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Abstract

This paper studies the problem of event-triggered state estimation for complex network systems with
quantization. The event-triggered communication scheme and quantization are employed to reduce the
burden of network transmission. By utilizing Lyapunov stability theory and linear matrix inequality
techniques, sufficient conditions are established which can ensure the augmented estimation error system to
be asymptotically stable. Furthermore, the explicit expressions of the desired state estimators are derived in
terms of linear matrix inequalities. Finally, an example is provided to illustrate the usefulness of the
proposed method.
© 2016 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks have gained a lot of attention in various fields of science and humanity
worldwide, such as gas transportation network, the Internet, our country highway network, etc. With
the rapid development of modern science and technology, people have found that in the real world,
although network nodes have different meanings in different situations, the complex network
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structure constrains the network dynamical behaviors. Thus the complex network theory is
introduced to describe the common features among different kinds of network nodes. In recent
years, scholars have paid great attention to complex network systems and they have gained many
research results, including network control, reliability analysis and state estimation, and so on [1-3].

With the rapid expansion of network information, it needs a high data traffic rates on the
network. However, network bandwidth and network resource are limited [4-6]. Effective
methods should be adopted to overcome this problem. Luckily, different methods have been
proposed on how to make full use of network bandwidth and how to reduce the network load
effectively. Generally speaking, the existing methods can be classified into time-triggered
mechanism and event-triggered mechanism [7-10]. Time triggered scheme (periodic sampling
method) is easier to accept from the aspect of system analysis; but in terms of network resource
utilization, time triggered scheme sometimes cannot show its advantage. Especially, when the
state is close to equilibrium, there is little new information. If we still use the time triggered
scheme, the computing resources will be wasted and the cost of computing will be increased.
Fortunately, event-triggered mechanism has been proposed to overcome this problem, for it can
greatly improve utilization of network resource. The key idea of event-triggered mechanism is
that only the current sampled data satisfies a predesigned condition, can it be transmitted. The
event-triggered scheme can save network bandwidth to some extent.

So far, we have acquired a lot of research results based on event-triggered mechanism [7-12].
The authors in [7] propose a novel event-triggering scheme and address event-triggered H
control for networked systems. Based on the work of [7], the authors in [8] investigate the
reliable control design for networked control system under event-triggered scheme by taking
probabilistic sensor and actuator fault into consideration. The event-based fault detection
problem is studied in [9] for networked systems with communication delay, unknown input and
nonlinear perturbation. The problem of event-triggered output-feedback H., control for
networked control systems with non-uniform sampling is addressed in [10]. In [11], the design
problems of the observer-based event-driven controllers are investigated for the state-dependent
nonlinear systems. The authors in [12] address an event-driven observer-based fault-tolerant
controller design for a state-dependent system with external disturbance and fault.

In the actual networked control system, due to the limited communication capacity,
measurement output should be quantified before transmission. An important aspect is that
utilizing quantization schemes can not only have sufficient precision, but also require low
communication rate. Quantization can be considered to a coding process by using quantizer. So
far, there have been a lot of relevant research results [13—-16]. For example, the authors in [13]
address the observer-based output feedback control for networked control systems with two
quantizers. In [14], the authors are concerned with the control design problem of event-triggered
networked systems with both state and control input quantizations. The networked H .,
stabilization of linear time-invariant systems under quantized state feedback control has been
investigated in [15]. The authors in [16] are concerned with the variance-constrained state
estimation problem for a class of networked multi-rate systems with network-induced proba-
bilistic sensor failures and measurement quantization. To the best of the authors knowledge, the
state estimation problem for complex network systems with event-triggered mechanism and
quantization has not been investigated yet, which is a starting point of this article.

Inspired by the above observations, this paper studies the state estimation problem for
complex network systems with event-triggered communication scheme and quantization. Firstly,
taking into consideration of event-triggered scheme and quantization, we construct a state error
system model for complex network systems. Based on this constructed model, by using
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Lyapunov stability theory and linear matrix inequality techniques, a sufficient condition for the
asymptotically stability of complex network systems is obtained. Furthermore, the relevant
parameters of the state estimator are derived in terms of linear matrix inequalities. Finally,
numerical simulation verifies the usefulness of the proposed method. The main contributions of
this paper lie in the following aspects: (1) The event-triggered communication mechanism is
introduced to reduce the pressure of data transmission. (2) Quantization is employed to reduce
network load and save network bandwidth. (3) Suitable state estimators are designed for complex
network systems with quantization and event-triggered communication scheme.

