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Abstract — This paper investigates the reliable con-
troller design for networked control system with proba-
bilistic actuator faults under event-triggered scheme. The
key idea is that only the newly states violating specified
triggering condition will be transmitted to the controller.
Considering the effect of the network transmission delay,
event-triggered scheme and probabilistic actuator faults
with different failure rates, a new actuator fault model is
proposed. Criteria for the exponential stability and criteria
for co-designing both the feedback and the trigger param-
eters are derived by using Lyapunov functional. These cri-
teria are obtained in the form of linear matrix inequalities.
A simulation example is employed to show the effectiveness
of the proposed method.
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I. Introduction

Networked control systems (NCSs) have received much at-

tention in recent years. It is widely used in many practical ap-

plications, for example, automobiles, aircraft and manufactur-

ing plants. The advantages of applying NCSs include simplic-

ity, scalability and cost-effectiveness. However, the insertion of

network are inherently prone to induce multiple channel trans-

mission, time delay, packet dropout and so on. In this case,

it is necessary to offer a unified approach to improve both

the control and communication performances within NCSs.

The temporary measurements failure and probabilistic distor-

tion is usually unavoidable for variety of reasons, for example,

networked delay, sensor/actuators aging, electromagnetic in-

terference, zero shift, which may lead to intolerable system

performance[1]. Therefore, from a safety as well as perfor-

mance point of view, it is required to design a reliable con-

troller that can tolerate actuators failures as well as networked

delay. In recent, the fault model has received a lot of interest

and lots of outstanding results have been obtained[2,3]. On the

other hand, it is an important problem about how to reduce

communication requirements. Many researches have proposed

different methods to deal with this problem.

Recently, event-triggered scheme for control design has re-

ceived considerable attention and many important results have

been reported[4−7]. Event-triggering method advocating the

use of actuation only when some function of the system state

exceeds a threshold, provides a useful way of determining when

the sampling action is carried out. More specifically, a method

for design or implication of controllers in the event-triggered

form based on dissipation inequalities were proposed for both

linear and nonlinear systems in Ref.[4]. The authors[5] studied

event design in event-triggered feedback systems and a novel

event-triggering scheme was presented to ensure exponential

stability of the resulting sampled-data system. The authors[6]

concerned with the control design problem of event-triggered

networked systems with both state and control input quanti-

zations. In Ref.[7], the authors studied the problem of event-

based H∞ filtering for networked systems with communication

delay.

Up to now, to the best of authors knowledge, there are no

papers to deal with the event-based reliable H∞ control for

networked control system with probabilistic actuator faults,

which still remains as a challenging problem. In this paper,

the event-based reliable H∞ control for NCSs is investigated.

The actuators in the closed-loop systems have different failure

rates and the measurements distortion of every actuator is also

take into consideration. By using Lyapunov functional, crite-

ria for the exponential stability and criteria for co-designing

both the feedback and the trigger parameters are derived in

the form of linear matrix inequalities.

II. System Description

Consider a discrete-time NCSs with the structure shown in

Fig.1. The system can be described as the following discrete-

time systems with nonlinearities:{
x(k + 1) = Ax(k) + Bu(k) + B1w(k) + f(k, x(k))

z(k) = Cx(k) + Du(k) + B2w(k)
(1)

where x(k) ∈ R
n is a state vector; u(k) ∈ R

m is a control

vector, w(k) ∈ R
n is an unknown input belonging to L2[0,∞);

f(k, x(k)) is a nonlinear function, z(k) ∈ R
m is an observed
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vector, and A, B, B1, C , D, B2 are all constant matrices

with appropriate dimensions.

Fig. 1. The structure of an event-triggered networked control
system

Throughout this paper, similar to Refs.[8,9], we make the

following assumptions:

Assumption 1 f(k, 0) = 0, for all k ∈ N

Assumption 2

[f(k, x)−f(k, y)−Ξ 1(x−y)]T [f(k, x)−f(k, y)−Ξ 2(x−y)] ≤ 0

(2)

where Ξ 1 and Ξ 2 are known real constant matrices.

