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a b s t r a c t

This paper is concerned with H∞ filter design for a class of neural network systems with event-triggered
communication scheme and quantization. Firstly, a new event-triggered communication scheme is
introduced to determine whether or not the current sampled sensor data should be broadcasted and
transmitted to quantizer, which can save the limited communication resource. Secondly, a logarithmic
quantizer is used to quantify the sampled data, which can reduce the data transmission rate in the
network. Thirdly, considering the influence of the constrained network resource, we investigate the
problem of H∞ filter design for a class of event-triggered neural network systems with quantization. By
using Lyapunov functional and linearmatrix inequality (LMI) techniques, some delay-dependent stability
conditions for the existence of the desired filter are obtained. Furthermore, the explicit expression is given
for the designed filter parameters in terms of LMIs. Finally, a numerical example is given to show the
usefulness of the obtained theoretical results.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, neural networks have been more and more preva-
lent due to their extensive application in image processing,
associative memory, and optimization problems. Recently, many
important results have been reported on neural networks, see,
e.g., Gong, Liang, and Cao (2015), He, Ji, Zhang, and Wu (2016),
Luo, Wang, Wei, Alsaadi, and Hayat (2016), Ma, Sun, Liu, and Xing
(2016), and Yang, Li, and Huang (2016). The analysis problems of
exponential stability for the delayed recurrent neural networks
have stirred a great deal of research interests. Furthermore, the fil-
tering problems for neural network systems have been widely in-
vestigated bymany researchers via variousmethodologies (Huang,
Huang, & Chen, 2013; Mathiyalagan, Anbuvithya, Sakthivel, Park,
& Prakash, 2016). So the studies of the stability and filtering of
delayed neural networks have significant theoretic meaning and
application value. In recent years, several methods have been
proposed to solve the H∞ filter design problem (Cao, Sun, & Lam,
1998; Huang & Feng, 2009; Liu, Fei, Tian, & Gu, 2015; Wang & Ho,
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2003; Wang, Shi, & Zhang, 2015). The authors in Liu et al. (2015)
investigate the reliable H∞ filter design for a class of T − S fuzzy
systems with stochastic sensor faults under an event triggered
scheme. In the literature (Wang&Ho, 2003), the problem ofH∞ fil-
tering of nonlinear stochastic systems is also considered. As the ba-
sic problem in the area of network, H∞ filter problem has received
researchers’ attention for a long time, but the study on neural net-
work only has a short history, many problems should be studied
widely and deeply. Therefore, it is essential to pay attention to fil-
ter design in the various aspects of the neural network.

As an alternative of the time-triggered control scheme, event
triggered scheme is utilized as an efficient way to reduce the
burden of communication networks and improve the transmission
efficiency. Compared with the time-triggered control scheme, the
advantage of the event triggered scheme is that it can facilitate
the efficient usage of the shared communication resources, and
whether the current sampled information will be transmitted or
not depends on pre-designed conditions, avoiding much of the
unnecessary transmission. Up to now, event triggered scheme has
received a lot of research interest and some important results
have been published (Hu & Yue, 2012a; Li et al., 2016; Liu et al.,
2015; Liu & Yue, 2013b; Yue, Tian, & Han, 2013). To name a few
results, the authors in Yue et al. (2013) proposed a novel event-
triggering scheme and event-triggered H∞ controller design for
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networked control systems which are investigated. Based on the
results of Yue et al. (2013), the authors in Liu and Yue (2013b)
propose an event-triggering sampling strategy with probabilistic
sensor and actuator fault and investigate the reliable control design
for networked control system under the proposed event-triggered
scheme. In Hu and Yue (2012a), the authors are concerned with
the problem of event-based H∞ filtering for networked systems
with communication delay. In Liu et al. (2015), the authors
investigate reliable H∞ filter design for a class of T − S fuzzy
systems with stochastic sensor faults under an event triggered
scheme. The authors in Li et al. (2016) consider the event-triggered
distributed average-consensus of discrete-time first-order multi
agent systems with limited communication data rate and general
directed network topology. Motivated by the above references, it
is necessary to design an event-triggered communication scheme
to save the limited communication resources in the delayed neural
network system. This is one of the motivations of this work.

