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This paper is concerned with the state estimation problem for the complex networked systems with randomly occurring
nonlinearities and randomly missing measurements. The nonlinearities are included to describe the phenomena of nonlinear
disturbances which exist in the network and may occur in a probabilistic way. Considering the fact that probabilistic data
missing may occur in the process of information transmission, we introduce the randomly data missing into the sensor
measurements. The aim of this paper is to design a state estimator to estimate the true states of the considered complex
network through the available output measurements. By using a Lyapunov functional and some stochastic analysis techniques,
sufficient criteria are obtained in the form of linear matrix inequalities under which the estimation error dynamics is globally
asymptotically stable in the mean square. Furthermore, the state estimator gain is also obtained. Finally, a numerical example
is employed to illustrate the effectiveness of the proposed state estimation conditions.

Keywords: complex networks; state estimation; coupling configuration matrix; randomly occurring nonlinearities

1. Introduction

Dynamic analysis for complex networks has been an ac-
tive field of research in recent years due to their theoretical
importance as well as the extensive applications of these
systems in many areas (Bose, Buchberger, & Guiver, 2003;
Ding, Wang, Shen, & Shu, 2012; Li, Ning, Yin, & Tang,
2012; Liang, Wang, Liu, & Liu, 2012; Liu, 2013). The main
reason lies in the fact that complex networks serve as nat-
ural models for many practical systems such as social sci-
ences, power grid networks, coupled mechanical systems,
information networks, etc. (Liang, Wang, & Liu, 2011). As
the topic has attracted an ever-increasing attention from a
variety of communities such as mathematicians, computer
scientists, statisticians and control engineers, a rich body
of literature can be found on the general topic of complex
networks and applications (Liang et al., 2012; Liu, Wang,
Liang, & Liu, 2008). Different kinds of issues have been
extensively investigated for complex networks, for exam-
ple, the stability and stabilisation, synchronisation, pinning
control and state estimation (Li et al., 2012; Liang et al.,
2011; Song & Cao, 2010; Wang, Wang, & Liu, 2010). As
one of the mostly investigated dynamical behaviours, the
state estimation in complex networks has drawn significant
research interest in recent years (see Liang et al., 2012;
Ding et al., 2012; Liang et al., 2011; Liang, Wang, Shen, &
Liu, 2012, and the references therein).

∗
Corresponding author. Email: caojie690929@163.com

In complex networks, the connections between the
nodes can be represented in terms of nodes, edges and
coupling strengths. However, the weight of the connection
between nodes are often affected by certain disturbance
and capacitance values, which include uncertainties (mod-
elling errors) subject to stochastic disturbances as well as
limited communication constraints. Hence, there is a need
to investigate ways to understand the stochastic influence,
network-induced delay and stability.

It is well known that the complex networks are often
subject to noisy environments and the random phenomena
are often unavoidable because of connections over commu-
nication channels, such as random communication delay,
random measurements and random packet losses. For com-
plex networks, the nonlinear disturbances may go through
a set of switches as a result of abrupt phenomena such as
random failures and repairs of the components, changes
in the interconnections of subsystems, sudden environment
changes, etc. In other words, the nonlinear disturbances may
appear in a probabilistic way and are randomly changeable.
On the other hand, each sensor node has wireless com-
munication capability as well as some level of intelligence
for signal processing and disseminating data. However, the
limited energy, computational power and communication
resources of the sensor nodes will inevitably lead to com-
munication constraints. That is, the data missing also may

C© 2014 Taylor & Francis
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occur randomly. In order to reflect more realistic dynamical
behaviours, many researchers have recently investigated the
random phenomena (Ding et al., 2012; Liu, Huang, Shi, &
Xu, 2013; Wang, Shen, Shu, & Wei, 2012; Wang, Wang,
& Liang, 2009; Wei, Wang, Shen, & Li, 2011). For exam-
ple, in Wang et al. (2009), the synchronisation problem for
a new class of continuous-time-delayed complex networks
with stochastic nonlinearities, interval time-varying delays,
unbounded distributed delays and multiple stochastics is in-
vestigated; in Ding et al. (2012), the state estimation prob-
lem was investigated, by employing the Lyapunov stability
theory, some sufficient conditions were established in the
form of linear matrix inequalities (LMIs) and the explicit
expression of the estimator gains was given. Unfortunately,
to the best of the authors’ knowledge, very little research
attention has been paid to the continuous-time-delayed
complex networks, including stochastic nonlinearities and
randomly data missing. Therefore, the main purpose of
this paper is to consider the state estimation problems for
the continuous-time-delayed complex networks, including
stochastic nonlinearities and randomly data missing. It is
therefore the purpose of this paper to shorten such a gap.