Remark 1 From Assumptions 1 and 2, we can obtain

that [
x(k)

f(k, x(k))

]T [
Ω1 ∗
Ω2 In

] [
x(k)

f(k, x(k))

]
≤ 0 (3)

where Ω1 =
Ξ T

1 Ξ 2 + Ξ T
2 Ξ 1

2
, Ω2 = −Ξ 1 + Ξ 2

2
, and ∗ de-

notes the entries implied by symmetry.

As is shown in Fig.1, the new state feeds into an event gen-

erator that decide when to transmit the state to the controller

via a network medium by a specified trigger condition, which

will be given in sequel. The following function of network ar-

chitecture in Fig.1 is expected:

(1) As shown in Fig.1, the event generator is constructed

between the sensor and the controller which is used to deter-

mine when the new state x(k) to be sent out to the controller

by using the following judgment algorithm[10]:

[x(k) − x(si)]
T Ω [x(k) − x(si)] ≤ σxT (k)Ωx(k) (4)

where Ω ∈ R
m×m is a positive matrix, σ ∈ [0, 1), x(si) is the

previously transmitted state. If the current state x(k) satisfy-

ing the inequality Eq.(4), it will not be transmitted. Only the

one that exceeds the threshold in Eq.(4) will be sent to the

controller.

(2) When the sampled data has been transmitted (or re-

leased) by the event generator, it is forwarded to the ZOH

(Zero-order holder) through network channel, introducing a

communication delay d(k).

Assumption 3 The time-varying delay in the network

communication is d(k) and d(k) ∈ [0, dM ), where dM is a pos-

itive real number.

Define

u(k) = Kx(k) (5)

based on above analysis, considering the behavior of ZOH and

the effect of the transmission delay, the controller can be de-

scribed as

u(k) = Kx(si), t ∈ [si + d(si), si+1 + d(si+1) − 1] (6)

Similar to Refs.[6, 7], for technical convenience, we consider

the following two cases:

Case 1 if si + 1 + dM ≥ si+1 + d(si+1) − 1, define a

function τ (k) as

τ (k) = k − si, k ∈ [si + d(si), si+1 + d(si+1) − 1] (7)

clearly,

d(si) ≤ τ (k) ≤ (si+1 − si) + d(si+1) − 1 ≤ 1 + dM (8)

Case 2 If si + 1 + dM ≤ si+1 + d(si+1)− 1, consider the

following two intervals:

[si + d(si), si + dM ], [si + dM + l, si + dM + l + 1] (9)

Since d(k) ≤ dM , it can be easily shown that there exists d

such that

si + d + dM < si+1 + d(si+1) − 1 ≤ si + d + 1 + dM (10)

Moreover, x(si) and x(si+l) with l = 1, 2, · · · , d satisfy Eq.(4).

Let ⎧⎪⎨
⎪⎩

I0 = [si + d(si), si + dM + 1)

Il = [si + dM + l, si + dM + l + 1)

Id = [si + d + dM , si+1 + d(si+1) − 1]

(11)

where l = 1, 2, · · · , d − 1. One can see that

[si + d(si), si+1 + d(si+1) − 1] =

i=d⋃
i=0

Ii (12)

Define τ (k) as

τ (k) =

⎧⎪⎨
⎪⎩

k − si, k ∈ I0

k − si − l, k ∈ Il, l = 1, 2, · · · , d − 1

k − si − d, k ∈ Id

(13)

Then, we have⎧⎪⎨
⎪⎩

d(si) ≤ τ (k) ≤ 1 + dM Δ
= τM , k ∈ I0

d(si) ≤ dM ≤ τ (k) ≤ τM , k ∈ Il, l = 1, 2, · · · , d − 1

d(si) ≤ dM ≤ τ (k) ≤ τM , k ∈ Id

(14)

where the third row in Eq.(14) holds because si+1 + d(si+1)−
1 ≤ si + d + 1 + dM . Obviously,

0 ≤ d(si) ≤ τ (k) ≤ τM , k ∈ Id (15)

In Case 1, for k ∈ [si + d(si), si+1 + d(si+1) − 1], define

ei(k) = 0. In Case 2, define

ei(k) =

⎧⎪⎨
⎪⎩

0, k ∈ I0

x(si) − x(si + l), k ∈ Il, l = 1, 2, · · · , d − 1

x(si) − x(si + d), k ∈ Id

(16)