At present, the quantitative processing has been paid atten-
tion by more and more researchers. Considering the limited
communication capacity in the networks, quantization of mea-
surement and/or input signals is an indispensable step which aims
at saving limited bandwidth and energy consumption. It can be
considered as the process of encoding, which is realized by the
quantizer. Quantization plays an important role in information
exchange among agents. In the literature (Hu & Yue, 2012b; Li,
Chang, Du, & Yu, 2016; Li, Chen, Liao, & Huang, 2016), a series of
quantitative methods are proposed in time-varying quantizer or
logarithmic quantizer. In Li, Chang et al. (2016), the authors in-
troduce H∞ control of discrete-time for uncertain linear systems
with quantized feedback. The authors in Hu and Yue (2012b) dis-
cuss the event-triggered control design of linear networked sys-
tems with quantization. In the literature (Li, Chen et al., 2016),
quantized data-based leader-following consensus of general
discrete-time multi-agent systems is described. The effect of the
quantization on the networked control systems is much larger
than the traditional control systems. To the best of our knowledge,
event-triggered scheme for a class of neural network systems with
quantization has not beenwell addressed. This situationmotivates
our current investigation.

Motivated by the observations above, we focus on the event-
based H∞ filter design problem for a class of delayed neural
networks with quantization. To reduce the computation load or
to reduce the exchange of information, we introduce an event-
triggering samplingmechanism. Then, an event-based filter design
model for neural network systems is constructed by taking
the effect of event-triggered scheme and the quantization into
consideration. Besides, sufficient conditions for the existence of the
filter are established and the explicit expression is given for the
designed filter parameters. Finally, a numerical example is given
to show the effectiveness.

The paper is organized as follows. In Section 2, an H∞ filter
design is addressed for the delayed neural network systems
with event triggered communication scheme and quantization.
Sufficient conditions for the existence of the desired filter are
established and a filter design method is provided in Section 3.
Moreover, we derive the explicit solution of filter parameters. A
numerical example is given in Section 4 to show the effectiveness
and applicability of the proposedmethod. The conclusion is drawn
in the final part.

Notation: In this paper, Rn and Rm×n, respectively, denote the
n-dimensional Euclidean space and the set of m × n real matrices.
Matrix X > 0 (respectively, X ≥ 0) denotes that X is a real
symmetric positive definite (positive semi-definite). In a symmetry
matrix ∗ is used to describe the symmetric terms. I is the identity
matrix of appropriate dimension. In addition, T stands for the
transpose of matrix.
Fig. 1. The structure of event-triggeredH∞ filter design for delayed neural network
with quantization.

2. Problem formulation and preliminaries

As is shown in Fig. 1, consider a delayed neural network with n
neurons:ẋ(t) = −Ax(t) + W0g(x(t)) + W1g(x(t − τ(t))) + Awω(t)
y(t) = Cx(t)
z(t) = Lx(t)

(1)

where x(t) = [x1, x2, . . . , xn]T ϵRn is the state vector of the neural
network; A = diag{a1, a2, . . . , an} is a diagonal matrix with posi-
tive entries ai > 0; W0 and W1 are the connection weight matrix
and the delayed connectionweightmatrix, respectively; g(x(t)) =

[g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T denotes the neuron activa-
tion function; and τ(t) denotes the time-varying bounded state
delay satisfying τ(t)ϵ[τm, τM ], where τm and τM are the lower and
upper bounds of τ(t); ω(t)ϵRp is the external disturbance and
ω(t)ϵL2[0, ∞); Aw, C, L are the parametermatriceswith appropri-
ate dimensions; y(t) = [y1, y2, . . . , yr ]T ϵRr is the measurement
output; z(t) = [z1, z2, . . . , zp]T ϵRp is the objective vector.