The rest of this paper is organized as follows. In Section 2, problem formulation and
preliminaries are briefly outlined. In Section 3, a flexible approach to the desired state estimator
design is established. In Section 4, a numerical example is given to demonstrate the usefulness of
the designed state estimators. Finally, conclusion is given in Section 5.

Notation: R"” and R"*" denote the n-dimensional Euclidean space and the set of n x m real
matrices, respectively. |l - || stands for the Euclidean vector norm or the induced matrix 2-norm
as appropriate. The superscript 7 stands for matrix transposition. [ is the identity matrix of
appropriate dimensions. The notation X >0 (respectively, X > 0), for X € R"*" means that the
matrix X is a real symmetric positive definite (respectively, positive semi-definite). For a matrix B
and two symmetric matrices A and C, [‘g z] denotes a symmetric matrix, where % denotes the
entries implied by symmetry.

2. Model and preliminaries

Consider the following stochastic complex network systems consisting of N coupled nodes
with time-varying delay, and every node is a n-dimensional dynamical subsystem. The complex
network systems can be described as [17]:

N N
%) = SOAF (1) + (1 =SB + D gyl + 3 gylaxi—2). (1)
=1 j=1
where the state vector of the ith node is xi(f) = (x;1 (1), x2(0), ..., xp(1))” € R", f,(x:(¢)) and
f2(x:(?)) are nonlinear vector functions, I"; and I, are the inner coupling matrices of the network,
A and B are constant matrix with appropriate dimensions. G = (g;;) € RM*V is the outer-coupling
matrix of the networks representing the coupling strength and topological structure of complex
networks. g;; can be defined as: if the ith node has connection with the jth, (i # j), then g; = g;; if
there is no connection between the ith node and the jth node, then g; # g;;. 7(¢) is the time-
varying delay in the network system, satisfying that: z,, < 7(¢) < 7p, 0 < 7,,, < 7ps. 6(7) is subject
to Bernoulli distribution, defined as

1: fl () happens)
&(r) = 2
Oa fz() happenss
Suppose &(¢) satisfies that:
Probability {6(f) = 1} =&y, Probability {6(r) =0} = 1— by, 3)

where &g is a known constant.

Remark 1. In the model (1), we use §(¢) to stand for the random switching between f; (x;(z)) and
fo(xi(2)). When 6(¢) = 1, it means that nonlinear vector function f; (x;(t)) occurs. When 6(¢) = 0, it
means that nonlinear character is described as f,(x;(7)).
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Fig. 1. The structure of an event-triggered complex network systems.

Assumption 1 (//7]). For any u,v € R", nonlinear vector functions f(-) and f,(-) satisfy the
following sector-bounded conditions:

1) —f,0) = E1(w—)]If1 () — f1(») = E2(u—v)] < 0,
[F2(w) —f,(v) = E3(u—=v)]" [ () —f,(v) = E4(u—v)] < 0. 4)

Remark 2. From Assumption 1, we can easily get that:

T Tr— _
xi(t) Q1 £ xi(1) =0 xi(1) Q1 Qp xi(1) 0
[ | [ 20 L || L) | T 7 (@) | | Qo L | [ fo) | T
(5)
where
T = =T = =T =T
=15+ 25 F =+ =
Q]]= 1 22 2 1’ Q%}:Q]z—_ 12 2’
=T = =T = =T =T
— E3Es+E1 5 1 — =3 +=
QH: 3 42 4 3’ QZIZQIZZ_ 32 4'

The system structure is shown in Fig. 1. The main purpose of this paper is to design a suitable
state estimator for complex network systems with quantization and event-triggered scheme.
With the matrix Kronecker product, the system (1) can be rewritten in the following compact
form:
() = SOIF 1 (x(1) + (1= 8O) pF2(x(1)) + (G ® I')x() + (G ® T'a)x(r—(1)) (6)
where Iy =Iy ® A, I =1y @ B, x' (1) =[x] (1), x5 (1), ..., xy ()], Gi=G ® I'1, G; =G ® I,
FLO(0) =[] O)of T 02 (0)), oo f T 0n @), F3((8)) = [F3 (61 (1)), 3 (62(2)), -, 3 Cen (D))
In this article, the measurement output y(f) in Eq. (6) is:

y(1) = Cx(1). Q)