Motivated by the above discussion, in this paper,
we focused on the state estimation problems for the
continuous-time-delayed complex networks, including
stochastic nonlinearities and randomly data missing. The
main contributions of this paper lie in the new research
problem and can be summarised as follows. (1) The stochas-
tic nonlinearities are described by the randomly switching
sequences. (2) The probabilistic missing measurements
occur in a probabilistic way, which account for the random
data missing during the signal transmission or information
collection among the sensor networks; specifically, our aim
is to derive sufficient conditions for the addressed problem
by employing a Lyapunov functional, the free-weighting
approach and the stochastic analysis techniques. Then, the
state estimate gain can be designed. (3) It should be pointed
out that the sufficient conditions are in the form of LMIs
that can be solved by using the standard numerical software.

The rest of this paper is organised in the following
way. In Section 2, the problem addressed is presented and
some preliminaries are briefly provided. In Section 3, a
sufficient condition is established in terms of LMIs and
the explicit expression of the estimator gains is given. In
Section 3, a numerical example is provided to demonstrate
the effectiveness of the main results obtained.

Notation: R
n and R

n×m denote the n-dimensional Eu-
clidean space and the set of n × m real matrices; the su-
perscript ‘T’ stands for matrix transposition; I is the iden-
tity matrix of appropriate dimension; ‖·‖ stands for the
Euclidean vector norm or the induced matrix 2-norm as ap-
propriate; the notation X > 0 (X ≥ 0), for X ∈ R

n×n, means
that the matrix X is real symmetric positive definite (posi-
tive semi-definite). x is a stochastic variable. For a matrix
B and two symmetric matrices A and C, [ A ∗

B C
] denotes a

symmetric matrix, where ∗ denotes the entries implied by
symmetry.

2. System description

Consider the following stochastic complex networks con-
sisting of N coupled nodes with time-varying delays:

ẋi(t) = δ(t)Af1(xi(t)) + (1 − δ(t))Bf2(xi(t))

+
N∑

j=1

gij�1xj (t) +
N∑

j=1

gij�2xj (t − τ (t)), (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T is the state vec-
tor of the ith node, A and B are constant matrices with
appropriate dimensions, f1(·) and f2(·) are nonlinear vector-
valued functions satisfying certain conditions given later,
and �1 and �2 are the inner coupling matrices of the
network from the vertical and the horizontal directions,
respectively. G = (gij ) ∈ R

N×N is the coupling configu-
ration matrix denoting the topological structures of the
complex network, if there is a connection between nodes
i and j (i �= j); then, gij = gji = 1, otherwise gij =
gji = 0. The diagonal elements of matrix G are defined
as gii = −∑N

j=1,j �=i gij (i = 1, 2, . . . , N ). τ (t) denotes the
time-varying delay that satisfies τ 1 ≤ τ (t) ≤ τ 2 with 0 ≤
τ 1 ≤ τ 2 being known positive integers. δ(t) are Bernoulli
distributed white sequences governed by Prob{δ(t) = 1} =
δ0, Prob{δ(t) = 0}= 1 − δ0, where δ0 are known constants.
Obviously, the stochastic variable δ(t) has the variance
δ0(1 − δ0).

Remark 1: As is well known, the randomly occurring phe-
nomena have been extensively investigated in recent years
for discrete-time systems (Liang et al., 2011), complex
networks (Ding et al., 2012), as well as Markovian jump
systems (Dong, Wang, Ho, & Gao, 2011; Wang, Liu, Yu,
& Liu, 2006; Ma & Jia, in press). Nevertheless, the in-
teresting phenomenon studied in this paper has not been
investigated. For the addressed complex networks (1), the
nonlinear functions f1(xi(t)) and f2(xi(t)) affect the dynam-
ics of the complex system through a probabilistic way
described by Bernoulli random variables δ(t). Moreover,∑N

j=1 gij�1xj (t) and
∑N

j=1 gij�2xj (t − τ (t)) are used to
describe the complex network system.

