
Acta Mathematicae Applicatae Sinica, English Series

Vol. 32, No. 2 (2016) 395–406

DOI: 10.1007/s10255-016-0566-9
http://www.ApplMath.com.cn & www.SpringerLink.com

Acta Mathema�cae Applicatae Sinica,
English Series
© The Editorial Office of  AMAS & 
     Springer-Verlag Berlin Heidelberg 2016

Reliable Control for Nonlinear Systems with Stochastic
Actuators Fault and Random Delays Through a T-S Fuzzy
Model Approach
Jin-liang LIU1,2, Zhou GU1, Shu-min FEI1,†

1School of Automation, Southeast University, Nanjing 210096, China (†E-mail: smfei@seu.edu.cn)
2College of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China

Abstract This paper considers the reliable control design for T-S fuzzy systems with probabilistic actuators

faults and random time-varying delays. The faults of each actuator occurs randomly and its failure rates are

governed by a set of unrelated random variables satisfying certain probabilistic distribution. In terms of the

probabilistic failures of each actuator and time-varying random delays, new fault model is proposed. Based on

the new fuzzy model, reliable controller is designed and sufficient conditions for the exponentially mean square

stability (EMSS) of T-S fuzzy systems are derived by using Lyapunov functional method and linear matrix

inequality (LMI) technique. It should be noted that the obtained criteria depend on not only the size of the

delay, but also the probability distribution of it. Finally, a numerical example is given to show the effectiveness

of the proposed method.
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1 Introduction

It is well known that T-S fuzzy systems have been widely studied and have many practical appli-
cations during the past decades. Much effort has been devoted to both theoretical research and
implementation techniques for fuzzy control (see [6,10, 14] and the references therein). Actu-
ally, large number of studies show that fuzzy control is a practical control approach for complex
nonlinear systems. In many model-based fuzzy control methods, the well-known Takagi-Sugeno
(T-S) fuzzy model, which had been first proposed in [10], has been widely used in the study of
system analysis and synthesis of a class of nonlinear systems through membership functions (see
[1,6,14]) for some representative works. However, in the real world, nonlinear dynamic systems
with time delay exist extensively in many industrial and engineering systems, such as rolling
mill systems, chemical processes, communication networks, and it is well known that the T-S
fuzzy model is qualified to represent a certain class of nonlinear dynamic systems (of course
including time delay systems), and thus, it is natural to investigate nonlinear systems with
time delay via the corresponding T-S fuzzy model. Some nice results on T-S fuzzy model have
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been reported in the literature and there are two kinds of results, namely delay-independent
T-S fuzzy systems[1,2] and delay-dependent T-S fuzzy systems [3,18]. The delay-dependent re-
sults are usually less conservative than the delay-independent ones, especially when the delay
is small.

Furthermore, recent studies on the delay-dependent stability and stabilization for the T-S
fuzzy systems are also fruitful, and many valuable results have been reported in the open liter-
ature, for constant delay (see [3,18]) and for time-varying delay (see [8,9]). However, it should
be noted that most of the aforementioned results are obtained under a full reliability assump-
tion that all sensors, control components and actuators of the systems are in good working
condition. As is known to all, due to the sensors or actuators aging, zero shift, electromagnetic
interference, network disturbance etal., sensor failures, actuator failures and data distortion
are unavoidable, which may lead to intolerable system performance[19]. Recently, there have
been a deep look into the reliable control design (see [4,11,12,20] and the references there in).
In the aforementioned papers, the fault model is described in a static way and most of them
only considered actuator failures [11,20], few of them consider the reliable control with sensor
failures [4,12]. In [11], the reliable control design was considered for networked control systems
(NCSs) against probabilistic actuator fault with different failure rates, measurements distortion,
random network-induced delay and packet dropout, and a new distribution-based fault model
is proposed, which contains the probability distribution information of the random delay and
packet dropout. In [12], a comprehensive model is developed in this paper to discuss a class of
T-S fuzzy model based nonlinear systems with probabilistic sensor and actuator failure.

