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Abstract: This study investigates controller design for networked control systems under hybrid driven scheme. A hybrid driven
communication scheme is proposed, which can improve the system performance and reduce the network transmission. A
Bernoulli distributed stochastic variable is introduced to describe the switch law of the communication scheme. A general
system model under hybrid driven scheme is then constructed. Based on this model, sufficient conditions are derived to
guarantee the desired system performance. Furthermore, criteria for co-designing both the feedback gain and the trigger
parameters are established. Finally, simulation results show the usefulness of the proposed method.

1 Introduction
Due to the advantages of flexible architectures, low installation and
maintenance cost, networked control systems (NCSs) have been
employed in some fields such as intelligent manufacturing control
systems, DC motor systems, smart grid and so on [1–6]. Different
from the traditional point-to-point hard wiring connection, the
components of the NCSs, such as sensors, controllers and
actuators, are connected over a communication network medium.
Due to the insertion of the network, some challenges are also met
due to the network-induced imperfections. The communication
network transmission is not always reliable, resulted by the
existing network-induced delays, data packet dropout and noise
interference, which may lead to performance degradation or even
instability of an NCSs. Fortunately, there has been some effective
control strategies proposed to deal with the above problems [7–10].

With respect to the constraints in the NCSs, most available
results adopted a time-triggered control method for system
modelling and analysis, whose communication interval is designed
a priori to reduce the complexity for the easy implementation and
analysis. The drawback of this strategy is that it does not consider
efficient usage of limited communication resources. In this
triggering method, a fixed sampling interval should be selected to
ensure a desired performance under worst conditions such as
channel bandwidth, capacity, and external disturbances in the
network environment. In order to avoid the unnecessary waste of
network resources, a discrete event-triggered scheme has been
proposed in [11], in which the transmitted signal must satisfy
certain conditions. A considerable amount of the network resource
occupancy can be saved while maintaining the guaranteed control
performance. Recently, event-triggered scheme has motivated lots
of interesting research, leading a growing number of significant
publications [12–19]. For instance, the problem of event-triggered
output-feedback ܪ∞ control for NCSs with non-uniform sampling
is investigated, the stability and synthesis conditions are presented
to guarantee the uniform ultimate bounded stability and the desired
performance [16]. A systematic approach to the understanding,
analysis and design of the event-based filters for time-varying
systems with fading channels and multiplicative noise is provided
in [17]. An event-based ܪ∞ filter design for a class of T–S fuzzy
systems with stochastic sensor faults is studied, sufficient
conditions are established to ensure the filtering error system
exponentially stable in the mean square [18]. Compared with the
time-triggered communication scheme, the event triggered schemes

provides a useful way to improve the communication efficiency.
However, most of the above mentioned event triggered schemes
are always at the expense of system performance, it should often
get a balance between the amount of communication and the
system performance. Method for optimising data transmission in
the NCSs is still a challenge problem. In practical systems,
utilisation of the communication bandwidth is not always high, in a
certain period of time, the information transmission can be less. As
to this system, neither the method of the event triggered scheme
nor the time triggered scheme can ensure the best system
performance. How to deal with this situation adequately is still a
challenge problem. The aim of this study is to shorten such a gap.

In this note, we aim to provide a hybrid driven communication
scheme for NCSs with network-induced delays. The contribution
of the paper is as follows: (i) In order to obtain the desired system
performance and make full use of the network bandwidth, two
separate communication channels can be switched between the
sensor and the controller. The event triggered communication
channel will be selected when the transmission line bandwidth is
over occupied, otherwise, we can switch to the other channel. (ii) A
Bernoulli distributed stochastic variable is introduced to describe
the switch of the two channels. (iii) Under the hybrid event-
triggering scheme, a general system model with communication
delay is established. Based on the model, criteria for the stability
and controller design are derived in the form of linear matrix
inequality.

The paper is organised as follows. Section 2 is the problem
formulation. Main results are presented in Section 3. A simulation
example is presented in Section 4 to demonstrate the main results
obtained. Finally, the paper is concluded in Section 5.

Notation: ℝ݊ and ℝ݊ ×݉ denote the n-dimensional Eculidean
space, and the set of ݊ ×݉ real matrices; the superscript ‘ T’
stands for matrix transposition; ܫ is the identity matrix of
appropriate dimension; the notation ܺ > 0 (respectively, ܺ ≥ 0),
for ܺ ∈ ℝ݊ × ݊ means that the matrix ܺ is real symmetric positive
definite (respectively, positive semi-definite). For a matrix ܤ and
two symmetric matrices ܣ and ܥ,

ܣ ∗
ܤ ܥ

denotes a symmetric matrix, where ∗ denotes the entries implied
by symmetry.