Assumption 1:

[f1(u) − f1(v) − �1(u − v)]T [f1(u) − f1(v)

−�2(u − v)] ≤ 0,

[f2(u) − f2(v) − �3(u − v)]T [f2(u) − f2(v)

−�4(u − v)] ≤ 0,

where �i(i = 1, 2, 3, 4) are known real constant matrices
with appropriate dimensions.
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Remark 2: On the basis of Assumption 1, we can get

[
xi(t)

f1(xi(t))

]T [
�11 �12

�21 In

][
xi(t)

f1(xi(t))

]
≤ 0,

[
xi(t)

f2(xi(t))

]T [
�̄11 �̄12

�̄21 In

][
xi(t)

f2(xi(t))

]
≤ 0,

where

�11 = �T
1 �2 + �T

2 �1

2
, �T

21 = �12 = −�T
1 + �T

2

2
,

�̄11 = �T
3 �4 + �T

4 �3

2
, �̄T

21 = �̄12 = −�T
3 + �T

4

2
.

In this paper, the sensor measurements of the complex
networks (1) are modelled by

y(t) = �Cx(t) =
m∑

i=1

ξiEiCx(t), (2)

where y(t) ∈ R
m is the actual measured output vector and

C is a known constant real matrix with appropriate di-
mensions. � = diag{ξ 1, ξ 2, . . . , ξm}, where ξ i(i = 1, 2,
. . . , m) are unrelated stochastic variables taking values on
[0, 1]. The mathematical expectation and variance of ξ i are
ξ̄i and σ 2

i , respectively. Ei = diag{0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

}.

Remark 3: In the sensor measurement equation (2), ran-
dom variables ξ i are used to describe the phenomenon of
probabilistic data missing occurring in the process of infor-
mation transmission from the system to each sensor. Con-
sidering the case of data missing, we assume the variables
ξ i(i = 1, 2, . . . , m) take values in the interval [0, 1].

By using the Kronecker product, the stochastic complex
networks (1) can be rewritten as

ẋ(t) = δ(t)(IN ⊗ A)F1(x(t)) + (1 − δ(t))(IN ⊗ B)F2(x(t))

+ (G ⊗ �1)x(t) + (G ⊗ �2)x(t − τ (t)), (3)

where

x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xN (t)

⎤
⎥⎥⎥⎦ , F1(x(t)) =

⎡
⎢⎢⎢⎣

f1(x1(t))
f1(x2(t))

...
f1(xN (t))

⎤
⎥⎥⎥⎦,

F2(x(t)) =

⎡
⎢⎢⎢⎣

f2(x1(t))
f2(x2(t))

...
f2(xN (t))

⎤
⎥⎥⎥⎦.

In this paper, based on the measurement y(t), we
construct the following state estimator for the stochastic

complex network (3):

˙̂x(t) = (G ⊗ �1)x̂(t) + (G ⊗ �2)x̂(t − τ (t))

+K(y(t) − �̄Cx̂(t)), (4)

where ˙̂x(t) ∈ R
N×n is the estimation of the network state

x(t), K ∈ R
(N×n)×m is the estimate gain matrix to be de-

signed and �̄ = diag{ξ̄1, ξ̄2, . . . , ξ̄m} is the mathematical
expectation of �.

By setting the estimation error e(t) = x(t) − x̂(t), the
error dynamics of the state estimation can be obtained from
(2)–(4) as follows:

ė(t) = δ(t)(IN ⊗ A)F1(x(t)) + (1 − δ(t))(IN ⊗ B)F2(x(t))

+ (G ⊗ �1 − K�̄C)e(t) + (G ⊗ �2)e(t − τ (t))

−K(� − �̄)Cx(t). (5)

Then, by setting

ηT (t) = [
FT

1 (x(t)) FT
2 (x(t)) eT (t) eT (t − τ1)

eT (t − τ (t)) eT (t − τ2) xT (t)
]T

we can rewrite (5) as follows:

ė(t) = δ(t)A1η(t) + (1 − δ(t))A2η(t) − K(� − �̄)Cx(t),

(6)

where

A1 = [
IN ⊗ A 0 (G ⊗ �1) − K�̄C 0 (G ⊗ �2) 0 0

]
,

A2 = [
0 IN ⊗ B (G ⊗ �1) − K�̄C 0 (G ⊗ �2) 0 0

]
.

The purpose of this paper is to choose a suitable estima-
tor gain matrix K and establish some easy-to-verify criteria
such that the state estimation approaches the state vector
x(t) of the network (3) globally asymptotically in the mean
square.

Before giving the main result, we will first introduce
the following definition and lemmas, which will help us in
deriving the main results.