Up to now, to the best of the authors’ knowledge, the reliable control has not yet been
addressed for T-S fuzzy systems with both probabilistic actuators failures and random delays,
which still remains as a challenging problem. In this paper, the reliable control for T-S fuzzy
systems is investigated. A new distribution-based fault model is proposed, which includes both
probabilistic actuators fault and random time-varying delays. The actuators can be in different
characters and their failures happen in a random way, which are governed by a set of random
variables satisfying certain probabilistic distribution on the interval [0, θl](θl ≥ 1, l = 1, 2). By
using Lyapunov functional approach, new criteria for designing the fuzzy reliable controller is
obtained in term of linear matrix inequality.

Notation: R
n and R

n×m denote the n-dimensional Eculidean space, and the set of n × m
real matrices, the superscript “T ” stands for matrix transposition, I is the identity matrix of
appropriate dimension. ‖ · ‖ stands for the Euclidean vector norm or the induced matrix 2-
norm as appropriate. The notation X > 0 (respectively, X ≥ 0), for X ∈ R

n×n means that the
matrix X is real symmetric positive definite (respectively, positive semi-definite). When x is a
stochastic variable, E{§} stands for the expectation of x. For a matrix B and two symmetric
matrices A and C,

[
A ∗
B C

]
denote a symmetric matrix, where ∗ denotes the entries implied by

symmetry.

2 Systems Description and Preliminaries

In this paper, we consider the following T-S fuzzy systems:

ẋ(t) =
r∑

i=1

hi(k)
[
Aix(t) + Biu(t)

]
, (1)

where Ai, Bi are matrices with appropriate dimensions, x(t) ∈ R
n, u(t) ∈ R

m are the state
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and control respectively. i ∈ {1, 2, · · · , r} � S, where r is the member of IF-THEN rules, and

hi(θ(t)) =
ωi(θ(t))

r∑
i=1

ωi(θ(t))
, ωi(θ(t)) =

g∏
j=1

W i
j (θj(t)),

W i
j (θj(t)) is the grade membership value of θj(t) in W i

j and hi(θ(t)) satisfies

hi(θ(t)) ≥ 0,
r∑

i=1

hi(θ(t)) = 1.

For notational simplicity, we use hi to represent hi(θ(t)) in the following description.
In this paper, the sensors are time-driven, the controller and actuators are event-driven. A

proposed framework of System (1) is shown in figure ??. The role of the networked synchronizer
is to evaluate the premises employed in (1). Due to the network impact, the premise variables for
the control rules in the controller side are θ(t−τ(t)), where 0 ≤ τ(t) ≤ τ2 is the network-induced
delay. To design the PDC control rules, if we use θ(t − τ(t)) as the premise variables, wherein
the resulting time scale will be different from that in (1), which may lead to some problems,
such ad different membership function expression in the derivation of the main result. To avoid
this problems, in the following, we propose a model-based method for the re-construction of
the premises in the control rule design.

From the above assumption on the System (1), when the initial condition is given, the state
of the state of the system can be calculated based on the system Model (1). Since dk is known
by the networked synchronizer, based on the system Model (1), we can compute x(t − τ(t)).
Based on the above analysis, the premise synchronizer included in Fig. 1 can derive the premises
θ(t − τ(t)) in controller side.

Fig. 1. A General Framework of System

If we do not consider the unreliable communication channels, that is, only the network-
induced delay from sensor to controller and controller to actuator are considered, from the
above assumption, the ikh controller rule can be naturally designed as

Ri : If θ1(t − τ(t)) is W i
1 and, · · ·, if θg(t − τ(t)) is W i

g,

then u(t) = Kjx(t − τ(t))
(2)
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Based on the above description, the defuzzified output of controller rule (2) is designed as

u(t) =
r∑

j=1

hj(θ(t))Kjx(t − τ(t)). (3)

Consider the unreliable channel from controller to actuator, (3) can be described as

u(t) =
r∑

j=1

hjΞKjx(k − τ(t)), (4)

where Ξ = diag{Ξ1, Ξ2, · · · , Ξm} with Ξi (i = 1, 2, · · · , m) being m unrelated random variables
taking values on the interval [0, ρ1], where ρ1 ≥ 1, the mathematical expectation and variance
of Ξi (i = 1, 2, · · · , m) are αi and δ2

i .

