k=0,1,2,...,100.

When w(k) = 0, choose the initial conditions to be x(0) =[0.5 —0.5]", %(0)=[0.3 —0.3]",
chose the event-based fault detection filter parameters of Eq. (45), the residual
evaluation function J(k) and residual signal r(k) are shown in Figs. 2 and 3, respectively.
From Figs. 2 and 3, we can see that the fault can be easily detected. Select a threshold as J;, =
{supsy = o >k _ OrT(h)r(h)}l/ 2, after 200 runs of the simulations, we can get an average value of
J, = 0.3325. From Fig. 2, we can see that 0.3238 = J(23) <J,, <J(24) = 0.3577, which means
that the fault can be detected in 4 time steps after its occurrence.

5. Conclusion

This paper has investigated the event-based fault detection for networked systems with
communication delay and nonlinear perturbation. In order to reduce the communication load in
the network and gear up its efficiency, we introduce a novel event-triggered scheme, which can
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determine when the sensor data is transmitted. Under this event-triggered scheme, the event-
based fault detection system has been developed into a networked control system with network-
induced delay. A fault detection filter has been designed such that the overall fault detection
dynamics is exponentially stable in the mean square and the error between the residual signal and
the fault signal is made as small as possible. Sufficient conditions for the existence of the desired
fault detection have been derived. Then the explicit expression of the desired filter parameters
has been obtained. A numerical example has been provided to show the usefulness and
effectiveness of the proposed method.
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