From the definition of ei(k) and the triggering algorithm of

Eq.(4), it can be easily seen that for k ∈ [si + d(si), si+1 +

d(si+1) − 1],

eT
i (k)Ωei(k) ≤ σxT (k − τ (k))Ωx(k − τ (k)) (17)

Remark 2 It should be noted that when μ = 0, the

event-triggered scheme reduces to a periodic time-triggered

scheme. Thus, the event-triggered scheme considered is more

general.
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Utilizing τ (k) and ei(k), the control can be expressed as

u(k) =Kx(si) = Kx(k − τ (k)) + Kei(k),

k ∈[si + d(si), si+1 + d(si+1) − 1] (18)

Assumption 4 The actuators in the closed-loop systems

have different failure rates because of different working con-

ditions. Furthermore, the measurements distortion of every

actuator is also take into consideration.

Under Assumption 4, the control can be described as

uF (k) = ΞKx(si) =
m∑

i=1

ξiLiKx(si) (19)

where Ξ = diag{ξ1, · · · , ξm}, and ξi (i = 1, 2, · · · , m) are m

unrelated variables taking values on the interval [0, θ], where

θ ≥ 1, the mathematical expectation and variance of ξi are μi

and σ2
i (i = 1, 2, · · · , m), Li = diag{0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i

}. De-

fine Ξ = diag{μ1, · · · , μm} =
∑m

i=1 μiLi, obviously, E(Ξ ) =

Ξ , E(Ξ − Ξ ) = 0, E(ξi − μi)
2 = σ2

i , where E{x} stands for

the expectation of x.

Combining Eqs.(16–19), Eq.(1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) + BΞK(x(k − τ (k)) + ei(k))

+B(Ξ − Ξ )K(x(k − τ (k)) + ei(k)) + B1w(k)

+f(k, x(k))

z(k) = Cx(k) + DΞK(x(k − τ (k)) + ei(k))

+D(Ξ −Ξ )K(x(k − τ (k)) + ei(k)) + B2w(k)
(20)

In the following, we need to introduce a lemma, which will

help us in deriving the main results.

Lemma 1[11] Ξ 1, Ξ 2 and Ω are matrices with appro-

priate dimensions, τ (k) is a function of k and 0 ≤ τ (k) ≤ τM ,

then

τ (k)Ξ 1 + (τM − τ (k))Ξ 2 + Ω < 0

if and only if the following inequalities hold

τMΞ 1 + Ω < 0

τMΞ 2 + Ω < 0

III. Main Results

In this section, we will give a sufficient condition for the

reliable H∞ control problem and design a reliable controller

for system of Eq.(20).

Theorem 1 For given γ, σ and matrix K , the nominal

system of Eq.(20) is exponentially stable in the mean square

under the event trigger scheme of Eq.(20) if there exist matri-

ces P > 0, Q > 0, R > 0, Ω > 0, N , and M with appropriate

dimensions satisfying

Σ (s) =

⎡
⎢⎢⎢⎢⎣

Σ11 + Γ + ΓT ∗ ∗ ∗ ∗
Σ21 Σ22 ∗ ∗ ∗
Σ31 0 Σ 33 ∗ ∗
Σ41 0 0 Σ 44 ∗

Σ 51(s) 0 0 0 −R

⎤
⎥⎥⎥⎥⎦

< 0, s = 1, 2 (21)

where

Σ11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

β ∗ ∗ ∗ ∗ ∗
KT Ξ

T
BT P μΩ ∗ ∗ ∗ ∗

0 0 −Q ∗ ∗ ∗
KT Ξ

T
BT P 0 0 −Ω ∗ ∗

BT
1 P 0 0 0 −γ2I ∗

P −Ω2 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎦

,

β = P (A − I) + (A − I)T P + Q −Ω1,

Σ21 =

⎡
⎣ P (A − I) P BΞK 0 P BΞK P B1 P

0 Π 1 0 0 0 0

0 0 0 Π 1 0 0

⎤
⎦ ,

Π 1 =

⎡
⎢⎣

σ1P BL1K
...

σmP BL1K

⎤
⎥⎦ ,

Σ22 = diag{−P , · · · ,−P︸ ︷︷ ︸
2m+1

},

Σ33 = diag{−R, · · · ,−R︸ ︷︷ ︸
2m+1

},

Σ44 = diag{−I, · · · ,−I︸ ︷︷ ︸
2m+1

},

Σ31 =

⎡
⎣ ϕ(A − I) ϕBΞK 0 ϕBΞK ϕB1 ϕ

0
√

τMΠ 2 0 0 0 0

0 0 0
√

τMΠ 2 0 0

⎤
⎦ ,

ϕ =
√

τMR, Π 2 =

⎡
⎢⎣

σ1RBL1K
...

