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Abstract — This paper investigates the asymptotic sta-
bility of genetic regulatory networks with random delays
and Markovian jumping parameters. The delay consid-
ered here is assumed to be satisfying a certain stochastic
characteristic. Corresponding to the probability of the de-
lay taking value in different intervals, stochastic variables
satisfying Bernoulli random binary distribution are intro-
duced and a new system model is established by employing
the information of the probability distribution. By using a
Lyapunov functional approach and linear matrix inequality
techniques, the stability criteria for the delayed Markovian
jumping genetic regulatory networks are expressed as a set
of Linear matrix inequalities (LMIs), which can be solved
numerically by LMI toolbox in MATLAB. A genetic net-
work example is given to verify the effectiveness and the
applicability of the proposed approach.
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I. Introduction

In the past decades, genetic regulatory networks have re-

ceived more and more attention in the biological and biomed-

ical sciences, many valuable results have been reported in

Refs.[1–4], and the references therein. However, the gap be-

tween a complete genome sequence and its functional un-

derstanding with respect to an organism is still very large.

Many questions about gene functions, express mechanism, and

the global integration of individual mechanism still remain

open[5]. Recently, by constructing the Genetic regulatory net-

work (GRN) models from time-series, that is, modeling ge-

netic networks as a dynamical system provides a powerful tool

for studying gene regulation processes in living organisms, dy-

namics analysis of GRNs has attracted increasing attention

recently, see for example, Refs.[6, 7] and the references therein.

Since time-delays exist in transcription and translation

processes and the modeling error is unavoidable in practice,

when analyzing the dynamics behaviors of GRNs, the time de-

lay and modeling uncertainty must be taken into account. In

addition, most of gene networks include some kinds of switch-

ing mechanisms. For example, a bistable system can switch

from one steady state to the other by increasing stimulation

or inhibition or by changing other regulatory mechanisms[8].

Therefore, Markov chains can be used as a generic framework

for modeling gene networks. Recent studies on the dynam-

ics of the so-called Markovian genetic regulatory networks are

fruitful, and many important results have been reported in

the Refs.[5, 8], and the references therein. It is suggested that

Markov chain models incorporating rule-based transitions be-

tween state are capable of mimicking biological phenomena.

It is worth mentioning that, to have the accurate predic-

tions, time delay should be considered in the biological systems

or artificial genetic networks due to the slow processes of tran-

scription, translation, and translocation or the finite switching

speed of amplifiers, theoretical models without consideration

delay may even provide wrong predictions. However, though

there are many results on the dynamic analysis of Markovian

swithching systems with time delays[9−12], there are still no

results considering quantitatively describing the gene regula-

tion by using the Markovian swithching system from system

point of view. Moreover, to the best of authors’ knowledge,

few contributions have addressed such stability problems in-

volving random or stochastic delays, which are the focus of

this work.

II. Model and Preliminaries

In this paper, based on the structure of the genetic reg-

ulatory network present in Ref.[8], we consider a functional

differential equation model described by{
ṁ(t) = −A(r(t))m(t) + W (r(t))g(p(t− σ(t)))

ṗ(t) = −C(r(t))p(t) + D(r(t))m(t− τ (t))
(1)

where m(t), p(t) are state vector, g(·) is a monotonically in-

creasing function and satisfies the sector condition g(a)(g(a)−
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ka) ≤ 0, A(r(t)), W (r(t)), C(r(t)), D(r(t)) are known con-

stant matrices for a fixed system mode.

Let r(t), t ≥ 0, be a right-continuous Markov chain on

the probability space taking values in a finite space S =

{1, 2, · · · , N} with generator
∏

= (πij)N×N given by

P{r(t+ δt) =j‖r(t) = i}

=

{
(πij + Δπij)δt+ o(δt), if i �= j

1 + (πij + Δπij)δt+ o(δt), if i = j

where δt > 0, πij ≥ 0 is the known transition rate from i to j,

if i = j where πij = −∑
j �=i πij , i, j ∈ S.