Event generator is introduced between the sensor and the
quantizer which is used to determine whether the newly sampled
state will be sent out to the quantizer by using the following
judgement algorithm, which is the same as Yue et al. (2013)

[y((k + j)h) − y(kh)]TΦ[y((k + j)h) − y(kh)]

≤ σyT ((k + j)h)Φy((k + j)h) (2)
where the Φ is a symmetric positive define matrix, j = 1, 2, . . . ,
σϵ[0, 1), y((k+ j)h) is the current sampled sensor measurements,
and y(kh) is the latest transmitted sensor measurements. The
sampled state y((k + j)h) satisfying the inequality (2) will not be
transmitted, only the one that exceeds the threshold in (2) will be
sent to the quantizer, which means that, in the sensor side, only
some of the sampled states that violate (2) will be sent out to the
quantizer side.

Remark 1. From the event-triggered algorithm (2), we can easily
see that the sensor measurements are sampled at time kh by
sampler with a given period h, the next sensor measurement is at
time (k+1)h. Suppose that the release times are k0h, k1h, k2h, . . . ,
it is easily seen that tih = ki+1h − kih denotes the release period
of event generator in (2), tihmeans that the sampling between the
two conjoint transmitted instant.

Remark 2. It is easily seen from event-triggered algorithm (2) that
the set of the release instants {k0h, k1h, k2h, . . .} ⊆ {0, 1, 2, . . .}.
The amount of {k0h, k1h, k2h, . . .} depends on the value of σ and
the variation of the sensor measurements.

When the new sampled states y(kjh) arriving at the quantizer,
we determine to quantize y(kjh). Define a function (Qu, Guan, He,
& Chi, 2015)

q(y) = diag{q1, q2, . . . , qm} (3)

where qi(·) is symmetric, i.e. qi(−yi) = −qi(yi), and the logarith-
mic quantizer can be described by the following sector mode:

qi(yi) = (1 + ∆qi(yi))yi. (4)



J. Liu et al. / Neural Networks 82 (2016) 39–48 41
Define
∆q = diag{∆q1 ∆q2 . . . ∆qm} (5)
and we have
q(y) = (I + ∆q)y. (6)
Then
q(y(kjh)) = (I + ∆q)y(kjh). (7)
Then the new sampled states y(kjh) via the quantizer can be
described by the following equation:
y1(kjh) = q(y(kjh)) = (I + ∆q)y(kjh). (8)
If ∆q = 0, then q(y) = y, i.e. no quantization.

In order to transform the system into a time delay system and
use the time delay system to dealwith the problemof our research,
for technical convenience, similar to Liu and Yue (2013a), Liu and
Yue (2013b), Yue et al. (2013) and Wang et al. (2015), we consider
the following two cases:

Cases A: If kjh + h + d̄ ≥ kj+1h + dj+1, where d̄ = max dj, we
define a function d(t) as:
d(t) = t − kjh, tϵ[kjh + dj, kj+1h + dj+1). (9)

It can easily be obtained that dj ≤ d(t) ≤ (kj+1−kj)h+dj+1 ≤ h+d̄.
Cases B: If kjh+h+ d̄ < kj+1h+dj+1, we consider the following

two intervals:
[kjh + dj, kjh + h + d̄), [kjh + ih + d̄, kjh + ih + h + d̄).

Since dj ≤ d̄, it can be shown that there exists a positive integer
m ≥ 1 such that
kjh + mh + d̄ < kj+1h + dj+1 ≤ kjh + mh + d̄.
Besides, y(kjh) and kjh + ih with i = 1, 2, . . . ,m satisfy (2). Let:

I1 = [kjh + dj, kjh + h + d̄)

I2 =

m−1
i=0

[kjh + ih + d̄, kjh + ih + h + d̄)

I3 = [kjh + mh + d̄, kj+1h + dj+1).