Definition 1: The system (6) is said to be a globally asymp-
totic state estimator in the mean square for the stochastic
complex networks (3) with sensor measurements (2) if

lim
t→+∞ E{‖ x(t) − x̂(t) ‖2} = 0. (7)

Lemma 1 (Wang, Xie, & de Souza, 1992): For any vec-
tors x, y ∈ Rn, and positive-definite matrix Q ∈ Rn × n, the
following inequality holds:

2xT y ≤ xT Qx + yT Q−1y.
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Lemma 2 (Han & Yue, 2007): For any constant positive
matrix R ∈ R

n×n, τ 1 ≤ τ (t) ≤ τ 2 and vector function x(t) ∈
R

n, such that the following integration is well defined, the
following inequality holds:

−(τ2 − τ1)
∫ t−τ1

t−τ2

ẋT (s)Rẋ(s)ds ≤
[

x(t − τ1)
x(t − τ2)

]T

×
[−R ∗

R −R

][
x(t − τ1)
x(t − τ2)

]
.

Lemma 3 (Yue, Tian, Zhang, & Peng, 2009): �1, �2 and �

are matrices with appropriate dimensions, τ (t) is a function
of t and τ 1 ≤ τ (t) ≤ τ 2, then

[(τ (t) − τ1)�1 + (τ2 − τ (t))�2] + � < 0

if and only if the following two inequalities hold:

(τ2 − τ1)�1 + � < 0,

(τ2 − τ1)�2 + � < 0.

3. Main results

In this section, we will invest the estimation problem for
the stochastic complex networks (1) with sensor measure-
ments (2). A sufficient condition is established to ensure
the estimation error to be globally asymptotically stable in
the mean square. Then, according to the analysis results, the
methods to design the estimator gain matrix K are derived
in terms of the solution to certain matrix inequalities.

Theorem 1: Let some scalars 0 ≤ τ 1 ≤ τ 2 and the estima-
tor gain matrix K in (4) be given, then the estimation error
dynamics (6) is globally asymptotically stable in the mean
square if there exist matrices P > 0, Q1 > 0, Q2 > 0, R1

> 0, R2 > 0 and N, M, 
1, 
2 with appropriate dimen-

sions, such that the following matrix inequalities hold for
s = 1, 2:

⎡
⎢⎢⎣

�11 + ϒ + ϒT ∗ ∗ ∗
�21 �22 ∗ ∗
�31 0 �33 ∗

�41(s) 0 0 −R2

⎤
⎥⎥⎦ < 0, (8)

where

�11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1 ⊗ In ∗ ∗ ∗ ∗ ∗ ∗
0 −
2 ⊗ In ∗ ∗ ∗ ∗ ∗

δ0PIA δ10PIB 1 ∗ ∗ ∗ ∗
0 0 R1 −Q1 − R1 ∗ ∗ ∗
0 0 GT

�2
P 0 0 ∗ ∗

0 0 0 0 0 −Q2 ∗
−(
1 ⊗ �21)T −(
2 ⊗ �̄21)T 0 0 0 0 −
1 ⊗ �11 − 
2 ⊗ �̄11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�21 =

⎡
⎢⎢⎢⎣

τ1
√

δ0R1IA 0 τ1
√

δ0R1�1 0 τ1
√

δ0R1G�2 0 0√
δ0τ21R2IA 0

√
δ0τ21R2�1 0

√
δ0τ21R2G�2 0 0

0 τ1
√

δ10R1IB τ1
√

δ10R1�1 0 τ1
√

δ10R1G�2 0 0

0
√

δ10
√

τ21R2IB

√
δ10

√
τ21R2�1 0

√
δ10

√
τ21R2G�2 0 0

⎤
⎥⎥⎥⎦,

�31 = [
�T

11 �T
12 · · · �T

1m �T
21 �T

22 · · · �T
2m

]T
,

�41(1) = √
τ21N

T ,�41(2) = √
τ21M

T ,

�22 = diag{−R1,−R2,−R1,−R2},
�33 = diag{−R1, . . . ,−R1︸ ︷︷ ︸

m

,−R2, . . . ,−R2︸ ︷︷ ︸
m

},

N = [
NT

1 NT
2 NT

3 NT
4 NT

5 NT
6 NT

7

]T
,

M = [
MT

1 MT
2 MT

3 MT
4 MT

5 MT
6 MT

7

]T
,

1 = −R1 + Q1 + Q2 + P�1 + �T
1 P,

ϒ = [
0 0 0 N −N + M −M 0 0

]
,

�1i = [
01×6 τ1σiR1KEiC 0

]
,

�2i = [
01×6

√
τ21σiR2KEiC 0

]
(i = 1, . . . , m),

IA = IN ⊗ A, IB = IN ⊗ B,G�2 = G ⊗ �2,

τ21 = τ2 − τ1, δ10 = 1 − δ0,�1 = (G ⊗ �1) − K�̄C.