The event generator and quantizer are constructed between sensors and state estimators, and
we suppose sensors and samplers are time-triggered, the sampling period is 4, the sampling time
is kh (k=0,1,2,...). Also, at the time kh, the current measurement output is y(kk), however,
whether the newly measurement output y((k + j)k) will be sent out or not is determined by the
following judgement algorithm [7]:

[((k + j)h) = y(kh)) QL ((k + j)h) — y(ki)] < ay" (k + ))Ry((k + h), ®)
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where €2 is a symmetric positive definite matrix with appropriate dimension, ¢ € [0, 1), the newly
measurement output y((k + j)h) satisfying the above inequality (8) will not be transmitted.
Based on the above analysis, the real measurement outputs will be:

¥(1) = y(txh) = Cx(tch),  t € [teh + dy, tisrh + dicyr). )
By the quantizer, the measurement outputs signal y(¢;/) can be described as y(z;h), that is:
Y(teh) = g(3(1)) = g(y(txh)) = g(Cx(txh)), € [txh + di, tip1h + dit1), (10)

where g(y) = diag{gl(yl)’ gZ(yZ)’ ) gn(yn)}’ gj()a (] = 15 27 ,I’l) is SymmetﬁC, that is:
gi(—y;) = —g;(y;), the logarithmic quantizer g;(:) (j=1,2,...,n) can be defined as:

) 1 ) 1 )
uf’), if uf’) <y < fu?), y;>0,
1+ 3, 138,
&) =19 o, if y, =0, an

—g(—y), if y;<0,

1—p,. . .. . ..
where 6, = Tpg’ (0 <pg, < 1), P, 18 the quantitative density of gj, and it is a constant. For the
. 3
sake of simplicity, we assume J, = 5&,, where J, is a constant. By the above discussion, we can
1-35,

get: Py, =Py = T3, Furthermore, similar to the methods in references [18], we define

quantitative series set as:

Uj={+u?,uf =p}, - ul 1= +1,+2,.. 3 U (4} U {0}, u?>o0. (12)
Define:
A, =diag{dg A, ...,Ag }, where Ay €[—0,,6.], j=1,2,....,n, (13)
the logarithmic quantizer g;(-) can be described by using the following sector bound approach:
gj(yj) =(1+ Ag_,-(yj))yja (14)
then g(-) can be represented as:
8 =+ 4y)y. (15)
Combine (10) and (15), y(¢) can be described as:
y(0) = g(tkh)) = (I + A)y(txh), 1€ [txh + di, tys1h + diy). (16)

In order to facilitate the theoretical development, we consider the following two cases, similar
to [7,19]: B B
Case 1: If tth+ h+ d = tir1h + disq, where d = max{d,}, define d(7) as:

dit)y=t—tth, te[tth+di, tiirh + dis), 17)
obviously,
di <d(t) < (trp1 —t)h + dyp <h +d. (18)

Case 2:ftyh+h+d< tr+1h + di+1, consider the following two intervals
[teh +di, tih + h+d), [tch+ih+d, tth+ih+h+d), (19)

since dy <d, it can be easily shown that there exists dy, such that reh 4 dyh +d <t 1h+
sy < teh + dyh + h + d.
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Let
Iy =[txh + di, tyh + h + d),
Li=[tih+ih+d,tith+ih+h+d), i=1,2,....dy—1, (20)
La, = [txh + dyh + d, te1h + disr),

obviously, we can get
dy
iyoli = [txh + di, i h + diey1). (21)
Define a function
t—th, tel,
dy={ t—th—ih, tel;, i=1,2,...,dy—1, (22)
t—tth—dyh, tely,,

then, we can conclude that:
di<dity<h+d, tely,
di<d<dit)y<h+d, tel, i=1,2,....dy—1, (23)
di<d<dt)y<h+d, tely,,
due to tyi1h + diy <tyh + (dy + 1)h +d, the third row in Eq. (23) holds. In Case 1, for
t € [tch + dy, tyi1h + diy ), define ex(f) = 0; In Case 2, define:
0, tel,
ex(t) =< Ytxh)=y(th +ih), tel;, i=1,2,...,dy—1, (24)
Y(tkh) = y(th + dyh),  telq,,

from the definition of e,(f) and the event-triggered communication scheme, Eq. (8) can be
rewritten as:

e} (NQex(t) < ox" (t—d(t))CTQCx(t—d(t)), t € [tih+ di, tip1h + diy1) (25)