Remark 1. In [5, 15–17], the random variables γk taking values in{0, 1} represent the mean-
ing of completely failure or not. In [5, 16], the authors assume that the random variables γk

taking values in the interval [0, 1], when 0 ≤ γk ≤ 1, it means partial failure. In this paper,
we assume that the variables Ξi belongs to the interval [0, ρ1] with ρ1 ≥ 1. For Ξj = 0, it
means failure of the j-th actuator or packet loss during the transmission from controller to
actuator, for Ξj = 1, it means that the j-th actuator is in good working condition. Different
from [5,15–17], we also consider data distortion of the sensors and actuators. As is known,
when the sensors or actuators have faults, the output signal maybe larger or smaller than what
it should be. Considering this, we use 0 < Ξi < 1 and Ξi > 1, to represent the condition of
data distortion.

Assumption 1. The distribution of the time-varying delay τ(t) can be obtained, and for a
constant τ1 ∈ [0, τ2], the probability of τ(t) ∈ [0, τ1) and τ(t) ∈ [τ1, τ2] can be known.

Define two functions

τ1(t) =
{

τ(t), for τ(t) ∈ [0, τ1),
0, for τ(t) ∈ [τ1, τ2],

(5)

τ2(t) =
{

τ(t), for τ(t) ∈ [τ1, τ2],
τ1, for τ(t) ∈ [0, τ1).

(6)

In order to employ the information of the probabilistic information of the stochastic delay,
a stochastic variable β(t) is defined as

β(t) =
{

1, τ(t) ∈ [0, τ1),
0, τ(t) ∈ [τ1, τ2].

(7)

Assumption 2. β(t) is a Bernoulli distributed sequence with

Prob{β(t) = 1} = E{β(t)} = β0, Prob{β(t) = 0} = 1 − E{β(t)} = 1 − β0, (8)

where 0 ≤ β0 ≤ 1 is a constant, and β(t) is unrelated with Ξi (i = 1, 2, · · · , m).
Using β(t), System (4) can be rewritten as

u(t) =
r∑

j=1

hjβ(t)ΞKjx(k − τ1(t)) +
r∑

j=1

hj(1 − β(t))ΞKjx(k − τ2(t)). (9)
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Substituting (9) into (1), we obtain

ẋ(t) =
r∑

i=1

r∑
j=1

hihj

[
Aix(t) + β(t)BiΞKjx(k − τ1(t)) + (1 − β(t))BiΞKjx(k − τ2(t))

]

=
r∑

i=1

r∑
j=1

hihj

[
Aix(t) + β(t)BiΞKjx(k − τ1(t)) + (1 − β(t))BiΞKjx(k − τ2(t))

+ β(t)Bi(Ξ − Ξ)Kjx(k − τ1(t)) + (1 − β(t))Bi(Ξ − Ξ)Kjx(k − τ2(t))
]
, (10)

where

Ξ = diag {α1, · · · , αm} =
m∑

i=1

αiCi, Ci = diag {0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i

.

From above discussion, we can obtain E{
(Ξ1 − Ξ1)2

}
= diag {δ2

1 , · · · , δ2
m}.

The following Lemmas and Definitions are needed in the proof of our main results.

Definition 1[7]. For a given function V : Cb
F0

([−d2, 0], Rn) × S, its infinitesimal operator L
is defined as

LV (η(k)) = lim
Δ→0+

1
Δ

[E(V (ηk+Δ)|ηk) − v(ηk)
]
.

Definition 2. The System (10) is said to be exponentially mean-square stable (EMSS) if, for
any initial condition φ(i) ∈ R

n, i = −d2, −d2 + 1, · · · , 0, there exist constants α > 0, β > 0
such that the following condition holds,

E
{ ∞∑

k=0

XT (k)X(k)
}
≤ αe−βt sup

−d2≤i≤0
E{φT (i)φ(i)}.