Then, one can rewrite Markovian gene network of Eq.(1)

as {
ṁ(t) = −Aim(t) + W ig(p(t− σ(t)))

ṗ(t) = −C ip(t) + Dim(t− τ (t))
(2)

Assumption 1 Considering the information of probabil-

ity distribution of the time delays τ (t), σ(t), for some given

scalars τ1 and σ1, two sets of functions are defined

τ1(t) =

{
τ (t), for t ∈ Ω1

0, for t ∈ Ω2

, τ2(t) =

{
τ (t), for t ∈ Ω2

0, for t ∈ Ω1

σ1(t) =

{
σ(t), for t ∈ Ω3

0, for t ∈ Ω4

, σ2(t) =

{
σ(t), for t ∈ Ω4

0, for t ∈ Ω3

where Ω1 = {t : τ (t) ∈ [τm, τ1)}, Ω2 = {t : τ (t) ∈ [τ1, τM ]},
Ω3 = {t : σ(t) ∈ [σm, σ1)} and Ω4 = {t : σ(t) ∈ [σ1, σM ]}.

From the definitions of the Ω1,Ω2,Ω3 and Ω4, it can be

seen that t ∈ Ω1 means that the event τ (t) ∈ [τm, τ1) occurs,

t ∈ Ω2 means that the event τ (t) ∈ [τ1, τM ] occurs, t ∈ Ω3

means that the event σ(t) ∈ [σm, σ1) occurs and t ∈ Ω4 means

that the event σ(t) ∈ [σ1, σM ] occurs.

Therefore, the stochastic variables α(t), β(t) can be define

as

α(t) =

{
1, t ∈ Ω1

0, t ∈ Ω2

, β(t) =

{
1, t ∈ Ω3

0, t ∈ Ω4

(3)

Assumption 2 α(t), β(t) are Bernoulli distributed se-

quences with

Prob{α(t) = 1} = E{α(t)} = α0

Prob{α(t) = 0} = 1 − E{α(t)} = 1 − α0

Prob{β(t) = 1} = E{β(t)} = β0

Prob{β(t) = 0} = 1 − E{β(t)} = 1 − β0

where 0 ≤ α0 ≤ 1, 0 ≤ β0 ≤ 1 are constants and E{α(t)} and

E{β(t)} are the expectation of α(t), β(t) respectively.

Remark 1 From Assumption 2, we can see that

E{α(t)} = α0, E{(α(t) − α0)
2} = α0(1 − α0)

E{β(t)} = β0, E{(β(t) − β0)
2} = β0(1 − β0)

By using Assumptions 1 and 2, the system of Eq.(2) can

be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṁ(t) = −Aim(t) + β(t)W ig(p(t− σ1(t)))

+(1 − β(t))W ig(p(t− σ2(t)))

ṗ(t) = −C ip(t) + α(t)Dim(t− τ1(t))

+(1 − α(t))Dim(t− τ2(t))

(4)

Remark 2 α(t) and β(t) are introduced to describe the

distribution information of the random delay. Since more de-

layed information has been employed, less conservative results

can be expected to obtain. Furthermore, piecewise analysis

method for delayed systems is widely used in Refs.[13, 14],

also we could use the delay-partitioning approach to further

reduce conservatism of the system analysis. For the sake of

brevity and simplicity, we omit here this.

To obtain the main results, the following lemmas are

needed.

Lemma 1[15] Suppose τm ≤ τ (t) ≤ τM , and x(t) ∈ R
n,

for any positive matrix R ∈ R
n×n

−(τM − τm)

∫ t−τm

t−τM

ẋT (s)Rẋ(s)ds

≤
[
x(t− τm)

x(t− τM )

]T [−R R

R −R

] [
x(t− τm)

x(t− τM )

]
(5)

Lemma 2[16] Suppose 0 ≤ τm ≤ τ (t) ≤ τM , Ξ 1,Ξ 2 and

Ω are constant matrices of appropriate dimensions, then

(τ (t)− τm)Ξ 1 + (τM − τ (t))Ξ 2 + Ω < 0 (6)

if and only if the following inequalities hold

(τM − τm)Ξ 1 + Ω < 0 (7)

(τM − τm)Ξ 2 + Ω < 0 (8)

III. Main Results

In this section, by using convexity property of the matrix

inequality and the Lyapunov stability theory, we analyze the

stability for Markovian jumping gene regulatory networks of

Eq.(4).