(10)

Define a function:

d(t) =


t − kjh, tϵI1
t − kjh − ih, tϵI(i)2 (i = 1, 2, . . . ,m − 1)
t − kjh − mh, tϵI3.

(11)

In conclusion, by the definition of d(t), we can get:
0 ≤ dj ≤ d(t) < h + d̄, tϵI1
0 ≤ dj ≤ d̄ ≤ d(t) < h + d̄, tϵI(i)2 (i = 1, 2, . . . ,m − 1)
0 ≤ dj ≤ d̄ ≤ d(t) < h + d̄, tϵI3

(12)

where the third row in (10) holds since kj+1h + dj+1 ≤ kj + (dM +

1)h + d̄. Obviously,

0 ≤ dj ≤ d(t) ≤ h + d̄ , dM , tϵ[kjh + dj, kj+1h + dj+1). (13)
In the Case A, for tϵ[kjh+dj, kj+1h+dj+1), we define an error vector
ek(t) = 0.

In Case B, define the sensor measurement error between the
current sampling instant and the latest transmission instant:
ek(t)

=


0, tϵI1
y(kjh + ih) − y(kjh), tϵI(i)2 (i = 1, 2, . . . ,m − 1)
y(kjh + dMh) − y(kjh), tϵI3.

(14)

Then after quantization, from the definition of ek(t) and the
triggering algorithm (2), it can be easily seen that for tϵ[kjh +

dj, kj+1h + dj+1)

ekT (t)Φek(t) ≤ σyT (t − d(t))Φy(t − d(t)). (15)
Remark 3. Notice that the relation of kjh+h+ d̄ ≥ kj+1h+dj+1 in
Case A means the newly sampled sensor measurement y(kjh + h)
will be transmitted and arrive at the quantizer side at the instant
kjh + h + dj+1; kjh + h + d̄ < kj+1h + dj+1 in Case B means
the newly sampled sensor measurement y(kjh + h) and the latest
sensor measurement y(kjh) variate the judgement algorithm (2),
and y(kjh + h) will not be transmitted to the quantizer side.

In the following, we select the filter for the estimation of z(t) as
follows:
ẋf (t) = Af xf (t) + Bf ŷ(t)
zf (t) = Cf xf (t)

(16)

where xf (t)ϵRn is the state estimation of the filter; zf (t)ϵRp

is the output of the filter representing an estimation of z(t);
Af ϵRn×n, Bf ϵRn×m, Cf ϵRp×n are the filter parameter matrices to
be determined; ŷ(t) is the input of the filter, and based on the
sampling technique, the actual output can be described as

ŷ(t) = (I + ∆q)[Cx(t − d(t)) − ek(t)]. (17)
Then after quantization and network, combining (16) and (17), the
H∞ filter system can be rewritten as:
ẋf (t) = Af xf (t) + Bf (I + ∆q)[Cx(t − d(t)) − ek(t)]
zf (t) = Cf xf (t).

(18)

By setting x̄(t) = [xT (t) xTf (t)]
T , z̄(t) = z(t) − zf (t), the

following augmented system can be obtained from (1) and (18):
˙̄x(t) = Āx̄(t) + W̄0ḡ(Hx̄(t)) + W̄1ḡ(Hx̄(t − τ(t)))

+Āwω(t) + B̄Hx̄(t − d(t)) + B̄1ek(t)
z̄(t) = L̄x̄(t)

(19)

where

Ā =


−A 0
0 Af


, W̄0 =


W0
0


,

W̄1 =


W1
0


, Āw =


Aw

0


, HT

=


I
0


,

B̄ =


0

Bf (I + ∆q)C


, B̄1 =


0

−Bf (I + ∆q)


,

L̄ =

L −Cf


.

In the following, we introduce a definition and some lemmas,
which will help us in deriving the main results.