Lemma 1[13]. Suppose Ω1,Ω2, and Ω are constant matrices of appropriate dimensions. Then

τ1(t)Ω1 + (τ1 − τ1(t))Ω2 + (τ2(t) − τ1)Ω3 + (τ2 − τ2(t))Ω4 + Ω < 0 (11)

is true for any τ1(t) ∈ [0, τ1), τ2(t) ∈ [τ1, τ2], if and only if

τ1Ω2 + (τ2 − τ1)Ω4 + Ω < 0, (12)
τ1Ω2 + (τ2 − τ1)Ω3 + Ω < 0, (13)
τ1Ω1 + (τ2 − τ1)Ω4 + Ω < 0, (14)
τ1Ω1 + (τ2 − τ1)Ω3 + Ω < 0. (15)

3 Main Result

The following theorem can be obtained for the System (10) with the fuzzy reliable controller
(9).

Theorem 1. For given scalars τ1, τ2 and matrix Kj (j ∈ S), the System (10) is EMSS if
there exist matrices P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, Nij, Mij, Vij and Sij (i, j ∈ S)
with appropriate dimensions such that the following matrix inequalities hold for i, j = 1, 2, · · · , r
and 1 ≤ i ≤ j ≤ r.

Ψs(i, j) + Ψs(i, j) < 0, s = 1, 2, 3, 4, (16)
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where

Ψs(i, j) =

⎡
⎢⎣

Ω11(i, j) + Γ(i, j) + ΓT (i, j) ∗ ∗ ∗
Ω21(i, j) Ω22 ∗ ∗
Ω31(i, j) 0 Ω33 ∗
Ωs

41(i, j) 0 0 Ω44

⎤
⎥⎦

and

Ω11(i, j) =

⎡
⎢⎢⎢⎢⎣

PAi + AT
i P + Q1 + Q2 ∗ ∗ ∗ ∗

β0K
T
j Ξ

T
BT

i P 0 ∗ ∗ ∗
0 0 −Q1 ∗ ∗
0 0 0 0 ∗

(1 − β0)KT
j Ξ

T
BT

i P 0 0 0 −Q2

⎤
⎥⎥⎥⎥⎦

,

Ω21(i, j) =

⎡
⎢⎢⎣

√
β0τ1R1Ai

√
β0τ1R1BiΞKj 0 0 0√

(1 − β0)τ1R1Ai 0 0
√

(1 − β0)τ1R1BiΞKj 0√
β0τ21R2Ai

√
β0τ21R2BiΞKj 0 0 0√

(1 − β0)τ21R2Ai 0 0
√

(1 − β0)τ21R2BiΞKj 0

⎤
⎥⎥⎦ ,

Ω31(i, j) =

⎡
⎢⎣

0
√

β0Υ1 0 0 0
0

√
β0Υ2 0 0 0

0 0 0
√

1 − β0Υ1 0
0 0 0

√
1 − β0Υ2 0

⎤
⎥⎦ ,

Υ1 =

⎡
⎢⎢⎣

√
τ1δ1R1BiC1Kj√
τ1δ2R1BiC2Kj

...√
τ1δmR1BiCmKj

⎤
⎥⎥⎦ , Υ2 =

⎡
⎢⎢⎣

√
τ21δ1R2BiC1Kj√
τ21δ2R2BiC2Kj

...√
τ21δmR2BiCmKj

⎤
⎥⎥⎦ ,

Ω1
41(i, j) =

[ √
τ1N

T
ij√

τ21V
T
ij

]
, Ω2

41(i, j) =
[ √

τ1N
T
ij√

τ21S
T
ij

]
,

Ω3
41(i, j) =

[ √
τ1M

T
ij√

τ21V
T
ij

]
, Ω4

41(i, j) =
[√

τ1M
T
ij√

τ21S
T
ij

]
,

Γ(i, j) = [ Nij −Nij + Mij −Mij + Vij −Vij + Sij −Sij ] ,
Ω22 = daig {−R1,−R1,−R2,−R2}, Ω44 = daig{−R1,−R2},
Ω33 = daig {−R1, · · · ,−R1︸ ︷︷ ︸