Theorem 1 System Eq.(4) is asymptotically stable for

any given 0 ≤ τm ≤ τ (t) ≤ τM , 0 ≤ σm ≤ σ(t) ≤ σM ,

τ1, σ1 and k, if there exist positive definite matrices Q1i > 0,

R1i > 0 (i ∈ S), Qi > 0, Ri > 0 (i = 2, 3, · · · , 6),
Λi = diag(λi1, λi2, · · · , λin) > 0 (i = 1, 2), M , N , T , S,

V , W , G and F of appropriate dimensions such that the fol-

lowing LMIs hold for l, s = 1, 2, 3, 4:

Ξ (l, s) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξ 11 + Ω ∗ ∗ ∗ ∗ ∗
Ξ 21 Ξ 22 + Γ ∗ ∗ ∗ ∗
Ξ 31 Ξ 32 Ξ 33 ∗ ∗ ∗
Ξ 41 Ξ 42 Ξ 43 Ξ 44 ∗ ∗

Ξ 51(l) 0 0 0 −Q6 ∗
0 Ξ 62(s) 0 0 0 −R6

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (9)

where

Ξ 11 = diag{Y 1,−Q2,0,−Q3,0,−Q4}

Ξ 21 =

[
0 0 α0R1iDi 0 α10R1iDi 0

05n×n 05n×n 05n×n 05n×n 05n×n 05n×n

]

Ξ 22 = diag{Y2,−R2, 0,−R3, 0,−R4}

Ξ 31 =

[
β0W

T
i Q1i 0 0 0 0 0

(1 − β0)W
T
i Q1i 0 0 0 0 0

]

Ξ 32 =

[
0 0 kΛ1 0 0 0

0 0 0 0 kΛ2 0

]

Ξ 33 = diag{−2Λ1,−2Λ2}
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Ξ 41 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ϕ1Q5Ai 0 0 0 0 0

−ϕ2Q5Ai 0 0 0 0 0

−ϕ3Q6Ai 0 0 0 0 0

−ϕ4Q6Ai 0 0 0 0 0

0 0 ψ1R5Di 0 0 0

0 0 0 0 ψ2R5Di 0

0 0 ψ3R6Di 0 0 0

0 0 0 0 ψ4R6Di 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ 42 =

⎡
⎢⎢⎢⎢⎣

04n×n 04n×5n

−ψ1R5C i 0n×5n

−ψ2R5C i 0n×5n

−ψ3R6C i 0n×5n

−ψ4R6C i 0n×5n

⎤
⎥⎥⎥⎥⎦ ,Ξ 43 =

⎡
⎢⎢⎢⎢⎣

ϕ1Q5W i 0

0 ϕ2Q5W i

ϕ3Q6W i 0

0 ϕ4Q6W i

04n×n 04n×n

⎤
⎥⎥⎥⎥⎦

Ξ 44 = diag{−Q5,−Q5,−Q6,−Q6,−R5,−R5,−R6,−R6}

ϕ1 =
√
β0δ10, ϕ2 =

√
β10δ10, ϕ3 =

√
β0δ11, ϕ4 =

√
β10δ11

ψ1 =
√
α0δ20, ψ2 =

√
α10δ20, ψ3 =

√
α0δ21, ψ4 =

√
α10δ21

Y 1 = −Q1iAi − AT
i Q1i + Q2 + Q3 + Q4 +

N∑
j=1

πijQ1j

Y 2 = −R1iC i − CT
i R1i + R2 + R3 + R4 +

N∑
j=1

πijR1j

Ω = Ω + ΩT

Ω = [0 M −M + N −N + T −T + S −S ]

Γ = Γ + ΓT

Γ = [0 V −V + W −W + G −G + F −F ]

Ξ 51(1) =

[√
δ10M

T

√
δ11T

T

]
, Ξ 51(2) =

[√
δ10M

T

√
δ11S

T

]

Ξ 51(3) =

[√
δ10N

T

√
δ11T

T

]
, Ξ 51(4) =

[√
δ10N

T

√
δ11S

T

]

Ξ 62(1) =

[√
δ20V

T

√
δ21G

T

]
, Ξ 62(2) =

[√
δ20V

T

√
δ21F

T

]

Ξ 62(3) =

[√
δ20W

T

√
δ21G

T

]
, Ξ 62(4) =

[√
δ20W

T

√
δ21F

T

]

δ1 = τM − τm, δ10 = τ1 − τm, δ11 = τM − τ1, δ2 = σM − σm,

δ20 = σ1 − σm, δ21 = σM − σ1, α10 = 1 − α0, β10 = 1 − β0.

In Eq.(9) “∗” denotes the entries implied by symmetry.