Proof: Choose the following Lyapunov function for the
system (6):

V (t) = V1(t) + V2(t) + V3(t) (9)

with

V1(t) = eT (t)Pe(t),

V2(t) =
∫ t

t−τ1

eT (s)Q1e(s)ds +
∫ t

t−τ2

eT (s)Q2e(s)ds,
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1368 J. Liu et al.

V3(t) = τ1

∫ t

t−τ1

∫ t

s

ėT (v)R1ė(v)dvds

+
∫ t−τ1

t−τ2

∫ t

s

ėT (v)R2ė(v)dvds,

where P, Q1, Q2, R1, R2 are symmetric positive-definite
matrices.

Taking the time derivative of V(t) along the trajectory
of the system (6), and taking expectation on it, we obtain

E{LV (t)} = 2eT (t)P [δ0A1η(t) + (1 − δ0)A2η(t)]

+ eT (t)(Q1 + Q2)e(t) − eT (t − τ1)Q1e(t − τ1)

− eT (t − τ2)Q2e(t − τ2) + E{ėT (t)
(
τ 2

1 R1 + τ21R2
)
ė(t)}

− τ1

∫ t

t−τ1

ėT (s)R1ė(s)ds −
∫ t−τ1

t−τ2

ėT (s)R2ė(s)ds.

(10)

By Lemma 2, we can get

− τ1

∫ t

t−τ1

ėT (s)R1ė(s)ds ≤
[

e(t)
e(t − τ1)

]T [−R1 ∗
R1 −R1

]

×
[

e(t)
e(t − τ1)

]
. (11)

Notice that

E{ėT (t)R̃ė(t)} = δ0η
T (t)AT

1 R̃A1η(t)

+ (1 − δ0)ηT (t)AT
2 R̃A2η(t)

+
n∑

i=1

σ 2
i xT (t)CT ET

i KT R̃KEiCx(t), (12)

where R̃ = τ 2
1 R1 + τ21R2.

Based on Assumption 1 and Remark 2, we can know
there exist 
1 and 
2, such that

[
x(t)

F1(x(t))

]T [

1 ⊗ �11 ∗

1 ⊗ �21 
1 ⊗ In

][
x(t)

F1(x(t))

]
≤ 0,

(13)

[
x(t)

F2(x(t))

]T [

2 ⊗ �̄11 ∗

2 ⊗ �̄21 
2 ⊗ In

][
x(t)

F2(x(t))

]
≤ 0.

(14)

Then, by employing the free weight matrix method (He,
Wu, She, & Liu, 2004; Yue, Han, & Lam, 2005), we have

2ηT (t)N

[
e(t − τ1) − e(t − τ (t)) −

∫ t−τ1

t−τ (t)
ė(s)ds

]
= 0,

(15)

2ηT (t)M

[
e(t − τ (t)) − e(t − τ2) −

∫ t−τ (t)

t−τ2

ė(s)ds

]
= 0.

(16)

Notice that, by Lemma 1, we can obtain

−2ηT (t)N
∫ t−τ1

t−τ (t)
ė(s)ds ≤ (τ (t) − τ1)ηT (t)NR−1

2 NT η(t)

+
∫ t−τ1

t−τ (t)
ėT (s)R2ė(s)ds, (17)

−2ηT (t)M
∫ t−τ (t)

t−τ2

ė(s)ds ≤ (τ2 − τ (t))ηT (t)MR−1
2 MT η(t)

+
∫ t−τ (t)

t−τ2

ėT (s)R2ė(s)ds. (18)

Combining (10) and (11)–(18), we can obtain that

E{LV (t)}
≤ 2eT (t)P [δ0A1η(t) + (1 − δ0)A2η(t)]

+ eT (t)(Q1 + Q2)e(t) − eT (t − τ1)Q1e(t − τ1)

− eT (t − τ2)Q2e(t − τ2) + δ0η
T (t)AT

1 R̃A1η(t)

+ (1 − δ0)ηT (t)AT
2 R̃A2η(t)

+
n∑

i=1

σ 2
i xT (t)CT ET

i KT R̃KEiCx(t)

+
[

e(t)
e(t − τ1)

]T [−R1 ∗
R1 −R1

][
e(t)

e(t − τ1)

]

+ 2ηT (t)N [e(t − τ1) − e(t − τ (t))]

+ 2ηT (t)M [e(t − τ (t)) − e(t − τ2)]

+ (τ (t) − τ1)ηT (t)NR−1
2 NT η(t)