m

,−R2, · · · ,−R2︸ ︷︷ ︸
m

,−R1, · · · ,−R1︸ ︷︷ ︸
m

,−R2, · · · ,−R2︸ ︷︷ ︸
m

}, τ21 = τ2 − τ1

Proof.
Construct a Lyapunov functional candidate as

V (t) = V1(t) + V2(t) + V3(t), (17)

where

V1(t) = xT (t)Px(t),

V2(t) =
∫ t

t−τ1

xT (s)Q1x(s)ds +
∫ t

t−τ2

xT (s)Q2x(s)ds,

V3(t) =
∫ t

t−τ1

∫ t

s

ẋT (v)R1ẋ(v)dvds +
∫ t−τ1

t−τ2

∫ t

s

ẋT (v)R2ẋ(v)dvds.

Using the infinitesimal operator and taking expectation for the Lyapunov functional, we
obtain

E{LV (t)}
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=E
{ r∑

i=1

r∑
j=1

hihj2xT (t)P
[
Aix(t) + β0BiΞKjx(t − τ1(t)) + (1 − β0)BiΞKjx(t − τ2(t))

]

+ xT (t)(Q1 + Q2)x(t) − xT (t − τ1)Q1x(t − τ1) − xT (t − τ2)Q2x(t − τ2)

+ ẋT (t)(τ1R1 + τ21R2)ẋ(t) −
∫ t

t−τ1

ẋT (s)R1ẋ(s)ds −
∫ t−τ1

t−τ2

ẋT (s)R2ẋ(s)ds
}

. (18)

Notice that

E{ẋT (t)R̃ẋ(t)} ≤
r∑

i=1

r∑
j=1

hihj

{
β0[Aix(t) + BiΞKjx(t − τ1(t))]T R̃[Aix(t) + BiΞKjx(t − τ1(t))]

+ (1 − β0)
[
Aix(t) + BiΞKjx(t − τ2(t))

]T
R̃

[
Aix(t) + BiΞKjx(t − τ2(t))

]

+
m∑

l=1

δ2
l β0x

T (t − τ1(t))(BiClKj)T R̃(BiClKj)x(t − τ1(t))

+
m∑

l=1

δ2
l (1 − β0)xT (t − τ2(t))(BiClKj)T R̃(BiClKj)x(t − τ2(t))

}
, (19)

where R̃ = τ1R1 + τ21R2.
Employing the free-weighting matrices Mij , Nij , Vij , Sij (i, j ∈ S), we can obtain

r∑
i=1

r∑
j=1

hihj

{
2ξT (t)Nij

[
x(t) − x(t − τ1(t)) −

∫ t

t−τ1(t)

ẋ(s)ds
]}

= 0, (20)

r∑
i=1

r∑
j=1

hihj

{
2ξT (t)Mij

[
x(t − τ1(t)) − x(t − τ1) −

∫ t−τ1(t)

t−τ1

ẋ(s)ds
]}

= 0, (21)

r∑
i=1

r∑
j=1

hihj

{
2ξT (t)Vij

[
x(t − τ1) − x(t − τ2(t)) −

∫ t−τ1

t−τ2(t)

ẋ(s)ds
]}

= 0, (22)

r∑
i=1

r∑
j=1

hihj

{
2ξT (t)Sij

[
x(t − τ2(t)) − x(t − τ2) −

∫ t−τ2(t)

t−τ2

ẋ(s)ds
]}

= 0, (23)

where ξT (k) = [ xT (t) xT (t − τ1(t)) xT (t − τ1) xT (t − τ2(t)) xT (t − τ2) ] and Nij , Mij ,
Vij , Sij are matrices with appropriate dimensions and