IET Control Theory Appl., 2016, Vol. 10 Iss. 17, pp. 2279-2285
© The Institution of Engineering and Technology 2016

2279



2 System description
For the purpose of reducing data communication frequency,
designing two independent channels that work in different
frequencies is one method while we can control the whole channel
with a switch. In this section, we will model and design a
networked controller for NCSs. A networked control structure for
system (1) is shown in Fig. 1. 

Consider an NCS

(ݐ)ݔ̇ = (ݐ)ݔܣ + (ݐ)ݑܤ (1)

where (ݐ)ݔ ∈ ܴ݊ and (ݐ)ݑ ∈ ܴ݉ are the system state vector and
the control input, respectively. ܣ and ܤ are constant matrices with
appropriate dimensions. For further development, we give the
following assumptions, which are common in the NCS research in
the literature [20].

i. We assume that the sensors are time-triggered and all
measurement data packets are time stamped. The controller is
event driven and is triggered by the arrival of a measurement
data packet. The actuator has a logic zero order hold (ZOH).
Only if the time stamp of the packet is greater than that of the
packet currently stored in the ZOH, can the logic ZOH accept
the received control packet.

ii. The sensors, controller and actuators are connected through
unreliable network medium. There exists random network-
induced delay and packet dropout in both forward and
feedback channels.

iii. The communication strategy is assumed to be switched
between the time-triggered scheme and event-triggered scheme
depending on the needs of the system performance and the
capacity of network resources.

iv. We assume the distribution of the random networked delay and
packet dropout can be observed. Only the network-induced
delay from sensor to controller and controller to actuator are
considered,

First, in one of the two channels, we consider the case when the
system (1) is in the networked environments with quality-of-
service (QoS) constraints, i.e. the selecting switch turn to ‘time
driven’, the controller can be described as [21, 22]

(ݐ)ݑ = ,(ℎ݇ݐ)ݔܭ ݐ ∈ ℎ݇ݐ] + ,݇ݐ߬ +݇ݐ 1ℎ + +݇ݐ߬ 1
) (2)

where ℎ is the sampling period, ݇ݐℎ are the instants when the
control signal reaches the ZOH, ߬݇ݐ is the communication delay,
and {1ݐ, ,2ݐ ,3ݐ …} ⊂ {1, 2, 3, …}. It is easy to see that the holding
interval of the ZOH are Ω = ℎ݇ݐ] + ,݇ݐ߬ +݇ݐ 1ℎ + +݇ݐ߬ 1

).
Define the network allowable equivalent delay (ݐ)ߟ = ݐ − ,ℎ݇ݐ

(2) can be rewritten as

(ݐ)ݑ = ݐ)ݔܭ − ,((ݐ)ߟ ݐ ∈ ℎ݇ݐ] + ,݇ݐ߬ +݇ݐ 1ℎ + +݇ݐ߬ 1
) (3)

where (ݐ)ߟ ∈ ,0ߟ] .[1ߟ
In order to save the network resources and improve the system

performance, an event-triggered scheme is introduced to the other
channel, which can decide whether or not the sampled-data should
be transmitted. We define event generator function as follows:

(ߪ,(ℎ݇ݐ)݁)݂ = ݁T(݇ݐℎ)Ω݁(݇ݐℎ)− (ℎ݆݇݅)ݔT(݆݅݇ℎ)Ωݔߪ (4)

where ݁(݇ݐℎ) = −(ℎ݇ݐ)ݔ ℎ݆݇݅ ,(ℎ݆݇݅)ݔ = ℎ݇ݐ + ݆ℎ, ݔ(݇ݐℎ) is
latest transmitted sampling data. ݆݅݇ℎ is the current sampling data.
The newly sampled data will be sent to the controller as long as the
condition

(ߪ,(ℎ݇ݐ)݁)݂ ≤ 0 (5)

is violated. Under this circumstance, similar to [14], the holding
interval of the ZOH ݐ ∈ Ω are divided into sampling-interval-like
subsets Ω = ⋃݇ = 1

∞ [݆݅݇ℎ + ,݇ݐ߬ ݅݇
݆ℎ + ℎ + +݇ݐ߬ 1

), ݆ = 0,…, +݇ݐ 1− ݇ݐ
−1. Define ݀(ݐ) = ݐ − ݆݅݇ℎ, It is clear that
0 < (ݐ)݀ < ℎ + +݇ݐ߬ 1

≜ Then, the control of (2) is .ܯ݀

(ݐ)ݑ = ݐ)ݔ]ܭ − ((ݐ)݀ + ,[(ℎ݇ݐ)݁ ݐ ∈ ℎ݇ݐ] + ,݇ݐ߬ +݇ݐ 1ℎ + +݇ݐ߬ 1
)

(6)

 
Remark 1: NCSs have widespread applications in the fields of

power systems and teleoperation systems and so on, a plenty of
important results have been reported in [1–6]. It is to note that
continuous communication can lead a waste of energy. To remove
the quality of communication and reduce the communication cost,
researchers have begun to investigate the systems under event-
triggered scheme [3, 10, 11, 13, 14]. On the basis of the existing
results, we investigate the hybrid-driven-based stabilisation for
NCSs.