Proof Construct a Lyapunov-Krasovskii candidate as

V (t) = V1(t) + V2(t) + V3(t) (10)

where

V1(t) =mT (t)Q1(r(t))m(t) + pT (t)R1(r(t))p(t)

V2(t) =

∫ t

t−τm

mT (s)Q2m(s)ds+

∫ t

t−τ1

mT (s)Q3m(s)ds

+

∫ t

t−τM

mT (s)Q4m(s)ds+

∫ t

t−σm

pT (s)R2p(s)ds

+

∫ t

t−σ1

pT (s)R3p(s)ds+

∫ t

t−σM

pT (s)R4p(s)ds

V3(t) =

∫ t−τm

t−τ1

∫ t

s

ṁT (v)Q5ṁ(v)dvds

+

∫ t−τ1

t−τM

∫ t

s

ṁT (v)Q6ṁ(v)dvds

+

∫ t−σm

t−σ1

∫ t

s

ṗT (v)R5ṗ(v)dvds

+

∫ t−σ1

t−σM

∫ t

s

ṗT (v)R6ṗ(v)dvds

The infinitesimal operator L of V (t) is defined as follows[17] :

LV (t) = lim
Δ→0+

1

Δ
{E(V (xt+Δ)|xt) − V (xt)} (11)

Then, using the infinitesimal operator for V (t) in Eq.(10) and

taking expectation on it, we have

E{LV (t)} =2mT (t)Q1i[−Aim(t) + β0g(p(t− τ1(t)))

+ β10W ig(p(t− τ2(t)))] +
N∑

j=1

πijm
T (t)Q1jm(t)

+ 2pT (t)R1i[−C ip(t) + α0Dim(t− τ1(t))

+ α10Dim(t− τ2(t))] +

N∑
j=1

πijp
T (t)R1jp(t)

+mT (t)(Q2 + Q3 + Q4)m(t)

+ pT (t)(R2 + R3 + R4)p(t)

−mT (t− τm)Q2m(t− τm)

−mT (t− τM )Q4m(t− τM )

− pT (t− σm)R2p(t− σm)

− pT (t− σ1)R3p(t− σ1)

− pT (t− σM )R4p(t− σM )

−mT (t− τ1)Q3m(t− τ1)

+ ṁT (t)(δ10Q5 + δ11Q6)ṁ(t)

+ ṗT (t)(δ20R5 + δ21R6)ṗ(t)

−
∫ t−τm

t−τ1

ṁT (s)Q5ṁ(s)ds

−
∫ t−τ1

t−τM

ṁT (s)Q6ṁ(s)ds

−
∫ t−σm

t−σ1

ṗT (s)R5ṗ(s)ds

−
∫ t−σ1

t−σM

ṗT (s)R6ṗ(s)ds (12)

By introducing the slack matrix method, we have

2ξT
1 (t)M

[
m(t− τm) −m(t− τ1(t)) −

∫ t−τm

t−τ1(t)

ṁT (s)ds

]
= 0

(13)

2ξT
1 (t)N

[
m(t− τ1(t)) −m(t− τ1) −

∫ t−τ1(t)

t−τ1

ṁT (s)ds

]
= 0

(14)

2ξT
1 (t)T

[
m(t− τ1) −m(t− τ2(t)) −

∫ t−τM

t−τ2(t)

ṁT (s)ds

]
= 0

(15)

2ξT
1 (t)S

[
m(t− τ2(t)) −m(t− τM ) −

∫ t−τ2(t)

t−τM

ṁT (s)ds

]
= 0

(16)

2ξT
2 (t)V

[
p(t− σm) − p(t− σ1(t)) −

∫ t−σm

t−σ1(t)

ṗ(s)ds

]
= 0

(17)

2ξT
2 (t)W

[
p(t− σ1(t)) − p(1 − σ1) −

∫ t−σ1(t)

t−σ1

ṗ(s)ds

]
= 0

(18)
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2ξT
2 (t)G

[
p(t− σ1) − p(t− σ2(t)) −

∫ t−σ1

t−σ2(t)

ṗ(s)ds

]
= 0

(19)

2ξT
2 (t)F

[
p(t− σ2(t)) − p(t− σM ) −

∫ t−σ2(t)

t−σM

ṗ(s)ds

]
= 0

(20)

where

ξT
1 (t) = [mT (t) mT (t− τm) mT (t− τ1(t))

mT (t− τ1) mT (t− τ2(t)) mT (t− τM ) ]

ξT
2 (t) = [ pT (t) pT (t− σm) pT (t− σ1(t))

pT (t− σ1) pT (t− σ2(t)) pT (t− σM ) ]

M T = [ M T
1 M T

2 M T
3 M T

4 M T
5 M T

6 ]

NT = [ N T
1 NT

2 NT
3 NT

4 NT
5 N T

6 ]