− 2ξT (t)Nij

∫ t

t−τ1(t)

ẋ(s)ds ≤ τ1(t)ξT (t)NijR
−1
1 NT

ijξ(t) +
∫ t

t−τ1(t)

ẋT (s)R1ẋ(s)ds, (24)

− 2ξT (t)Mij

∫ t−τ1(t)

t−τ1

ẋ(s)ds ≤ (τ1 − τ1(t))ξT (t)MijR
−1
1 MT

ijξ(t) +
∫ t−τ1(t)

t−τ1

ẋT (s)R1ẋ(s)ds,
(25)

− 2ξT (t)Vij

∫ t−τ1

t−τ2(t)

ẋ(s)ds ≤ (τ2(t) − τ1)ξT (t)VijR
−1
2 V T

ij ξ(t) +
∫ t−τ1

t−τ2(t)

ẋT (s)R2ẋ(s)ds,
(26)

− 2ξT (t)Sij

∫ t−τ2(t)

t−τ2

ẋ(s)ds ≤ (τ2 − τ2(t))ξT (t)SijR
−1
2 ST

ijξ(t) +
∫ t−τ2(t)

t−τ2

ẋT (s)R2ẋ(s)ds.
(27)

Combining (19)–(27) and using Schur complement, from (18), we obtain

E{LV (t)} ≤
r∑

i=1

r∑
j=1

hihj

{
ξT (t)

[
Ω11(i, j) + Γ(i, j) + ΓT (i, j)

]
ξ(t)
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+ β0

[
Aix(t) + BiΞKjx(t − τ1(t))

]T
R̃

[
Aix(t) + BiΞKjx(t − τ1(t))

]

+ (1 − β0)
[
Aix(t) + BiΞKjx(t − τ2(t))

]T
R̃

[
Aix(t) + BiΞKjx(t − τ2(t))

]

+
m∑

l=1

δ2
l β0x

T (t − τ1(t))(BiClKj)T R̃(BiClKj)x(t − τ1(t))

+
m∑

l=1

δ2
l (1 − β0)xT (t − τ2(t))(BiClKj)T R̃(BiClKj)x(t − τ2(t))

+ τ1(t)ξT (t)NijR
−1
1 NT

ijξ(t) + (τ1 − τ1(t))ξT (t)MijR
−1
1 MT

ijξ(t)

+ (τ2(t) − τ1)ξT (t)VijR
−1
2 V T

ij ξ(t) + (τ2 − τ2(t))ξT (t)SijR
−1
2 ST

ijξ(t)
}

. (28)

By using Schur complement and Lemma 1, we can conclude that (16) is the sufficient
condition to guarantee

E{LV (t)} ≤ 0. (29)

Then, using the Lyapunov stability theory, we can obtain that the System (10) under the fuzzy
reliable controller (9) is EMSS. �

In the following, we will focus on designing the fuzzy reliable controller (9) to stabilize
System (10) with stochastic actuators fault and random delays.

Theorem 2. For given scalars τ1, τ2, ε1 and ε2, System (10) under fuzzy reliable controller
(9) is EMSS if there exist matrices X > 0, Q̂1 > 0, Q̂2 > 0, N̂ij, M̂ij, Vij and Sij

(i, j ∈ S) with appropriate dimensions such that the following linear matrix inequalities hold for
i, j = 1, 2, · · · , r and 1 ≤ i ≤ j ≤ r,

Φs(i, j) + Φs(i, j) < 0, s = 1, 2, 3, 4, (30)