According to the analysis of the two channels above, the
following discussed system model is constructed: (see (7)) 

where (ݐ)ߙ is a Bernoulli distributed stochastic variable with
Prob{(ݐ)ߙ = 1} = (ݐ)ߙ}and Prob ߙ̄ = 0} = 1− The .ߙ̄
mathematical variance of (ݐ)ߙ is 2ߜ. For system (7), we supplement
the initial condition of the state (ݐ)ݔ on [− ݀̄; 0] as
(ݐ)ݔ = ;(ݐ)߶ ݐ ∈ [− ݀̄; 0], where ߶(ݐ) is a continuous function on
[− ݀̄; 0], −݀̄ = max .{ܯ݀,1ߟ}

 
Remark 2: The sojourn probability ̄ߙ can be obtained through

the following statistical method:

ߙ̄ = lim݊ → ∞
݇݅
݊ (8)

where ݇݅,݊ ∈ ܼ+, ݇݅ is the times of ߙ = 1 in the interval [1,݊].
 
Remark 3: From the above analysis, the event triggered scheme

(5) can be rewritten as

݁T(݇ݐℎ)Ω݁(݇ݐℎ)− ݐ)Tݔߪ − ݐ)ݔΩ((ݐ)݀ − ((ݐ)݀ ≤ 0 (9)

which will be useful in the stability analysis of the system (7)
later.

 
Remark 4: In this paper, the sojourn probability in each channel

is assumed to be known a prior, i.e. Pr{(ݐ)ߙ = 1} = When .ߙ̄
(ݐ)ߙ = 1, the system (7) becomes ̇(ݐ)ݔ = (ݐ)ݔܣ + ݐ)ݔܭܤ − ,(ݐ)ߟ

Fig. 1  Structure of hybrid driven NCS
 

(ݐ)ݔ̇ = (ݐ)ݔܣ + ݐ)ݔܭܤ(ݐ)ߙ − ((ݐ)ߟ
+(1− ݐ)ݔ]ܭܤ((ݐ)ߙ − ((ݐ)݀ + ,[(ℎ݇ݐ)݁ ݐ ∈ ℎ݇ݐ] + ,݇ݐ߬ +݇ݐ 1ℎ + +݇ݐ߬ 1

) (7)
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which means the system is under time driven scheme; when
(ݐ)ߙ = 0, the system (7) becomes
(ݐ)ݔ̇ = (ݐ)ݔܣ + ݐ)ݔ]ܭܤ − ((ݐ)݀ + which means the ,[(ℎ݇ݐ)݁
system is under event-triggered scheme. In other words, the system
(7) is a more general model.

 
Remark 5: Different from the existing networked control

systems, there are two schemes can be selected to guarantee a
desired performance in this paper. When the signal transmitted in
the closed-loop system can always be obtained consecutively and
perfectly, (ݐ)ߙ = 1 happen. Otherwise, When networked delay/
packet dropout, network congestion and network disturbance
happen, which lead to intolerable performance degradation and
even instability, (ݐ)ߙ = 0 happen.

The objective of this paper is to design the controller for NCSs
based on two transmission channels. The following lemmas would
be employed in deriving our results.

 
Definition 1 ([23]): For a given function

0ܨܥ:ܸ

ܾ ([− ,ܯ߬ 0], ℝ݊) × ܵ, its infinitesimal operator ℒ is defined as

ℒ(ܸ(ݐ)ߟ) = lim
Δ → 0+

1
Δ[ॱ(ܸ(ݐߟ+ Δ)|ݐߟ)− [(ݐߟ)ܸ (10)

 
Lemma 1 ([24]): For any vectors ݕ ,ݔ ∈ ܴ݊, and positive

definite matrix ܳ ∈ ܴ݊ × ݊, the following inequality holds:

ݕTݔ2 ≤ +ݔTܳݔ ݕTܳ−1ݕ
 
Lemma 2 ([25]): Suppose (ݐ)ߟ ∈ ,0ߟ] (ݐ)݀ ,[1ߟ ∈ ,Ξ1, Ξ2 ,[ܯ݀,0]

Ξ3, Ξ4 and Ω are matrices with appropriate dimensions, then (see
(11)) 

if and only if

−1ߟ) Ξ1(0ߟ + Ξ3ܯ݀ + Ω < 0
−1ߟ) Ξ2(0ߟ + Ξ3ܯ݀ + Ω < 0
−1ߟ) Ξ1(0ߟ + Ξ4ܯ݀ + Ω < 0
−1ߟ) Ξ2(0ߟ + Ξ4ܯ݀ + Ω < 0

3 Main results
In this section, we will develop an approach for stability analysis
and controller synthesis of system (7).
 