σmRBL1K

⎤
⎥⎦ ,

Σ41 =

⎡
⎣ C DΞK 0 DΞK B2 0

0 Π 3 0 0 0 0

0 0 0 Π 3 0 0

⎤
⎦ ,

Π 3 =

⎡
⎢⎣

σ1DL1K
...

σmDL1K

⎤
⎥⎦ ,

Σ51(1) =
√

τMNT , Σ51(2) =
√

τMM T ,

Γ = [ N −N + M −M 0 0 0 ] ,

N = [ N 1 N 2 N 3 N 4 0 0 ] ,

M = [ M 1 M 2 M 3 M 4 0 0 ]

and ∗ denotes the entries implied by symmetry.

Proof Define

y(k) =x(k + 1) − x(k)

=(A − I)x(k) + BΞKx(k − τ (k)) + BΞKei(k)

+ B1w(k) + B(Ξ − Ξ )Kx(k − τ (k))

+ B(Ξ − Ξ )Kei(k) + f(k, x(k)) (22)

Choose the following Lyapunov functional candidate as

V (k) =xT (k)P x(k) +
k−1∑

i=k−τM

xT (i)Qx(i)

+

−1∑
i=−τM

k−1∑
j=k+i

yT (i)Ry(i) (23)

Let ΔV (k) = V (k + 1) − V (k), then along the system of
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Eq.(20), we have

EΔV (k)

=2xT (k)P
[
(A − I)x(k) + BΞKx(k − τ (k))

+ BΞKei(k) + B1w(k) + f(k, x(k))
]

+ ϑT P ϑ

+ xT (k − τ (k))

m∑
i=1

σ2
i KT Ξ

T
BT P BΞKx(k − τ (k))

+ eT
i (k)

m∑
i=1

σ2
i KT Ξ

T
BT P BΞKei(k)

+ xT (k)Qx(k) − xT (k − τM )Qx(k − τM )

+ E
{

τMyT (k)Ry(k) −
k−1∑

i=k−τM

yT (i)Ry(i)

}
(24)

where

ϑ =
[
(A − I)x(k) + BΞKx(k − τ (k))

+ BΞKei(k) + B1w(k) + f(k, x(k))
]
,

P >0, Q > 0, R > 0

Employing the free-weighting matrices method, we have

2ζT (k)N

[
x(k) − x(k − τ (k)) −

k−1∑
i=k−τ(k)

y(i)

]
= 0

2ζT (k)M

[
x(k − τ (k)) − x(k − τM ) −

k−τ(k)−1∑
i=k−τM

y(i)

]
= 0

(25)

where

ζT (k) =
[
xT (k) xT (k − τ (k)) xT (k − τM )

eT
i (k) wT (k) fT (k, x(k))

]
There exists R, such that

−2ζT (k)N

k−1∑
i=k−τ(k)

y(i) ≤τ (k)ζT (k)NR−1NT ζ(k)

+

k−1∑
i=k−τ(k)

yT (i)Ry(i) (26)

−2ζT (k)M

k−τ(k)−1∑
i=k−τM

y(i) ≤(τM − τ (k))ζT (k)MR−1M T ζ(k)

+

k−τ(k)−1∑
i=k−τM

yT (i)Ry(i) (27)

Note that

E{τMyT (k)Ry(k)}
=τMϑT Rϑ + τMxT (k − τ (k))

·
m∑

i=1

σ2
i KTΞ

T
BT RBΞKx(k − τ (k))

+ τMeT
i (k)

m∑
i=1

σ2
i KT Ξ

T
BT RBΞKei(k)

(28)

Also, it follows from Eq.(3) that[
x(k)

f(k, x(k))

]T [−Ω1 ∗
−Ω2 −I

] [
x(k)

f(k, x(k))

]
≥ 0 (29)

Combining Eq.(22) and Eqs.(24–29) and the relation of

Eq.(4), by using well-known Schur complement and Lemma

1, one can easily see that Eq.(30) with s = 1, 2 can lead

E{ΔV (k)} − γ2wT (k)w(k) + zT (k)z(k) < 0. The remaining

part of the proof is similar to those in Refs.[8, 12] and so omit-

ted here for simplicity. The proof is complete.