+ (τ2 − τ (t))ηT (t)MR−1
2 MT η(t)

+
[

x(t)
F2(x(t))

]T [−
2 ⊗ �̄11 ∗
−
2 ⊗ �̄21 −
2 ⊗ In

][
x(t)

F2(x(t))

]

+
[

x(t)
F1(x(t))

]T [−
1 ⊗ �11 ∗
−
1 ⊗ �21 −
1 ⊗ In

][
x(t)

F1(x(t))

]

≤ ηT (t)[�11 + ϒ + ϒT ]η(t) + δ0η
T (t)AT

1 R̃A1η(t)

+ (1 − δ0)ηT (t)AT
2 R̃A2η(t)

+
n∑

i=1

σ 2
i xT (t)CT ET

i KT R̃KEiCx(t)

+ (τ (t) − τ1)ηT (t)NR−1
2 NT η(t)

+ (τ2 − τ (t))ηT (t)MR−1
2 MT η(t). (19)
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Recalling (8), from (19), we have

E{LV (t)} ≤ ηT (t)[�11 + ϒ + ϒT ]η(t)

+ δ0η
T (t)AT

1 R̃A1η(t)

+ (1 − δ0)ηT (t)AT
2 R̃A2η(t)

+
n∑

i=1

σ 2
i xT (t)CT ET

i KT R̃KEiCx(t)

+ (τ2 − τ1)ηT (t)NR−1
2 NT η(t) < 0, (20)

E{LV (t)} ≤ ηT (t)[�11 + ϒ + ϒT ]η(t)

+ δ0η
T (t)AT

1 R̃A1η(t)

+ (1 − δ0)ηT (t)AT
2 R̃A2η(t)

+
n∑

i=1

σ 2
i xT (t)CT ET

i KT R̃KEiCx(t)

+ (τ2 − τ1)ηT (t)MR−1
2 MT η(t) < 0. (21)

Subsequently, by Lemma 3 and the well-known Schur
complement, we can conclude that

E{LV (t)} ≤ 0, (22)

that is,

lim
t→+∞ E{‖ x(t) − x̂(t) ‖2} = 0. (23)

Based on Definition 1, the system (6) is globally asymp-
totically stable in the mean square.

Remark 4: As mentioned in the Introduction section, com-
plex dynamical networks have received a great deal of at-
tention, and many results on the topic have been available
that require the symmetry and the zero-row-sum proper-
ties for the configuration matrix G. However, the methods
cannot be applied to the state estimation problem with ran-
domly occurring nonlinearities and missing measurements.

To overcome this difficulty, we investigated a new more
general model, including both randomly occurring nonlin-
earities and missing measurements. After some rigorous
and complex deducing process, the criteria which are used
to guarantee the dynamics of the estimation error system
(6) to be globally asymptotically stable in the mean square.

Based on Theorem 1, we are now in a position to de-
sign the state estimator for the complex networks (1). The
following Theorem 2 gives the explicit expression of the
estimator gain matrix K.

Theorem 2: For given scalars 0 ≤ τ 1 ≤ τ 2 and ε, the
augmented system (6) is globally asymptotically stable in
the mean square, if there exist matrices P > 0, Q1 > 0, Q2

> 0, R1 > 0, R2 > 0 and N, M, 
1, 
2 with appropriate
dimensions satisfying the following LMIs:

⎡
⎢⎢⎢⎣

�̃11 + ϒ + ϒT ∗ ∗ ∗
�̃21 �̃22 ∗ ∗
�̃31 0 �̃33 ∗

�41(s) 0 0 −R2

⎤
⎥⎥⎥⎦< 0, s = 1, 2, (24)

where

�̃11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1 ⊗ In ∗ ∗ ∗ ∗ ∗ ∗
0 −
2 ⊗ In ∗ ∗ ∗ ∗ ∗

δ0PIA δ10PIB ̄1 ∗ ∗ ∗ ∗
0 0 R1 −Q1 − R1 ∗ ∗ ∗
0 0 GT

�2
P 0 0 ∗ ∗

0 0 0 0 0 −Q2 ∗
−(
1 ⊗ �21)T −(
2 ⊗ �̄21)T 0 0 0 0 −
1 ⊗ �11 − 
2 ⊗ �̄11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�̃21 =