Based on the real measurement output, the main purpose of this article is to construct the
following state estimation system:

X(1) = G1&(1) + Gok(t — (1) + K(F (D) —5(1)),
y(@) = Cx(v),
where x(7) is the estimator state vector, y(¢) is estimator output, K is the feedback gain matrix,

which is also the state estimator we should design next.
Define e(t) = x(t) — x(t), combining Egs. (6), (16), (24) and (26), we can get:

et)=48(1) - (Iy ® A)F1(x(1)) + (1=6(1)) - (In @ B)F2(x(1)) + (G ® I'1 —KC)e(?)
H(G ® Iy)e(t—(t)) + KCx(t) — K(I + Ag)Cx(t —d(1)) — K(I + Ag)ex(D). 7)

(26)

Define %(r) = [x7 (), e” ()], combining Eqs. (6) and (27), we can get the following augmented
system:

X(1) = 8(0)1a, F1(HX(1)) + (1= 8(1)1 5, F2(HX (1)) + A1X(7)
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+B1x(t—1(t)) + Cx(t—d(t)) + Dyei(t), (28)
where
G®rI, 0 5 G, 0 0 0
"=\ k¢ Geor-kc|” 'T 0 GRI,|” ~'T | -KUI+4,)C 0]
D 0 7 14 / Ip ur I
1= s A — IA s B, — IB s - 0 .

—K(I +4,)
Define a new vector:
& (1) = [F1 (Hx(1)), F3 (Hx(1), %" (1), X" (1 —7,,), X (1= (1)),
(1), X (1= dy), X (1= d(0)), e (1),

and define
@1 =14,,0,A1,0,B,,0,0,C1,D1], ¢, =][0,15,,A1,0,B,,0,0,Cy, D],

the system (28) can be rewritten as follows:
X(1) = 8(1)p1&(1) + (1= (1), &(0). (29)

Before giving the main results, the following lemmas are introduced as follows:

Lemma 1 (/20]). For any vectors x, y € R" and positive definite matrix Q € R"*", the following
inequality holds:

Ty <xTox+yT'0 1. (30)
Lemma 2 (/21]). If 71 < 1(t), x(t) € R", for any positive definite matrix R, we have:

X0 1" [-R=% x(0)
.[R _R].[x(t_ﬂ)}. 31)

x(t—11)
Lemma 3 (/22]). For any positive definite matrix Re R"™", if 0<t; < (t) <1, and vector
Sfunction x(t) : [— 12, —71]=R", the following inequality holds:

—11 /l i (s)Rx(s)ds < l

. x(t—11) T —R % x x(t—11)
—(r2—11) / iWT(ORi(s)ds < | x(t—7() | - |R —2R =% | xE—(@®) |. (32)
e x(t—1) 0 R —R x(t—15)

Lemma 4 (/23]). £, £, and €2 are matrices with appropriate dimensions, then for
T(t) € [Tla TZ]’

(2(1) —71)R2) + (12 —7(1))2, + 2<0 (33)
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holds, if and only if the following inequalities hold:

{ (12 —71)2) + 2<0,

(p—11)2; + 2<0. (34)

Lemma 5 (/24]). A,D,E and F are matrices with appropriate dimensions, and satisfying
I FIl <1, then the following inequalities hold:
(a) For any variable e >0, we have:

DFE + ETFTD" < ¢~ 'DD” + ¢E"E; (35)

(b) For any positive definite matrix P> 0 and variable e >0 such that el — EPET >0, then we
have:

(A + DFE)P(A + DFE)" < APAT + APE" (eI — EPET) " 'EPAT + ¢DD' . (36)

3. Main results

In this section, to make the augmented estimation error system (29) be asymptotically stable,
sufficient conditions are proposed in Theorem 1 firstly. Then, based on the obtained conditions,
the designed method of the desired state estimator is given subsequently.