Theorem 1: For given scalars ߪ ,ߜ ,ܯ݀ ,1ߟ ,0ߟ and ̄ߙ, system (7) is
asymptotically stable if there exist matrices ܲ > 0, ܳ݅ > 0,
ܴ݅ > 0(݅ = 1, 2, 3), Ω > 0, and ܯ, ܰ, ܶ, ܵ with appropriate
dimensions such that for ݈ = 1, 2, 3, 4

Π(݈) =

Ω11 + Γ + ΓT ∗ ∗ ∗
Ω21 Ω22 ∗ ∗
Ω31 0 Ω33 ∗
Ω41(݈) 0 0 Ω44

< 0 (12)

where (see equation below)
 
Proof: Construct a Lyapunov–Krasovskii functional for system (7)

(ݐ)ܸ = (ݐ)1ܸ + (ݐ)2ܸ + (ݐ)3ܸ (13)

where

(ݐ)1ܸ = (ݐ)ݔܲ(ݐ)Tݔ

(ݐ)2ܸ 0ߟ−ݐ∫=
ݐ
(ݏ)ݔ1ܳ(ݏ)Tݔ dݏ

1ߟ−ݐ∫+
ݐ
(ݏ)ݔ2ܳ(ݏ)Tݔ

ܯ݀−ݐ∫+
ݐ
(ݏ)ݔ3ܳ(ݏ)Tݔ dݏ

(ݐ)3ܸ 1ߟ−ݐ∫=
ݐ − ݏ∫0ߟ

ݐ
(ݒ)ݔ1ܴ̇(ݒ)Tݔ̇ dݒ dݏ

0ߟ−ݐ∫0ߟ+
ݐ ݏ∫

ݐ
(ݒ)ݔ2ܴ̇(ݒ)Tݔ̇ dݒ dݏ

ܯ݀−ݐ∫+
ݐ ݏ∫

ݐ
(ݒ)ݔ3ܴ̇(ݒ)Tݔ̇ dݒdݏ

Taking the derivative of ܸ(ݐ) along the trajectory of the system (7),
taking its mathematical expectation and applying free weighing
matrix method [26, 27], we have (see (14)) 
where

ࣛ = (ݐ)ݔܣ + ݐ)ݔܭܤߙ̄ − ((ݐ)ߟ + (1− ݐ)ݔ)ܭܤ(ߙ̄ − ((ݐ)݀ + ((ݐ)݇݁

Γ1 = ܯ(ݐ)Tߞ2 ݐ)ݔ − −(0ߟ ݐ)ݔ − (ݐ)ߟ−ݐ∫−((ݐ)ߟ
ݐ − 0ߟ

(ݏ)ݔ̇ dݏ

Γ2 = ܰ(ݐ)Tߞ2 ݐ)ݔ − −((ݐ)ߟ ݐ)ݔ − 1ߟ−ݐ∫−(1ߟ
ݐ − (ݐ)ߟ

(ݏ)ݔ̇ dݏ

Γ3 = ܶ(ݐ)Tߞ2 −(ݐ)ݔ ݐ)ݔ − (ݐ)݀−ݐ∫−((ݐ)݀
ݐ

(ݏ)ݔ̇ dݏ

Γ4 = ܵ(ݐ)Tߞ2 ݐ)ݔ − −((ݐ)݀ ݐ)ݔ − ܯ݀−ݐ∫−(ܯ݀
ݐ − (ݐ)݀

(ݏ)ݔ̇ dݏ

in which ߞT(ݐ) = ݐ)Tݔ(ݐ)Tݔ] − ݐ)Tݔ(0ߟ − Tݔ((ݐ)ߟ
ݐ) − ݐ)Tݔ(1ߟ − ݐ)Tݔ((ݐ)݀ − ,T[(ℎ݇ݐ)T݁(ܯ݀
ܴ~ = −1ߟ) 1ܴ(0ߟ + 02ܴ2ߟ + 3ܴܯ݀
Note that

0ߟ−ݐ∫0ߟ−
ݐ
(ݏ)ݔ2ܴ̇(ݏ)Tݔ̇ dݏ

≤ (ݐ)ݔ
ݐ)ݔ − (0ߟ

T −ܴ2 ܴ2

ܴ2 −ܴ2

(ݐ)ݔ
ݐ)ݔ − (0ߟ

(15)