where

Φs(i, j) =

⎡
⎢⎢⎣

Ω11(i, j) + Γ(i, j) + Γ
T
(i, j) ∗ ∗ ∗

Ω21(i, j) Ω22 ∗ ∗
Ω31(i, j) 0 Ω33 ∗
Ω

s

41(i, j) 0 0 Ω44

⎤
⎥⎥⎦

and

Ω11(i, j) =

⎡
⎢⎢⎢⎢⎣

AiX + XAT
i + Q̂1 + Q̂2 ∗ ∗ ∗ ∗

β0Y
T
j Ξ

T
BT

i 0 ∗ ∗ ∗
0 0 −Q̂1 ∗ ∗
0 0 0 0 ∗

(1 − β0)Y T
j Ξ

T
BT

i 0 0 0 −Q̂2

⎤
⎥⎥⎥⎥⎦

,

Γ(i, j) =
[
N̂ij −N̂ij + M̂ij −M̂ij + V̂ij −V̂ij + Ŝij −Ŝij

]
,

Ω21(i, j) =

⎡
⎢⎢⎣

√
β0τ1AiX

√
β0τ1BiΞYj 0 0 0√

(1 − β0)τ1AiX 0 0
√

(1 − β0)τ1BiΞYj 0√
β0τ21AiX

√
β0τ21BiΞYj 0 0 0√

(1 − β0)τ21AiX 0 0
√

(1 − β0)τ21BiΞYj 0

⎤
⎥⎥⎦ ,

Ω22(i, j) = diag {−2ε1X + ε2
1R̂1,−2ε1X + ε2

1R̂1,−2ε2X + ε2
1R̂2,−2ε2X + ε2

1R̂2},

Ω31(i, j) =

⎡
⎢⎢⎣

0
√

β0τ1Υ̂ 0 0 0
0

√
β0τ21Υ̂ 0 0 0

0 0 0
√

(1 − β0)τ1Υ̂ 0
0 0 0

√
(1 − β0)τ21Υ̂ 0

⎤
⎥⎥⎦ , Υ̂ =

⎡
⎢⎢⎣

δ1BiC1Yj

δ2BiC2Yj

...
δmBiCmYj

⎤
⎥⎥⎦ ,
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Ω33(i, j) = diag {Υ3, Υ4, Υ3, Υ4}, Ω44 = diag {−R̂1,−R̂2},
Υ3 = −2ε1X + ε2

1R̂1, · · · ,−2ε1X + ε2
1R̂1︸ ︷︷ ︸

m

, Υ4 = −2ε2X + ε2
1R̂2, · · · − 2ε2X + ε2

1R̂2︸ ︷︷ ︸
m

,

Ω
s

41(i, j) =
[ √

τ1N̂
T
ij√

τ21V̂
T
ij

]
, Ω

2

41(i, j) =
[ √

τ1N̂
T
ij√

τ21Ŝ
T
ij

]
,

Ω
3

41(i, j) =
[ √

τ1M̂
T
ij√

τ21V̂
T
ij

]
, Ω

4

41(i, j) =
[√

τ1M̂
T
ij√

τ21Ŝ
T
ij

]
,

then, the System (10) can be stabilized by control law (9), and the controller gain is Kj = YjX
−1.

Proof. Defining X = P−1, and XQ1X = Q̂1, XQ2X = Q̂2, XR1X = R̂1, XR2X = R̂2,
diag {X, X, X, X}Nijdiag{X, X, X, X} = N̂ij , diag {X, X, X, X}Mijdiag {X, X, X, X} = M̂ij ,
KjX = Yj .

By Schur complement, Equation (16) is equivalent to

Ψ̃s(i, j) + Ψ̃s(i, j) < 0, s = 1, 2, 3, 4, (31)