Based on analysis results in Theorem 1, we are in posi-

tion to design the feedback gain K under the event trigger of

Eq.(4).

Theorem 2 Suppose μ > 0, γ and ε > 0 are given pa-

rameters. The system described by Eq.(20) with the feedback

gain K = Y X−1 under the event trigger condition of Eq.(4)

is exponentially stable with an H∞ performance index γ if

there exist matrices X , Q̃, R̃, Ω̃ > 0, Ñ , M̃ and Y with

appropriate dimensions such that

Σ(s) =

⎡
⎢⎢⎢⎢⎣

Σ̃ 11 + Γ̃ + Γ̃
T ∗ ∗ ∗ ∗

Σ̃ 21 Σ̃ 22 ∗ ∗ ∗
Σ̃ 31 0 Σ̃33 ∗ ∗
Σ̃ 41 0 0 Σ44 ∗

Σ̃51(s) 0 0 0 −R̃

⎤
⎥⎥⎥⎥⎦

< 0, s = 1, 2 (30)

where

Σ̃11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

G̃ ∗ ∗ ∗ ∗ ∗
Y TΞ

T
BT μΩ̃ ∗ ∗ ∗ ∗

0 0 −Q̃ ∗ ∗ ∗
Y TΞ

T
BT 0 0 −Ω̃ ∗ ∗

BT
1 0 0 0 −γ2I ∗

I − Ω2X 0 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G̃ = (A − I)X + X(A − I)T + Q̃ − Ω̃1,

Σ̃21 =

⎡
⎣ (A − I)X BΞY 0 BΞY B1 I

0 Π̃ 1 0 0 0 0

0 0 0 Π̃ 1 0 0

⎤
⎦ ,

Π̃ 1 =

⎡
⎢⎣

σ1BL1Y
...

σmBL1Y

⎤
⎥⎦ ,

Σ̃22 = diag{−X , · · · ,−X︸ ︷︷ ︸
2m+1

},

Σ̃31 =

⎡
⎣ λ(A − I)X λBΞY 0 λBΞY λB1 λI

0 λΠ̃ 1 0 0 0 0

0 0 0 λΠ̃ 1 0 0

⎤
⎦ ,

λ =
√

τM ,

Σ̃33 = diag{−2εX + ε2R̃, · · · ,−2εX + ε2R̃︸ ︷︷ ︸
2m+1

}

Σ̃41 =

⎡
⎣ CX DΞY 0 DΞY B2 0

0 Π̃ 3 0 0 0 0

0 0 0 Π̃ 3 0 0

⎤
⎦ ,

Π̃ 3 =

⎡
⎢⎣

σ1DL1Y
...

σmDL1Y

⎤
⎥⎦ ,

Σ̃51(1) =
√

τMÑ
T
, Σ 51(2) =

√
τMM̃

T
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Γ̃ = [ Ñ −Ñ + M̃ −M̃ 0 0 0 ] ,

Ñ = [ Ñ 1 Ñ 2 Ñ 3 Ñ 4 0 0 ] ,

M̃ = [ M̃ 1 M̃ 2 M̃ 3 M̃ 4 0 0 ]

Proof By using Schur complement, we can obtain that

Eq.(31) are equivalent to Eq.(30),

Σ(s) =

⎡
⎢⎢⎢⎢⎣

Σ 11 + Γ + ΓT ∗ ∗ ∗ ∗
Σ 21 Σ 22 ∗ ∗ ∗
Ψ31 0 Ψ33 ∗ ∗
Σ 41 0 0 Σ44 ∗

Σ51(s) 0 0 0 −R

⎤
⎥⎥⎥⎥⎦

< 0, s = 1, 2 (31)

where

Ψ33 = diag{−P R−1P , · · · ,−P R−1P }, Ψ31 =
√

τMΣ21

Due to (R − ε−1P )R−1(R − ε−1P ) ≥ 0, we have

−P R−1P ≤ −2εP + ε2R (32)