(ݐ)ߟ−ݐ∫ܯ(ݐ)Tߞ2−
ݐ − 0ߟ

(ݏ)ݔ̇ dݏ ≤ −(ݐ)ߟ) 1ܴܯ(ݐ)Tߞ(0ߟ
(ݐ)ߞTܯ1−

(ݐ)ߟ−ݐ∫+
ݐ − 0ߟ

(ݏ)ݔ1ܴ̇(ݏ)Tݔ̇ dݏ
(16)

1ߟ−ݐ∫ܰ(ݐ)Tߞ2−
ݐ − (ݐ)ߟ

(ݏ)ݔ̇ dݏ ≤ −1ߟ) 1ܴܰ(ݐ)Tߞ((ݐ)ߟ
−1ܰT(ݐ)ߞ

1ߟ−ݐ∫+
ݐ − (ݐ)ߟ

(ݏ)ݔ1ܴ̇(ݏ)Tݔ̇ dݏ
(17)

(ݐ)݀−ݐ∫ܶ(ݐ)Tߞ2−
ݐ

(ݏ)ݔ̇ dݏ ≤ 1ܴܶ(ݐ)Tߞ(ݐ)݀
−1ܶT(ݐ)ߞ

(ݐ)݀−ݐ∫+
ݐ

(ݏ)ݔ3ܴ̇(ݏ)Tݔ̇ dݏ
(18)

−(ݐ)1ߟ) Ξ1(0ߟ + −1ߟ) Ξ2((ݐ)ߟ + Ξ3(ݐ)݀ + ܯ݀) − Ξ4((ݐ)݀ + Ω < 0 (11)
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ܯ݀−ݐ∫ܵ(ݐ)Tߞ2−
ݐ − (ݐ)݀

(ݏ)ݔ̇ dݏ ≤ ܯ݀) − 1ܴܵ(ݐ)Tߞ((ݐ)݀
−1ܵT(ݐ)ߞ

ܯ݀−ݐ∫+
ݐ − (ݐ)݀

(ݏ)ݔ3ܴ̇(ݏ)Tݔ̇ dݏ
(19)

(ݐ)ݔ̇~ܴ(ݐ)Tݔ̇ = ࣛTܴ~ࣛ+ 2ℬTܴ~ℬߜ (20)

where ℬ = ݐ)ݔܭܤ − −((ݐ)ߟ ݐ)ݔܭܤ − −((ݐ)݀ (ℎ݇ݐ)݁ܭܤ
Combining (14)–(20) and (5), we have (see (21)) 
Applying Schur complements, it can be concluded that (12)
guarantees ॱ{ℒܸ(ݐ)} < 0 in (21). □

Based on Theorem 1, we are in a position to design the state
feedback controller for system (7).

 
Theorem 2: For given constants ߙ̄ ,ߜ ܯ݀ ,1ߟ ,0ߟ, and

,ݎߝ ݎ = 1, 2, 3, system (7) is asymptotically stable with state
feedback gain ܭ = ܻܺ−1, if there exist real matrices ܺ > 0, ܳ~݅ > 0,
ܴ~݅ > 0(݅ = 1, 2, 3), Ω~ > 0, and ܯ~, ܰ~, ܶ~, ܵ~ with appropriate
dimensions such that for ݈ = 1, 2, 3, 4

Π~(݈) =

Ω~11 + Γ~ + Γ~T ∗ ∗ ∗
Ω~21 Ω~22 ∗ ∗
Ω~31 0 Ω~33 ∗
Ω~41(݈) 0 0 Ω~44

< 0 (22)

where (see equation below)
 
Proof: Due to

(ܴ݅ − ܴ݅)1−ܴ݅(1ܲ−݅ߝ − (1ܲ−݅ߝ ≥ 0,

we can get

−ܴܲ݅−1ܲ ≤ − +ܲ݅ߝ2 2ܴ݅݅ߝ

Substituting −ܴܲ݅−1ܲ with −2ܲ݅ߝ+ 2ܴ݅ߝ (݅ = 1, 2, 3) into (12),
one can have

Ω11 =

Λ1 ∗ ∗ ∗ ∗ ∗ ∗
ܴ2 −ܳ1− ܴ2 ∗ ∗ ∗ ∗ ∗

TܲܤTܭߙ̄ 0 0 ∗ ∗ ∗ ∗
0 0 0 −ܳ2 ∗ ∗ ∗

(1− TܲܤTܭ(ߙ̄ 0 0 0 Ωߪ ∗ ∗
0 0 0 0 0 −ܳ3 ∗

(1− ܲܶܤܶܭ(ߙ̄ 0 0 0 0 0 −Ω
Λ1 = +ܣܲ +Tܲܣ ܳ1 + ܳ2 + ܳ3− ܴ2, Γ = ܶ ܯ +ܯ− ܰ −ܰ −ܶ+ ܵ −ܵ 0