⎡
⎢⎢⎢⎣

τ1
√

δ0PIA 0 τ1
√

δ0�̄1 0 τ1
√

δ0PG�2 0 0√
δ0τ21PIA 0

√
δ0τ21�̄1 0

√
δ0τ21PG�2 0 0

0 τ1
√

δ10PIB τ1
√

δ10�̄1 0 τ1
√

δ10PG�2 0 0

0
√

δ10τ21PIB

√
δ10τ21�̄1 0

√
δ10τ21PG�2 0 0

⎤
⎥⎥⎥⎦,

�̃31 = [
�̄T

11 �̄T
12 · · · �̄T

1m �̄T
21 �̄T

22 · · · �̄T
2m

]T
,

̄1 = −R1 + Q1 + Q2 + (�̄1 + �̄T
1 ),

�̄1 = P (G ⊗ �1) − YC,

�̄1i = [
01×6 τ1σiYEiC 0

]
,

�̄2i = [
01×6

√
τ21σiYEiC 0

]
(i = 1, . . . , m),

�̃22 = diag{−2ε1P + ε2
1R1,−2ε2P + ε2

2R2,−2ε1P

+ ε2
1R1,−2ε2P + ε2

2R2},
�̃33 = diag{−2ε1P + ε2

1R1, . . . ,−2ε1P + ε2
1R1︸ ︷︷ ︸

m

,

−2ε2P + ε2
2R2, . . . ,−2ε2P + ε2

2R2︸ ︷︷ ︸
m

},
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1370 J. Liu et al.

and the other symbols are defined in Theorem 1. Moreover,
if (24) is true, the desired state estimator gain in (4) can be
determined by K = P−1Y.

Proof: Combining (8) and (20)–(21), and applying the
Schur complement, we can obtain

⎡
⎢⎢⎣

�̃11K + ϒ + ϒT ∗ ∗ ∗
�̃21K �̃22K ∗ ∗
�̃31K 0 �̃33K ∗
�41(s) 0 0 −R2

⎤
⎥⎥⎦< 0, s = 1, 2,

(25)

where

�̃11K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
1 ⊗ In ∗ ∗ ∗ ∗ ∗ ∗
0 −
2 ⊗ In ∗ ∗ ∗ ∗ ∗

δ0PIA δ10PIB 1K ∗ ∗ ∗ ∗
0 0 R1 −Q1 − R1 ∗ ∗ ∗
0 0 GT

�2
P 0 0 ∗ ∗

0 0 0 0 0 −Q2 ∗
−(
1 ⊗ �21)T −(
2 ⊗ �̄21)T 0 0 0 0 −
1 ⊗ �11 − 
2 ⊗ �̄11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�̃21K =

⎡
⎢⎢⎢⎣

τ1
√

δ0PIA 0 τ1
√

δ0�̄1K 0 τ1
√

δ0PG�2 0 0√
δ0τ21PIA 0

√
δ0τ21�̄1K 0

√
δ0τ21PG�2 0 0

0 τ1
√

δ10PIB τ1
√

δ10�̄1K 0 τ1
√

δ10PG�2 0 0

0
√

δ10τ21PIB
√

δ10τ21�̄1K 0
√

δ10τ21PG�2 0 0

⎤
⎥⎥⎥⎦,

�̃31K = [
�̄T

11K �̄T
12K · · · �̄T

1mK �̄T
21K �̄T

22K · · · �̄T
2mK

]T
,

1K = −R1 + Q1 + Q2 + �̄1K + �̄T
1K,

�̄1K = P (G ⊗ �1) − PKC,

�̄1iK = [
01×6 τ1σiPKEiC 0

]
,

�̄2iK = [
01×6

√
τ21σiPKEiC 0

]
(i = 1, . . . , m),

�̃22K = diag{−PR−1
1 P,−PR−1

2 P,−PR−1
1 P,−PR−1

2 P },
�̃33K = diag{−PR−1

1 P, . . . ,−PR−1
1 P︸ ︷︷ ︸

m

,

−PR−1
2 P, . . . ,−PR−1

2 P︸ ︷︷ ︸
m

}.

Due to

(R − ε−1P )R−1(R − ε−1P ) ≥ 0,

we can have

−PR−1P ≤ −2εP + ε2R.

Substituting −PR−1
i P with −2εiP + ε2

i R(i = 1, 2)
into (25), we obtain

⎡
⎢⎢⎣

�̃11K + ϒ + ϒT ∗ ∗ ∗
�̃21K �̃22 ∗ ∗
�̃31K 0 �̃33 ∗
�41(s) 0 0 −R2

⎤
⎥⎥⎦ < 0, s = 1, 2. (26)

Denoting Y = PK, Equation (24) can be obtained. Fur-
thermore, the explicit expression of the desired state esti-
mator gain matrix is K = P−1Y.