Theorem 1. For given scalars 0 < t,, < 7y, dy, event-triggered parameter ¢ and the estimator
gain matrix K, complex network systems (29) is asymptotically stable, if there exist matrices
P>0,0,>0(i=1,2,3),R; >0 (i=1,2,3),and M,N,Z,,Z, with appropriate dimensions, such
that the following matrix inequalities hold.:

Oy +T+TT = %

2(s)= P bn % | <0, s=1,2, (37)
D31(s) 0 —-R
where
[Z1 ® 1, * % % ¥ % % * * 7
0 Z, ®1, % % * 0 % % * %
VIEN I3 I3 % 0 % % £ %
0 0 R, —R -0, % % % * %
&) = 0 0 BIP 0 0 ® % ® |,
0 0 0 0 0 -0, % % %
0 0 0 0 0 0 —R3—04 * %
0 0 Ry+CIP 0 0 0 R; oW—-2R; =%
| 0 0 DiP 0 0 0 0 0 - W
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_9|R|IA] 0 HIRIAI
92R21A] 0 92R2A1 92R231
93R3IA] 0 63R3A1 (93R3B]

0 6iRB; O
0 0
0 0
0 O10R1p, O1oR1A; 0 OpoR 1By 0
0 0
0 0

6\R\C,  OR D |
R, Cy  6,R,D,
0:R:C,  63RsD,
O10R1C1  010R Dy |’
020R,C1 OxRoDy

030R3C1  O30R3D;

Dy =

0 OxR21p,  OxRA; 00R2 B,
0 O30R31p,  O30R3A; 030R3B1
@y =diag{ — Ry, =Ry, —R3, =Ry, —Rs, —R3},
I3 =H"(Z; ® Q21)" + 8PLs,, Mn=H"(Z, ® 221)" + 810PI,,

My3=—R3—Ri + 0, +0,+ 03 +A{P+ PA + H'(Z, ® Q)H + H'(Z, ® Q1)H,

S O O O o O

O5()=v6N", @302 =voM", w1 =ty—10 S0=1-0,

cr'ac o
0 0

7= L oE W L L ],

W= NI NE NN NENE N NG N,

01 =1,\/S0, 02=1/12160, 03 =du/S0,

010 =1u\/S10, 60 =\/721610, 030 =du\/b10,

R= T’Zan + 721Ry + dlszy

W=

Q0
, wlz[o 0}, r=[000N —N+M —M 0 0 0],

Proof. Construct the following Lyapunov functional candidate:
V(t,x(1)) = V11, x(1)) + Va(2,X(1)) + V3(2,%(1)), (33)
where
Vi(t,X(0) = X' (1)Px(0),
veso= [ Fooses+ [ Toeswat [ oo
R P t—du

t

Va(t,X(0) = 7, / TR dvds + / o / T (VR ()dvds

=1y

t t
+dy / / );CT(V)Rﬁ(v)dvds.
t—dy

s

Take the derivative of V,(z,%(r)) along the trajectory of system (29) and take expectation on
LV(t,%(t)), we can get:

E{Lv,(t,%(1))} = 2%T (1)Px ()

= 2" (t)P[Sop1 £(t) + (1 —80) 2 &(1))], (39)
E{Lvy(t, (1)} =X (1NQ1 + 0y + Q3)X(1) — X" (1 — 71n) Q1 X(t — T) — X" (t — 701 QX (1 — Tar)
— X" (1—dp)Q5X(1 —dy), (40)

t

E{Lv3(t,X(0)} = 60&" (g1 Rp1 &(1) + (1= 80)&" (1)p3 Ry &(1) — T / ' (MRF(v)dv

I—1Tp
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I—=1m

—dy / td ¥ (R F(v)dv — / T (RF(v)dv.

— Ty

(41)

Combining Eqs. (39), (40) and (41) and employing the free matrix method [25], then we can

get:
E{Lv(t,X(1))} = 2x" (1)P[Sog1 £(t) + (1= 80)a&(0)] + X' (1)(Q; + Q5 + 03)%(2)

t

+80" (0T R, (1) + (1= 80)E (1) Ry () — 1 / # R FW)dv

=1

—dy / t ¥ (VR X(v)dv

—dy

_ / T RO~ (1= £,) Q00 £,) 51— i) Tt )

—xX (1—dy)Qsx(t—dy) + 71 + 72,
where M, N are free matrices, and
T—1T,
v, =2E"(t)N |:}_C(I—Tm) —x(t—1(t))— / J;c(s)ds} =0,
t—1(t)

t—1(1)

vy =267 (OM [)—c(r—r(r)) (=) /

— Ty

X (s)ds} =0.