Ω21 =
−1ߟ ܣ0ܲߟ 0 ߙ̄ −1ߟ ܭܤ0ܲߟ 0 (1− (ߙ̄ −1ߟ ܭܤ0ܲߟ 0 (1− (ߙ̄ −1ߟ ܭܤ0ܲߟ
ܣ0ܲߟ 0 ܭܤ0ܲߟߙ̄ 0 (1− ܭܤ0ܲߟ(ߙ̄ 0 (1− ܭܤ0ܲߟ(ߙ̄
ܣܲܯ݀ 0 ߙ̄ ܭܤܲܯ݀ 0 (1− (ߙ̄ ܭܤܲܯ݀ 0 (1− (ߙ̄ ܭܤܲܯ݀

Ω31 =
0 0 ߜ −1ߟ ܭܤ0ܲߟ 0 ߜ− −1ߟ ܭܤ0ܲߟ 0 ߜ− −1ߟ ܭܤ0ܲߟ
0 0 ܭܤ0ܲߟߜ 0 ܭܤ0ܲߟߜ− 0 ܭܤ0ܲߟߜ−
0 0 ߜ ܭܤܲܯ݀ 0 ߜ− ܭܤܲܯ݀ 0 ߜ− ܭܤܲܯ݀

Ω22 = Ω33 = diag{− ܴܲ1
−1ܲ, − ܴܲ2

−1ܲ, − ܴܲ3
−1ܲ}, Ω44 = diag{− ܴ1, − ܴ3}

Ω41(1) =
−1ߟ Tܯ0ߟ

Tܶܯ݀
, Ω41(2) =

−1ߟ Tܯ0ߟ

Tܵܯ݀
, Ω41(3) =

−1ߟ 0ܰTߟ

Tܶܯ݀
,

Ω41(4) =
−1ߟ 0ܰTߟ

Tܵܯ݀

Tܯ = 1ܯ
T 2ܯ

T 3ܯ
T 4ܯ

T 5ܯ
T 6ܯ

T 7ܯ
T T,

ܰT = ܰ1
T ܰ2

T ܰ3
T ܰ4

T ܰ5
T ܰ6

T ܰ7
T T

ܶT = ܶ1
T ܶ2

T ܶ3
T ܶ4

T ܶ5
T ܶ6

T ܶ7
T T,

ܵT = ܵ1T ܵ2T ܵ3T ܵ4T ܵ5T ܵ6T ܵ7T T

ॱ{ℒܸ(ݐ)} = +ࣛܲ(ݐ)Tݔ2̇ −(ݐ)ݔ1ܳ(ݐ)Tݔ ݐ)Tݔ − ݐ)ݔ1ܳ(0ߟ − (0ߟ
−(ݐ)ݔ2ܳ(ݐ)Tݔ+ ݐ)Tݔ − ݐ)ݔ2ܳ(1ߟ − (1ߟ + (ݐ)ݔ3ܳ(ݐ)Tݔ

ݐ)Tݔ− − ݐ)ݔ3ܳ(ܯ݀ − (ܯ݀ + (ݐ)ݔ̇~ܴ(ݐ)Tݔ̇

1ߟ−ݐ∫−
ݐ − 0ߟ

(ݏ)ݔ1ܴ̇(ݏ)Tݔ̇ dݏ − 0ߟ−ݐ∫0ߟ
ݐ
(ݏ)ݔ2ܴ̇(ݏ)Tݔ̇ dݏ

ܯ݀−ݐ∫−
ݐ
(ݏ)ݔ3ܴ̇(ݏ)Tݔ̇ + Γ1 + Γ2 + Γ3 + Γ4

(14)
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Π(݈) =

Ω11 + Γ + ΓT ∗ ∗ ∗
Ω21 Ω̄22 ∗ ∗
Ω31 0 Ω̄33 ∗
Ω41(݈) 0 0 Ω44

< 0 (23)

where Ω̄22 = Ω̄33 = diag{− +1ܺߝ2 ,12ܴ1ߝ − +2ܺߝ2 ,22ܴ2ߝ −
+3ܺߝ2 {32ܴ3ߝ .