Substituting −P R−1P with −2εP + ε2R into Eq.(31), we

obtain

Σ(s) =

⎡
⎢⎢⎢⎢⎣

Σ 11 + Γ + ΓT ∗ ∗ ∗ ∗
Σ 21 Σ 22 ∗ ∗ ∗
Ψ31 0 Ψ̃33 ∗ ∗
Σ 41 0 0 Σ44 ∗

Σ51(s) 0 0 0 −R

⎤
⎥⎥⎥⎥⎦

< 0, s = 1, 2 (33)

where Ψ̃33 = diag{−2εP + ε2R, · · · ,−2εP + ε2R}.
Denoting X =P −1, Q̃=XQX , R̃=XRX , Ñ = XNX ,

M̃ = XMX , Ω̃ = XΩX and Y = KX , then pre-

and post-multiplying Eq.(33) with diag{X , X , X , X , I , I ,

X , · · · , X︸ ︷︷ ︸
4m+2

, I , · · · , I︸ ︷︷ ︸
2m+1

, X}, Eq.(30) can be obtained.

IV. A Simulation Example

To demonstrate the effectiveness of our method, we con-

sider system of Eq.(1) with parameters as follows:

A =

[
0.1 0

0 1.01

]
, B =

[ −0.1

−0.01

]
, B1 =

[
0

1

]
,

C = [ 0.1 0 ] , D = 0, B2 = 0 (34)

and the parameters of Assumptions 2 in Eq.(2) are given as:

Ξ 1 = diag{−0.1,−0.2}, Ξ 2 = diag{−0.2,−0.1}
By simply calculation, we find the system of Eq.(1) with

above parameters is unstable, our purpose is design to the

reliable H∞ controller.

We now consider the following three cases with different

parameters:

Case 1 When the system of Eq.(1) is under event-

triggered scheme and the actuators are all in good condition,

let Ξ = 1, μ = 0.2, by using Theorem 2 with τM = 3, γ = 18

and ε = 10, we can obtain the feedback gain and the trigger

matrix are

K = [−0.1992 2.0369 ] , Ω =

[
1.8267 −0.1076

−0.1076 0.3462

]
(35)

For the initial condition xT (0) = [−0.3 −1 ], with the above

feedback gain K , the state response of system of Eq.(1) with

parameters in Eq.(34) and the release instants and release in-

terval are shown in Fig.2 and Fig.3, respectively.

Fig. 2. State response under event-triggered scheme without
actuator failures

Fig. 3. The release instants and release interval without actu-
ator failures

Case 2 Suppose the system of Eq.(1) reduces to time-

triggered scheme and the actuators have different failure rates,

that is, μ = 0 and Ξ = 0.8, set σ = 0.1, γ = 18, ε = 10 and

τM = 3, by Theorem 2, the feedback gain is

K = [−0.4079 2.7808 ] (36)

The state response and the probabilistic actuator failures are

illustrated in Fig.4 and Fig.5, respectively.

Fig. 4. State response under time-triggering scheme with ac-
tuator failures

Case 3 Under the event-triggered scheme, suppose the

actuators have different failure rates, under the condition of

Ξ = 0.8, σ = 0.1, ε = 10, μ = 0.2, γ = 18, by Theorem 2, we

can have the upper bound of τM is 7.

when μ = 0.1, γ = 18 and τM = 3, the feedback gain and

the trigger matrix are

K = [−0.3512 2.4146 ] , Ω =

[
5.2160 −0.2300

−0.2300 0.5774

]
(37)

The state response of our event-triggered scheme and the re-

lease instants and release interval are illustrated in Fig.6 and

Fig.7.
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Fig. 5. The probabilistic actuator failures

Fig. 6. State response under the event triggering scheme with
actuator failures

Fig. 7. The release instants and release interval with actuator
failures

V. Conclusion

This paper considers event-triggering in networked system

with probabilistic actuator faults. Under the event-triggering

scheme, the newly state information will be transmitted to the

controller only when it violates specified triggering condition.

In terms of different failure rates and the measurements distor-

tion of every actuator, a new probabilistic actuator fault model

for event-triggered networked control systems is proposed. By

using Lyapunov functional, criteria for the exponential sta-

bility and criteria for co-designing both the feedback and the

trigger parameters are derived in the form of linear matrix

inequalities. A simulation example is given to illustrate the

effectiveness of the proposed method.
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