By lemma 1, the following inequalities hold:

e on [ s < / T R s)ds + (2() o) (ONRy 'NTE(1),
t—1(t) t—1(t)

. t—‘r(l); t—1(t) LT R r e
=28 ()M / X(s)ds < / X (S)Rx(s)ds + (zpy —2(2))E" (OMR; "M &(2).

— Ty

By lemma 2, we can get:

T
ro : x(1) —R % x(1)
=T -
o /t_ - RS L‘c(t—rm) l Ry Ry la—c(r—rm)
Similarly, by Lemma 3, we have:
r xt) 1'[—-R; = % x(7)
—dy / X (R (v)dv < | X(t—d(1)) Ry 2Ry % | |X(1—d())
t—du )_C(t—dM) 0 R3 —R; x(t—dy)

Recalling Assumption 1 and Remark 2, the following inequalities hold:

O x(1)
Fy(Hx(1) FuHx) | =

H'(Z, ® Q)H *
(Zi®2)H Z,®1,

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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xt) |'H'(Z, @ @Q)H % (1)
N - ~ =0 (50)
F>(Hx(1)) (Zo ® Q0)H 7, ® 1, | | F2(HX(1))
From Eq. (25), we can obtain:
ox" (t—d(1))CTQCx(t—d(1)) —ef () Qe (t) = 0, t € [tyh + di, tir1h + diyr). (51)

Combining Egs. (43)-(51), the following inequality holds:
E{Lv(t,x(1))}

<2x'(nP [50%5@ +(1 —50)%5(0] +x1((Q) + 0, + 03)x(1)
+ 60" (D] Ry 1) + (1= 80)E" ()03 R, £(1)

x(1) —Ry % x(1) _ )_C(Z '
- | | & —Rll [x(t—rm)] + f_c((tt__d(;)))
[ —R3 * % x(t)
Ry —2R;s % X(t—d(1))
| 0 R —R3 X(t—dy)
=X (t = 7)1 X(t —Tpp) =X (1 = Tp1) QX (t — T3g) — X' (t — dpy) Q5% (1 — dip)
[ x() ! H'(Z, ® Qu)H * x(7)
* Fl(Hf(f))] l (Z1® Q)H  Z1®1, FI(HY([))‘|
i) ' [H' Z@@H  x (1)
" Fz(Hf(f))] (Z® 0l 2, Fz(Hf(f))]

+ 28" (ON[x(t — 1) — X(t — 7(1))] + 2ET (OM[X(1 — 7(8)) — X (t — Tp1)]
+ (e(t) = 7m)E (ONRy 'NTE(1) + (2 — ())& (OMR; ' MT &(1)
+ ox! (t—d(t)) Wx(t — d(t)) — e] () Qex(1). (52)

Recalling Egs. (37), (52), and using Lemma 4 and Schur supplement, we can conclude that:
E{Lv(1,X(1))} <O, 53)

then by Lyapunov stability theory, we can easily see that: the system (29) is asymptotically
stable. This completes the proof. o

The following theorem is derived to design the parameters of the desired estimator defined in
Eq. (26) by using the sufficient conditions established in Theorem 1.

Theorem 2. For given constants 0 < t,, < Ty, dy, event-trigger parameter o, and the quantitative
density p,, complex network systems (29) is asymptotically stable, if there exist matrices
P, >0,P,>0,Q,>0,Q,>0,Q;>0,R;>0,R,>0,R3>0and Y, My, N, (k=1,2,...,9), Z,,
Z, with appropriate dimensions, such that for given €;>0 (i=1,2,3,4), the following linear
matrix inequalities hold:
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()=
where:
_Zl ® In
0
ES
0
Dy = 0
0
0
0
0
c- [
Dy =