Define ܻ = ܺ ,ܺܭ = ܲ−1, ܺܳ݅ܺ = ܳ~݅(݅ = 1, 2, 3),
ܴܺ݅ܺ = ܴ~݅(݅ = 1, 2, ܺܯܺ ,(3 = ܺܰܺ ,~ܯ = ܰ~, ܺܶܺ = ܶ~,

ܺܵܺ = ܵ~, pre- and post-multiplying both sides of (23) with
diag{ܺ, …,ܺ

15
}, we obtain (22). This completes the proof. □

4 Simulation examples
Consider a special system of (7), the settings of the system are as
follows:

ܣ = −2 −0.1
−0.1 0.1 , ܤ = 0.05

0.02 (24)

ॱ{ℒܸ(ݐ)} ≤ +ࣛܲ(ݐ)Tݔ2̇ 1ܳ)(ݐ)Tݔ + ܳ2 + (ݐ)ݔ(3ܳ
ݐ)Tݔ− − ݐ)ݔ1ܳ(0ߟ − −(0ߟ ݐ)Tݔ − ݐ)ݔ2ܳ(1ߟ − (1ߟ

ݐ)Tݔ− − ݐ)ݔ3ܳ(ܯ݀ − (ܯ݀ +ࣛTܴ~ࣛ+ 2ℬTܴ~ℬߜ

+ (ݐ)ݔ
ݐ)ݔ − (0ߟ

T −ܴ2 ܴ2

ܴ2 −ܴ2

(ݐ)ݔ
ݐ)ݔ − (0ߟ

ݐ)ݔ]ܯ(ݐ)Tߞ2+ − −(0ߟ ݐ)ݔ − [((ݐ)ߟ
ݐ)ݔ]ܰ(ݐ)Tߞ2+ − −((ݐ)ߟ ݐ)ݔ − [(1ߟ

−(ݐ)ݔ]ܶ(ݐ)Tߞ2+ ݐ)ݔ − [((ݐ)݀
ݐ)ݔ]ܵ(ݐ)Tߞ2+ − −((ݐ)݀ ݐ)ݔ − [(ܯ݀

−(ݐ)ߟ)+ 1ܴܯ(ݐ)Tߞ(0ߟ
(ݐ)ߞTܯ1−

−1ߟ)+ 1ܴܰ(ݐ)Tߞ((ݐ)ߟ
−1ܰT(ݐ)ߞ + 1ܴܶ(ݐ)Tߞ(ݐ)݀

−1ܶT(ݐ)ߞ
ܯ݀)+ − 1ܴܵ(ݐ)Tߞ((ݐ)݀

−1ܵT(ݐ)ߞ
+݁T(݇ݐℎ)Ω݁(݇ݐℎ)− ݐ)Tݔߪ − ݐ)ݔΩ((ݐ)݀ − ((ݐ)݀

= Ω11)(ݐ)Tߞ + Γ + ΓT)(ݐ)ߞ +ࣛTܴ~ࣛ+ 2ℬTܴ~ℬߜ
−(ݐ)ߟ)+ 1ܴܯ(ݐ)Tߞ(0ߟ

(ݐ)ߞTܯ1−
−1ߟ)+ 1ܴܰ(ݐ)Tߞ((ݐ)ߟ

−1ܰT(ݐ)ߞ + 1ܴܶ(ݐ)Tߞ(ݐ)݀
−1ܶT(ݐ)ߞ

ܯ݀)+ − 1ܴܵ(ݐ)Tߞ((ݐ)݀
−1ܵT(ݐ)ߞ

(21)

Ω~11 =

Λ~1 ∗ ∗ ∗ ∗ ∗ ∗
ܴ~2 −ܳ~1− ܴ~2 ∗ ∗ ∗ ∗ ∗

TܤTܻߙ̄ 0 0 ∗ ∗ ∗ ∗
0 0 0 −ܳ~2 ∗ ∗ ∗

(1− TܤTܻ(ߙ̄ 0 0 0 ~Ωߪ ∗ ∗
0 0 0 0 0 −ܳ~3 ∗

(1− ܶܤܻܶ(ߙ̄ 0 0 0 0 0 −Ω~

Λ~1 = Tܺܣ + Tܣܺ + ܳ~1 + ܳ~2 + ܳ~3− ܴ~2, Γ~

= ܶ~ ~ܯ ~ܯ− + ܰ~ −ܰ~ −ܶ~ + ܵ~ −ܵ~ 0

Ω~21 =
−1ߟ ܺܣ0ߟ 0 ߙ̄ −1ߟ ܻܤ0ߟ 0 (1− (ߙ̄ −1ߟ ܻܤ0ߟ 0 (1− (ߙ̄ −1ߟ ܻܤ0ߟ
ܺܣ0ߟ 0 ܻܤ0ߟߙ̄ 0 (1− ܻܤ0ߟ(ߙ̄ 0 (1− ܻܤ0ߟ(ߙ̄
ܺܣܯ݀ 0 ߙ̄ ܻܤܯ݀ 0 (1− (ߙ̄ ܻܤܯ݀ 0 (1− (ߙ̄ ܻܤܯ݀