Definition 1 (Mao, 1996). The system is exponentially stable, if
there exist two constants, u > 0, k > 0, satisfying:

∥x̄(t)∥2
≤ ue−kt sup

−r≤θ≤0
∥φ(θ)∥2 (20)

where φ(·) is initial state of the system, such as φ(t) = x̄(t), t ∈

[−r, 0].

Assumption 1 (Li, Hu, Hu, & Li, 2012). The neuron activation
function satisfies one of the following conditions, and U1,U2 are
real constant matrices and satisfy U2 − U1 ≥ 0:

[g(x) − U1x]T [g(x) − U2x] ≤ 0. (21)

Lemma 1 (Gu, Chen, & Kharitonov, 2003). For the given instant τ1
and matrix R > 0, the following inequalities are established:

− τ1

 t

t−τ1

ẋT (s)Rẋ(s)

≤


x(t)

x(t − τ1)

T 
−R R
R −R

 
x(t)

x(t − τ1)


. (22)

Lemma 2 (Wang, Xie, & de Souza, 1992). (1) For any vector x, y ∈ Rn

and matrices Q ∈ Rn×n with appropriate dimensions, the following



42 J. Liu et al. / Neural Networks 82 (2016) 39–48

7)
Γ =


Σ11 ∗ ∗ ∗ ∗

Σ21 Σ22 ∗ ∗ ∗

Σ31 Σ32 Σ33 ∗ ∗

Σ
(p)
41 0 0 −R1 ∗

Σ
(q)
51 0 0 0 −R3

 < 0 (p = 1, 2; q = 1, 2) (2

where

Σ11 =



Φ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R2 Φ2 ∗ ∗ ∗ ∗ ∗ ∗

0 M3 − MT
2 Φ3 ∗ ∗ ∗ ∗ ∗

0 0 N4 − NT
3 Φ4 ∗ ∗ ∗ ∗

HT B̄TP + S5 − ST1 0 0 0 Φ5 ∗ ∗ ∗

0 0 0 0 Z6 − ZT
5 Φ6 ∗ ∗

W̄ T
0 P − αŪT

2 0 0 0 0 0 −αI ∗

W̄ T
1 P 0 −βŪ2 0 0 0 0 −βI


,

Φ1 = PĀ + ĀTP + Q1 + Q2 + Q3 − R2 + S1 + ST1 − αŪ1, Φ2 = −Q1 + M2 + MT
2 − R2,

Φ3 = −M3 − MT
3 + N3 + NT

3 − βŪ1, Φ4 = −Q2 − N4 − NT
4 , Σ22 = diag{−Φ, −γ 2I, −I},

Φ5 = −S5 − ST5 + Z5 + ZT
5 + Ψ , Φ6 = −Q3 − Z6 − ZT

6 , Ψ =


σCTΦC 0

0 0


,

Σ31 =

c21R1Ā 0 0 0 c21R1B̄H 0 c21R1W̄0 c21R1W̄1

c1R2Ā 0 0 0 c1R2B̄H 0 c1R2W̄0 c1R2W̄1

d1R3Ā 0 0 0 d1R3B̄H 0 d1R3W̄0 d1R3W̄1

 ,

Σ21 =

 B̄TP 0 0 0 0 0 0 0
ĀT

wP 0 0 0 0 0 0 0
L̄ 0 0 0 0 0 0 0

 , Σ32 =

c21R1B̄1 c21R1Āw 0
c1R2B̄1 c1R2Āw 0
d1R3B̄1 d1R3Āw 0

 ,

Σ
(1)
41 =


0 c21MT

2 c21MT
3 0 0 0 0 0


, Σ

(2)
41 =


0 0 c21NT

3 c21NT
4 0 0 0 0


,

Σ
(1)
51 =


d1ST1 0 0 0 d1ST5 0 0 0


, Σ

(2)
51 =


0 0 0 0 d1ZT

5 d1ZT
6 0 0


,

Σ33 = diag{−R1, −R2, −R3}, c21 =
√

τM − τm, c1 = τm, d1 =


dM .