Remark 5: In this paper, three phenomena, namely time
delays, randomly occurring nonlinearities and data miss-
ing, have been taken into account. The main results con-
tain all the information of the complex networks, including
physical parameters, bounds of the state delays, occurrence
probabilities of the nonlinear disturbances and data miss-
ing. In the next section, a numerical example is provided to
show the usefulness of the proposed design procedure for
the desired state estimations.

4. Simulation examples

Consider the following continuous complex network with
three coupled nodes:

ẋi(t) = δ(t)Af1(xi(t)) + (1 − δ(t))Bf2(xi(t))

+
N∑

j=1

gij�1xj (t) +
N∑

j=1

gij�2xj (t − τ (t))

× (i = 1, 2, 3, 4, 5), (27)

where

xi(t) =
[

xi1(t)
xi2(t)

]
, A =

[
0.2 −0.01
0 −0.3

]
,

B =
[ −0.2 −0.1

−0.35 −0.3

]
,

f1(xi(t)) =
[

0.4xi1(t) − tanh(0.3xi2(t))
0.9xi2(t) − tanh(0.7xi1(t))

]
,

f2(xi(t)) =
[

0.3xi1(t) − tanh(0.2xi2(t))
0.8xi2(t) − tanh(0.6xi1(t))

]
.
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Figure 1. State trajectory x(t) of (3).

Figure 2. Estimation error trajectory e(t) of (6).

The coupling configuration matrix and the inner-
coupling matrix are assumed to be

G = (gij )N×N =

⎡
⎢⎢⎢⎢⎣

−15 0.01 0 0 0.01
0.01 −15 0 0 0
0.01 0.02 −16 0 0.02
0.02 0.01 0 −16 0.01

0 0 0.01 0.01 −14

⎤
⎥⎥⎥⎥⎦,

�1 = �2 =
[

0.070 −0.075
0.090 0.100

]
.

The sensor measurements with data missing are de-
scribed as y(t) = �Cx(t), in which the mathematical expec-
tation and variance of ξ i are ξ̄1 = 0.6 and σ 1 = 0.02, re-
spectively, and C = [0.2 − 0.2 0.2 0 0.2 − 0.2 0.2 0
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1372 J. Liu et al.

Figure 3. The probabilistic data missing of the output measure-
ments.

− 0.2 0.2]; �i (i = 1, 2, 3, 4) in Assumption 1 are chosen
as follows:

�1 =
[

0.1 0
0 0.2

]
, �2 =

[
0.15 0

0 0.25

]
,

�3 =
[−0.2 0

0 −0.3

]
, �4 =

[−0.25 0
0 −0.35

]
.

In this example, the communication delays satisfy τ 1 ≤
τ (t) ≤ τ 2, and assume τ 1 = 0.1, τ 2 = 0.2, δ0 = 0.2, e1 =
1; e2 = 1. Then, combining (24) and K = P−1Y, the desired

estimator parameters can be designed as

KT = [0.0060 0.0051 − 12.7852 − 9.0336 − 11.3543

12.0988 − 13.0446 − 8.3119 9.3627 − 12.6306]T .

Choose the initial conditions xT (0) = x̂T (0) =[
0.5 − 0.4 0.3 − 0.2 0.1 − 0.1 0.2 − 0.3 0.4 − 0.5

]T
,

the actual measurements x(t) and the output errors e(t) are
shown in Figures 1 and 2, respectively. From Figures 1
and 2, we can see the designed state estimator performs
well. Moreover, the probabilistic sensor faults in (2) and
the probabilistic occurrence of the nodes δ(t) in (1) can be
seen from Figures 3 and 4.

5. Conclusion

This paper has investigated the state estimation problem for
the complex networked systems with randomly occurring
nonlinearities and randomly missing measurements. The
randomly occurring nonlinearities may go through switches
in a probabilistic way. The missing measurements are as-
sumed to occur randomly in the process of information
transmission. Considering the two random phenomena, we
construct a new state estimator for the stochastic complex
network. By utilising stochastic analysis, sufficient condi-
tions in terms of matrix inequalities have been given which
guarantee the estimation error dynamics to be exponentially
stable in the mean square. Furthermore, the expression of
the state estimator has been derived. Finally, a numerical
example has been provided to show the usefulness and ef-
fectiveness of the obtained results.

Figure 4. The probabilistic occurrence of the nodes.
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We would like to point out that it is possible to extend
our main results to the dynamical systems such as those
with randomly occurring information (e.g. the stochastic
Brownian motions) and disturbances. This will also be one
of our future research issues.
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