Ω~31 =
0 0 ߜ −1ߟ ܻܤ0ߟ 0 ߜ− −1ߟ ܻܤ0ߟ 0 ߜ− −1ߟ ܻܤ0ߟ
0 0 ܻܤ0ߟߜ 0 ܻܤ0ߟߜ− 0 ܻܤ0ߟߜ−
0 0 ߜ ܻܤܯ݀ 0 ߜ− ܻܤܯ݀ 0 ߜ− ܻܤܯ݀

Ω~22 = Ω~33 = diag{− +1ܺߝ2 12ܴߝ
~
1, − +2ܺߝ2 22ܴߝ

~
2, − +3ܺߝ2 32ܴߝ

~
3},

Ω~44 = diag{− ܴ~1, − ܴ~3}

Ω~41(1) =
−1ߟ ܯ0ߟ

~T

ܶܯ݀
~T , Ω~41(2) =

−1ߟ ܯ0ߟ
~T

ܵܯ݀
~T ,

Ω~41(3) =
−1ߟ 0ܰߟ

~T

ܶܯ݀
~T , Ω~41(4) =

−1ߟ 0ܰߟ
~T

ܵܯ݀
~T
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We can easily see that the system is unstable without a
controller. Choose the initial condition 0ݔ = −1 1 T.

In the following, our purpose is to demonstrate the design
process of the feedback gain and the proposed hybrid driven
scheme.

Case 1: When the selecting switch turn to ‘time driven’ in Fig.
1, the system (7) is under time-triggered schemes. We assume
0ߟ = 1ߟ ,0.5 = 2ߪ ,1 = 0.01 and 1ߝ = 2ߝ = 1, based on Matlab/

LMIs toolbox and applying Theorem 2, we can get the controller
feedback gain

ܭ = 0.5864 −13.1863 (25)

With the feedback gain (25), the state trajectories of (7) are
shown in Fig. 2. 

Case 2: When the selecting switch turn to ‘event driven’ in Fig.
1, i.e. the system (7) is under event-triggered scheme, for given
ߪ = ܯ݀ ,0.12 = 1, and 3ߝ = 1, we can obtain

ܭ = 1.7151 −16.2432 (26)

the corresponding trigger matrix

Ω = 16.9797 −2.7202
−2.7202 10.6299 ,

respectively. the state response of (7) and communication
instants and communication intervals are shown in Figs. 3 and 4,
respectively. 

Case 3: When the system (7) is a hybrid driven system, letting
ߙ̄ = ߪ ,0.1 = 0.01, and 1ߝ = 2ߝ = 3ߝ = 1, we can obtain

ܭ = 5.2158 −8.9618 (27)

and the corresponding trigger matrix

Ω = 1.3559 −0.2178
−0.2178 1.4307 ,

respectively. The simulation result of the discussed closed-loop
system dynamics are shown in Fig. 5. A random switching
sequence for the switched triggered schemes is shown in Fig. 6.
From the simulation results, it can be found that the designed
feedback gain can stabilise the system even when the hybrid driven
occurs. 

Compared with the results above, from Figs. 2, 3 and 5, we can
see that the studied system can be stabilised in above three cases.
The amount of the network transmission can be reduced by using
the event-triggered transmission strategy or the hybrid driven
strategy which is illustrated in Fig. 4. The hybrid driven scheme in
this paper gives an alternative method of event-triggered scheme.

5 Conclusion
The hybrid driven controller design for NCSs with network
induced delays has been investigated. New hybrid driven
communication schemes are proposed to reduce the network
bandwidth utilisation and improve the desired system performance.
A delay system model has been employed to describe the
prosperities of the hybrid driven scheme and the effect of the
transmission delay on the system. Sufficient conditions are
established to ensure the stability of the discussed system and the
existence of the feedback gain matrices of the controller and
triggering parameters. An illustrative example has highlighted the
usefulness of the proposed method. The problems of hybrid driven
state estimation, output feedback hybrid driven ܪ∞ control and
hybrid driven ܪ∞ filtering will be discussed in our future work.
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Fig. 2  State responses under feedback gain (25) for (7)
 

Fig. 3  State responses under feedback gain (26) for (7)
 

Fig. 4  Release instants and release interval with feedback gain (26) into
(7)
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Fig. 5  State responses under feedback gain (27) for (7)
 

Fig. 6  Bernoulli stochastic variable (ݐ)ߙ with ̄ߙ = 0.2 in case 3
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