T T = [ T T
1 T T

2 T T
3 T T

4 T T
5 T T

6 ]

ST = [ ST
1 ST

2 ST
3 ST

4 ST
5 ST

6 ]

V T = [ V T
1 V T

2 V T
3 V T

4 V T
5 V T

6 ]

W T = [ W T
1 W T

2 W T
3 W T

4 W T
5 W T

6 ]

GT = [ W T
1 W T

2 W T
3 W T

4 W T
5 W T

6 ]

F T = [ F T
1 F T

2 F T
3 F T

4 F T
5 F T

6 ]

It can be shown that

E{L[ṁT (t)Qṁ(t)]} =β0[−Aim(t) + W ig(p(t− σ1(t)))]
T

· Q[−Aim(t) + W ig(p(t− σ1(t)))]

+ β10[−Aim(t) + W ig(p(t− σ2(t)))]
T

· Q[−Aim(t) + W ig(p(t− σ2(t)))]

(21)

E{L[ṗ(t)Rṗ(t)]} =α0[−C ip(t) + Dim(t− τ1(t))]
T

· R[−C ip(t) + Dim(t− τ1(t))]

+ α10[−C ip(t) + Dim(t− τ2(t))]
T

· R[−C ip(t) + Dim(t− τ2(t))] (22)

where Q = δ10Q5 + δ11Q6, R = δ20R5 + δ21R6.

Note that

−2ξT
1 (t)M

∫ t−τm

t−τ1(t)

ṁ(s)ds

≤(τ1(t) − τm)ξT
1 (t)MQ−1

5 M T ξ1(t) +

∫ t−τm

t−τ1(t)

ṁT (s)Qtṁ(s)ds

(23)

−2ξT
1 (t)N

∫ t−τ1(t)

t−τ1

ṁ(s)ds

≤(τ1 − τ1(t))ξ
T
1 (t)NQ−1

5 NT ξ1(t) +

∫ t−τ1(t)

t−τ1

ṁT (s)Q5ṁ(s)ds

(24)

−2ξT
1 (t)T

∫ t−τ1

t−τ2(t)

ṁ(s)ds

≤(τ2(t) − τ1)ξ
T
1 (t)TQ−1

6 T T ξ1(t) +

∫ t−τ1

t−τ2(t)

ṁT (s)Q6ṁ(s)ds

(25)

−2ξT
1 (t)S

∫ t−τ2(t)

t−τM

ṁ(s)ds

≤(τM − τ2(t))ξ
T
1 (t)SQ−1

6 ST ξ1(t) +

∫ t−τ2(t)

t−τM

ṁT (s)Q6ṁ(s)ds

(26)

−2ξT
2 (t)V

∫ t−σm

t−σ1(t)

ṗ(s)ds

≤(σ1(t) − σm)ξT
2 (t)V R−1

5 V T ξ2(t) +

∫ t−σm

t−σ1(t)

ṗT (s)R5ṗ(s)ds

(27)

−2ξT
2 (t)W

∫ t−σ1(t)

t−σ1

ṗ(s)ds

≤(σ1 − σ1(t))ξ
T
2 (t)W R−1

5 W T ξ2(t) +

∫ t−σ1(t)

t−σ1

ṗT (s)R5ṗ(s)ds

(28)

−2ξT
2 (t)G

∫ t−σ1

t−σ2(t)

ṗ(s)ds

≤(σ2(t) − σ1)ξ
T
2 (t)GR−1

6 GT ξ2(t) +

∫ t−σ1

t−σ2(t)

ṗT (s)R6ṗ(s)ds

(29)

−2ξT
2 (t)F

∫ t−σ2(t)

t−σM

ṗ(s)ds

≤(σM − σ2(t))ξ
T
2 (t)F R−1

6 F T ξ2(t) +

∫ t−σ2(t)

t−σM

ṗT (s)R6ṗ(s)ds

(30)

Noting the sector condition, for any λij > 0 (i = 1, 2,

j = 1, 2, · · · , n), we have

{
− 2

n∑
j=1

λijg(pj(t− σi(t)))[g(pj(t− σi(t))) − kpj(t− σi(t))]

}

≥ 0 (31)

Rewriting above inequalities into compact matrix form, we

obtain {
− 2gT (p(t− σi(t)))Λig(p(t− σi(t)))

+ 2kgT (p(t− σi(t)))Λip(t− σi(t))