Ply, =

PB, =

Dy3 =
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S+ +T7 % % %
® @ % %
2! 2 <0, s=1,2. (54)
@3](S) 0 —R2 %k
Dy Dy Dyz Dy
%k % £ %k £ % % E
Z, ® 1, * % E * % *
EY) I3 % E * % %*
0 R, —R—Q; % % * % *
0 BTP 0 0 * * *
0 0 0 0 -0, % * %
0 0 0 0 0 —Ri—0; % %
0 Ry+C'P 0 0 0 R; oW —2R; %
0 DTP 0 0 0 0 0 -W, |
0 0 _ 0
9 D= E
—KC 0 —K
[0,PI4, 0 6,PA, 0 6,PB; 0 0 6,PC 6,PD]
02Ply, 0 6PA, 0 0,PBy 0 0 6,PC 6,PD
0PIy, 0 6;:PA;, 0 O0:PB, 0 0 6:PC 6PD
0 010PIg, 6010PA; 0 010PB; 0 0 6,0PC 6,0PD |’
0 QZOPIBI 920PA1 0 6’20PBl 0 0 QZQPE 920P5
0 630PIB] 030PA1 0 930PB1 00 930P€ 030Pl_)
@22 :diag{i?bkz’k:%klaRZak:i}a RiZEl'zRi_zeiPai: ]aza 39
P/, , P,/ P(G®T)) 0
Pl |7 BT P | = YC P,(G® I')—YC |’
P/(G ® I') 0 . 0 0 D 0
0 P,(G®TI)|’ T l=yCc o) RSk
(O3 =1 Opg 000 Gy =[Iy Iy I's Tyo T T
01 0 Opug —&YC 0 —e¥ | s =[Iy I'2 I's T'o I'20 I'30],
0 —9,‘1 0 _eiOI
b i=172737 Fl()z 2 i=1’2’37
0 0 0 0
[0 0 &4
, @y =diag! —eqd, — =1 p.
0 O] 44 1g{ €4 6; }

Moreover, the parameter of the desired state estimator is given as: K =P} ly.

Proof. For the convenience of derivation, define: P = diag{P;,P,}>0, O, = diag{Q;,Q;} >0,
0, =diag{Q,, Q,} >0, Q;=diag{Q;,Q3}>0, R; =diag{R;,R;}>0, R, =diag{R;,Ry}>0,
R; = diag{R3,R3} >0, M; =diag{M;, M}, N, =diag{N;,N;} (k=1,2...,9). Similar to the
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methods in [23], pre- and post-multiplying both sides of Eq. (37) with
diag{l, PR l,PRz_ I,PR3_ ],PR]_ l,PRQ_ l,PR3_ U I} and its transpose, respectively, and combin-
ing the following inequality: —PR;” Ip< eizRi —2¢;P, i=1,2,3, we can obtain that:

O +T+TT = %

> = Dy Pn % | <0, s=1,2, (55)
D31(s) 0 —-R
where
[0,PIy, 0 6,PA, 0 O6,PB; 0 0 6,PC, 6,PD; ]
0,Ply, 0 6,PA, 0 6,PB; 0 0 6,PC, 0,PD
R O05PI,, 0 0;PA, 0 63PB; 0 0 6;PC, 63PD
Pr=1 0 0Py 6PAL 0 04PB, 0 0 0,,PC, 610PD |’
0 Ox0PIp, 00PA; 0 6,PB; 0 0 6xPCy 6xPD;
0 Ox0Plp, 030PA; 0 63PB; 0 0 65PC, 65PD;
] 0 0 0 )
PO=1 _pxa+apc o] 2= | _pxa+ay |
and Eq. (55) can be rewritten as following:
=510+ LiPKL, + LK PLL], (56)
where
Sy +T+17 % %
2= P by x|, s=1,2,

D3 (s) 0 -R

Le=[01x12 4,C 0 A, O1514], Ly=[01x12 —YC 0 —Y 01514],
£1=[01><3 —1 O1x1p0 =611 0 —6,1 0 —051 0 —6O191 0 —6] 0 —0O5p] 01X2]T.

Applying Lemma 5, there exists g4 >0, such that:

< +ey 'LiL] +eLyAL Ly, (7
notice that:
2 2
Ay <5l (58)

By using Schur supplement, according to Egs. (37) and (57), we can obtain Eq. (54). Defining
Y = P,K, thus the parameter of the desired state estimator is given as K = P, 'Y. This completes
the proof. ]

Remark 3. From Theorem 2, for given ¢ and ¢;,i=1,2,3, by solving the linear matrix
inequality (54), we can obtain the state estimator K and the event-triggered matrix £2. Meanwhile,
from Theorem 2, it should be noted that the state estimator K is not only related to the event-
triggered matrix £2, but also related to the density of quantization p,.
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4. Numerical results

Consider the following continuous complex network systems which consist of 5 coupled
nodes, and the dynamical function of every node can be described by the following model:

N
xi(1) = (A1 (xi(1)) + (1 =SB ,(xi(1) + Y g;1(1)

Jj=1

N
+ Y glaxt—=(), (i=1,2,3,4,5),
j=1

(59)
where
lxn(t)] —0.1 02 —02 025
xi(f) = , A= , B= )
xpp(1) { 0.1 —0.3] {0.25 —0.3}

The external coupling configuration matrix G and the inner-coupling matrix /"y, I, are given
by:

—17 0.01 0 0 0.01
0.01 —15 0 0 0 L 0
G=1001 002 —-16 0 002|, = {0 J, I,=0.1T.
0.02 0.01 0 —16 0.01
0 0 0.01 0.01 -—14
1.5
11 ]
§ 4
_1 1 1 1 1
0 2 4 6 8 10
Times

Fig. 2. The state response curve of e(t).



J. Liu et al. / Journal of the Franklin Institute 353 (2016) 4565-4582 4579

0.8

0.7 Q ]
0.6 b
05 o ]
041 b
03 4

02}

" e Ul [l

0 2 4 6
Times

Release instants and release interval
©

Fig. 3. The release instants and release intervals.

0.12

0.1

0.08

0.06 -

0.02 1

Measurement of y(t) before quantization

_002 1 1 1 1
0
Times

Fig. 4. Measurement of y(z) before quantization.
The dynamical behavior of networks nodes can be described as:

0.4x;1(r) — tanh(0.3x(¢)) + 0.2xp(t — (1))
F1x(0) = 0.9x,5(7) — tanh(0.7x,5(1)) ’

0.3x;1(¢) — tanh(0.2x;1 (¢)) 4 0.1x(t — (7))
Frlx0) = 0.8x,2(7) — tanh(0.6x,5(7)) ’

suppose the measurement output matrix C is: C=[0.2 —0.50.200.2 —0.6 0.2 0 —0.7 0.2],
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0.15

0.05 | 1

Measurement of y(t) after quantization

-0.05 1

Times

Fig. 5. Measurement of y(¢) after quantization.

0.8

0.4 ]

0.2 R

0.4 R

0.6 | R

The state response curve of the system (26)

Times

Fig. 6. The state response curve of the system (26).

the initial condition of the system is: xop=1[0.4, —0.3,0.5, —0.1,0.2, —0.2,0.1, —0.5,0.3,
—0.4]7,

Suppose the random switching probability of networks nodes is 5y = 0.6, the lower bound of
time-varying delays is 7,, =0, the upper bound is 7y = 0.2, the constant d,, is dy,;=0.03, the
event-triggered parameter is ¢ =0.2, sampling period is h=0.05. In fact, for
g1 =& =¢€3=¢4 =1, by applying Theorem 2, using LMI tool box to solve the inequality
(54), we can get the event-triggered matrix is £ = 51.6877, the estimator matrix is:

K =[—0.0114,0.0286, —0.0040, —0.0001, —0.0073,0.0215, —0.0074, —0.0000, 0.0083, —0.0025]",

Y =[—0.8494,2.1313, —0.3194, —0.0103, —0.5630, 1.6663, —0.5737, —0.0002, 0.6938, —0.2128]".
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Simulation results are shown in Figs. 2—-6. From Fig. 2 we can see that the error system can
achieve asymptotically stability. Fig. 3 shows the release instants and release intervals. From
Fig. 3, we can see that the event-triggered communication scheme can save network bandwidth
and reduce the energy consumption of state estimator. By comparing Fig. 4 with Fig. 5, we can
see the effect of quantization for complex network systems. The advantage of quantization is that
it requires low communication rate, and can reduce the risk of data loss for complex network
systems. Fig. 6 is the state response curve of the system (26).

5. Conclusion

This paper investigates the event-triggered state estimation problem for a class of complex
network systems with quantization. In order to save network bandwidth, reduce the pressure of
data transmission and the communication load, this paper introduces the event generator and
logarithmic quantizer in the process of state estimator design for complex network systems. The
novel asymptotic stability conditions are derived for complex network systems by using
Lyapunov stability theory, linear matrix inequality techniques and free-weighting matrix method.
Furthermore, based on the stability conditions, the flexible approach of the desired state estimator
is derived. Finally, a numerical example verifies the usefulness of the proposed theoretical
results.
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