where

Ψs(i, j) =

⎡
⎢⎢⎣

Ω11(i, j) + Γ(i, j) + ΓT (i, j) ∗ ∗ ∗
Ω̃21(i, j) Ω̃22 ∗ ∗
Ω̃31(i, j) 0 Ω̃33 ∗
Ωs

41(i, j) 0 0 Ω44

⎤
⎥⎥⎦

and

Ω̃21(i, j) =

⎡
⎢⎢⎣

√
β0τ1PAi

√
β0τ1PBiΞKj 0 0 0√

(1 − β0)τ1PAi 0 0
√

(1 − β0)τ1PBiΞKj 0√
β0τ21PAi

√
β0τ21PBiΞKj 0 0 0√

(1 − β0)τ21PAi 0 0
√

(1 − β0)τ21PBiΞKj 0

⎤
⎥⎥⎦ ,

Ω̃31(i, j) =

⎡
⎢⎢⎣

0
√

β0Υ̃1 0 0 0
0

√
β0Υ̃2 0 0 0

0 0 0
√

1 − β0Υ̃1 0
0 0 0

√
1 − β0Υ̃2 0

⎤
⎥⎥⎦ ,

Υ̃1 =

⎡
⎢⎢⎢⎣

√
τ1PBiC1Kj√
τ1PBiC2Kj

...√
τ1PBiCmKj

⎤
⎥⎥⎥⎦ , Υ̃2 =

⎡
⎢⎢⎢⎣

√
τ21PBiC1Kj√
τ21PBiC2Kj

...√
τ21PBiCmKj

⎤
⎥⎥⎥⎦

Ω̃22 = daig {−PR−1
1 P,−PR−1

1 P,−PR−1
2 P,−PR−1

2 P},
Ω̃33 = daig {−PR−1

1 P, · · · ,−PR−1
1 P︸ ︷︷ ︸

m

,−PR−1
2 P, · · · ,−PR−1

2 P︸ ︷︷ ︸
m

,

−PR−1
1 P, · · · ,−PR−1

1 P︸ ︷︷ ︸
m

,−PR−1
2 P, · · · ,−PR−1

2 P︸ ︷︷ ︸
m

}.

Owing to
−PR−1

i P ≤ −2εiP + ε2
i Ri, i = 1, 2, (32)

we have (31) holds if the following equation holds:

Ψ̌s(i, j) + Ψ̌s(i, j) < 0, s = 1, 2, 3, 4, (33)
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where Ψ̌s(i, j) is obtained by replacing −PR−1
i P with −2εiP + ε2

i Ri.
Then, pre and post multiplying (33) with

diag {X, · · · , X︸ ︷︷ ︸
11+4m

}

then, (30) can be obtained. �

4 Example

To illustrate the effectiveness of the proposed method, consider the T-S fuzzy systems (1) are
described as

A1 =
[

0.1 0
0 −0.1

]
, A2 =

[
0.05 0
0 −0.1

]
, B1 = B2 =

[−1
1

]
.

To illustrate the effectiveness of the proposed method, the following two cases are considered.

Case 1. Without considering the stochastic actuators fault that is, Ξ = 1, δ1 = 0, and
setting ε1 = ε2 = 1, β0 = 0.8, τ1 = 0.1, τ2 = 0.5, based on the Theorem 2, we can obtain the
following controller gains to guarantee the System (1) is EMSS.

{
K1 = [0.5252 − 0.2375],
K2 = [0.4884 − 0.2475].

(34)

With the initial x0 = [−0.5 0.5]T , the time responses of the system states are shown in Fig.
2.

Fig. 2. The State Responses Under Controller Feedback Gain (34)

Case 2. Considering the stochastic actuators fault, set Ξ = 0.7, δ1 = 0.1, and ε1 = ε2 = 1,
β0 = 0.8, τ1 = 0.1, τ2 = 0.5, based on the Theorem 2, we can obtain the following controller
gains to guarantee the System (1) is EMSS.

{
K1 = [0.7440 − 0.3356],
K2 = [0.6915 − 0.3498]

(35)

With the initial x0 = [−0.5 0.5]T , the time responses of the system states are shown in
Fig.3.
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Fig.3. The State Responses Under Controller Feedback Gain (35)

5 Conclusion

This paper considers reliable control design for T-S fuzzy systems with probabilistic actuator
failures and random delays. The fault of each actuator occurs in a random way and their failure
rates are governed by a set of unrelated random variables satisfying certain probabilistic distri-
bution. In terms of the probabilistic failures of every actuator and random time-varying delays,
new model is proposed. By using Lyapunov functional method and linear matrix inequality
technique, sufficient conditions for the EMSS of T-S fuzzy systems are obtained. An example
with simulation results has been carried out to demonstrate the effectiveness of the proposed
method.
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