}
≥ 0

(32)

where Λi = diag(λi1, λi2, · · · , λin) > 0

From Eqs.(12–32), we can get that

E{LV (t)} ≤ξT (t)

⎡
⎢⎢⎣

Ξ 11 + Ω ∗ ∗ ∗
Ξ 21 Ξ 22 + Γ ∗ ∗
Ξ 31 Ξ 32 Ξ 33 ∗
Ξ 41 Ξ 42 Ξ 43 Ξ 44

⎤
⎥⎥⎦ ξ(t)

+ (τ1(t) − τm)ξT
1 (t)MQ−1

5 M T ξ1(t)

+ (τ1 − τ1(t))ξ
T
1 (t)NQ−1

5 NT ξ1(t)

+ (τ2(t) − τ1)ξ
T
1 (t)T Q−1

6 T T ξ1(t)

+ (τM − τ2(t))ξ
T
1 (t)SQ−1

6 ST ξ1(t)

+ (σ1(t) − σm)ξT
2 (t)V R−1

5 V T ξ2(t)

+ (σ1 − σ1(t))ξ
T
2 (t)W R−1

5 W T ξ2(t)

+ (σ2(t) − σ1)ξ
T
2 (t)GR−1

6 GT ξ2(t)

+ (σM − σ2(t))ξ
T
2 (t)F R−1

6 F T ξ2(t)

where ξT (t) = [ ξT
1 (t) ξT

2 (t) gT (p(t− σ1(t))) gT (p(t− σ2(t))) ].

Then, using Lemma 2 and Schur complement, it is easy to

see that Eq.(9) with l, s = 1, 2, 3, 4 can lead E{LV (t)} ≤ 0.

Then, by Lyapunov stability theory, the system of Eq.(4) is

asymptotically stable, which completes the proof.
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IV. Example

In this section, we will present an example to illustrate our

theoretical results.

Example 1 Consider the following uncertain Markovian

genetic regulatory networks of Eq.(4) with two modes as:

A1 =

[
1 0

0 1

]
, W 1 =

[
1 −2

0.8 0

]

C1 =

[
2 0

0 2

]
, D1 =

[
1 0

0 1

]

A2 =

[
3 0

0 3

]
, W 2 =

[−1 0

1 2

]

C2 =

[
2 0

0 2

]
, D2 =

[−1 0

0 1

]

The regulation function in this example is taken as g(x) =

x2/(1 + x2), one can get k = 0.65. The time-varying delays

are chosen as τm = 0.2, σ(t) = 0.3 + 0.2 sin(t), τ1 = 0.5,

σ1 = 0.3. The transmission probability is assumed to be∏
=

[−3 3

1 −1

]
.

According to Theorem 1, by using the MATLAB LMI

Toolbox, we can easily obtain feasible solutions of the LMIs

(9). Thus, the network is globally asymptotic stable under the

allowable maximum delay of τM = 3.8525, when τm = 0.20,

α0 = 0.2, β0 = 0.7.

With the given initial conditions m(0) =

[
0.8

0.2

]
, p(0) =[

0.1

0.7

]
, the computational simulation results of trajectories

p(t) and m(t) are shown in Figs.1 and 2, when α0 = 0.2,

β0 = 0.7, τm = 0.1, τM = 3.8525.

Fig. 1. Transient response of pi(t) (i = 1, 2)

Fig. 2. Transient response of mi(t) (i = 1, 2)

To show the merit of proposed method, we set N = 1, the

upper bound of the delay for different α0, β0 are listed in Table

1 when α0 = 0.8, τ1 = 0.5, σ1 = 0.3 and σ(t) = 0.3+0.2 sin(t).

From Table 1, we can clearly see that our results are sig-

nificantly better than those in Ref.[4].

Table 1. Allowable upper bound of τM

τm 0.10 0.20 0.30 0.40

Ref.[4] 3.19 3.28 3.38 3.48

β0 = 0.7 3.74 3.85 3.96 4.05

β0 = 0.9 3.80 3.91 4.02 4.11

V. Conclusions

In this paper, we have studied the asymptotical stabil-

ity of the proposed Markovian jumping genetic networks with

time-varying delays when the information of the probability

distributions of the delay is known a priori. To analyze the ro-

bust asymptotical stability of the propoded genetic networks

system, the convexity of the matrix function technique is used.

Based on the free-weighting matrix method and the LMI tech-

niques, stability conditions have been developed in terms of

LMIs. An example with simulation results have been carried

out to demonstrate the effectiveness of the proposed method.
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