Box I.
inequality is established:

2xTy ≤ xTQx + yTQ−1y (23)

(2) D, E, F are matrices with appropriate dimensions and satisfy
∥F∥ ≤ 1, the following inequality is established:

For any variable ε > 0,

DFE + ET F TDT
≤ ε−1DDT

+ εETE. (24)

Lemma 3 (Tian, Yue, & Zhang, 2009). Suppose τ(t)ϵ[τm, τM ],
d(t)ϵ[0, dM ], Qi(i = 1, 2, 3, 4, 5) are matrices with appropriate
dimensions, the inequality Q1 + (τM − τ(t))Q2 + (τ (t) − τm)Q3 +

(dM −d(t))Q4 +d(t)Q5 < 0 is established, if and only if the following
inequalities are established:

Q1 + (τM − τm)Q2 + dMQ4 < 0
Q1 + (τM − τm)Q3 + dMQ4 < 0
Q1 + (τM − τm)Q2 + dMQ5 < 0
Q1 + (τM − τm)Q3 + dMQ5 < 0.

(25)

Lemma 4 (Xiong & Lam, 2009). For matrix R > 0, X and any real
number η, then we have:

− XR−1X ≤ η2R − 2ηX . (26)

3. Main results

In Theorem 1, assuming A, C,W0,W1, Aw and filter gain
Af , Bf , Cf are known, and using the method of Lyapunov function
and linear matrix inequality technique, considering the event-
triggered generator and quantizer, we analysis the stability of the
system (19).

Theorem 1. For given parameters τm, τM , dM and σ , the sys-
tem (19) is exponentially stable with an H∞ disturbance attenuation
level γ under the event trigger scheme (2) and the action of quan-
tizer (3), if there exist matrices P > 0,Qi > 0, Ri > 0(i = 1, 2, 3),
Φ > 0, Mj(j = 2, 3),Nk(k = 3, 4), Sl(l = 1, 5), Zs(s = 5, 6) with
appropriate dimensions and parameters α > 0, β > 0, satisfying
Eq. (27) given in Box I.

Proof. Choose the following Lyapunov functional as:

V (xt) = V1(xt) + V2(xt) + V3(xt) (28)

where

V1(xt) = x̄T (t)Px̄(t)

V2(xt) =

 t

t−τm

x̄T (s)Q1x̄(s)ds +

 t

t−τM

x̄T (s)Q2x̄(s)ds

+

 t

t−dM
x̄T (s)Q3x̄(s)ds

V3(xt) =

 t−τm

t−τM

 t

s

˙̄x
T
(v)R1 ˙̄x(v)dvds

+ τm

 t

t−τm

 t

s

˙̄x
T
(v)R2 ˙̄x(v)dvds

+

 t

t−dM

 t

s

˙̄x
T
(v)R3 ˙̄x(v)dvds.



J. Liu et al. / Neural Networks 82 (2016) 39–48 43
Taking the time derivative of V1(xt), V2(xt), V3(xt) with respect to
t , we can obtain:

V̇ (xt) = V̇1(xt) + V̇2(xt) + V̇3(xt)
= 2x̄T (t)P ˙̄x(t) + x̄T (t)(Q1 + Q2 + Q3)x̄(t)

− x̄T (t − τm)Q1x̄(t − τm) − x̄T (t − τM)Q2x̄(t − τM)

− x̄T (t − dM)Q3x̄(t − dM) + (τM − τm)˙̄x
T
(t)R1 ˙̄x(t)

−

 t−τm

t−τM

˙̄x
T
(s)R1 ˙̄x(s)ds + τ 2

m
˙̄x
T
(t)R2 ˙̄x(t)

− τm

 t

t−τm

˙̄x
T
(s)R2 ˙̄x(s)ds + dM ˙̄x

T
(t)R3 ˙̄x(t)

−

 t

t−dm

˙̄x
T
(s)R3 ˙̄x(s)ds. (29)

Applying the free-weighting matrices method, it is easily de-
rived that:

2ξ T (t)M

x̄(t − τm) − x̄(t − τ(t)) −

 t−τm

t−τ(t)

˙̄x(s)ds


= 0

2ξ T (t)N

x̄(t − τ(t)) − x̄(t − τM) −

 t−τ(t)

t−τM

˙̄x(s)ds


= 0

2ξ T (t)S

x̄(t) − x̄(t − d(t)) −

 t

t−d(t)

˙̄x(s)ds


= 0

2ξ T (t)Z

x̄(t − d(t)) − x̄(t − dM) −

 t−d(t)

t−dM

˙̄x(s)ds


= 0

(30)

where M,N, S and T are matrices with appropriate dimensions,
and

ξ T (t) = [x̄T (t), x̄T (t − τm), x̄T (t − τ(t)), x̄T (t − τM),

x̄T (t − d(t)), x̄T (t − dM), ḡ(H(x̄(t))), ḡ(H(x̄(t − τ(t))))]T .

By using Lemma 2, we have:

−2ξ T (t)M
 t−τm

t−τ(t)

˙̄x(s)ds ≤ (τ (t) − τm)ξ T (t)

MR−1
1 MR−1

1 MT ξ(t) +

 t−τm

t−τ(t)

˙̄x
T
R1 ˙̄x(s)ds

−2ξ T (t)N
 t−τ(t)

t−τM

˙̄x(s)ds ≤ (τM − τ(t))ξ T (t)

NR−1
1 NT ξ(t) +

 t−τ(t)

t−τM

˙̄x
T
R1 ˙̄x(s)ds

−2ξ T (t)S
 t

t−d(t)

˙̄x(s)ds ≤ d(t)ξ T (t)SR−1
3 ST ξ(t)

+

 t

t−d(t)

˙̄x
T
R3 ˙̄x(s)ds

−2ξ T (t)Z
 t−d(t)

t−dM

˙̄x(s)ds ≤ (dM − d(t))ξ T (t)

ZR−1
3 ZT ξ(t) +

 t−d(t)

t−dM

˙̄x
T
R3 ˙̄x(s)ds.

(31)

By using Lemma 1, notice that:

− τm

 t

t−τm

˙̄x
T
(s)R2 ˙̄x(s)ds ≤


x̄(t)

x̄(t − τm)

T 
−R2 R2
R2 −R2


×


x̄(t)

x̄(t − τm)


. (32)
By Assumption 1, we obtain:
x̄(t)

ḡ(H(x̄(t)))

T 
Ū1 Ū2

Ū2 I

 
x̄(t)

ḡ(H(x̄(t)))


≤ 0, (33)

where Ū1 = HT Û1H, Ū2 = −HT Û2, Û1 =
UT
1 U2+UT

2 U1
2 , Û2 =

UT
1 +UT

2
2 . So for the parameters α > 0, β > 0, it is easy to get:

−α


x̄(t)

ḡ(H(x̄(t)))

T 
Ū1 Ū2

Ū2 I

 
x̄(t)

ḡ(H(x̄(t)))


≥ 0, (34)

−β


x̄(t)

ḡ(H(x̄(t − τ(t))))

T 
Ū1 Ū2

Ū2 I

 
x̄(t)

ḡ(H(x̄(t − τ(t))))


≥ 0. (35)

Combine (15) and (28)–(35) we can obtain that:

V̇ (t) − γ 2wT (t)w(t) + z̄T (t)z̄(t)

≤ 2x̄T (t)P ˙̄x(t) + x̄T (Q1 + Q2 + Q3)x̄(t)
− x̄T (t − τm)Q1x̄(t − τm)

− x̄T (t − τM)Q2x̄(t − τM) − x̄T (t − dM)Q3x̄(t − dM)

+


x̄(t)

x̄(t − τm)

T 
−R2 R2
R2 −R2

 
x̄(t)

x̄(t − τm)


+ 2ξ T (t)M[x̄(t − τm) − x̄(t − τ(t))]
+ 2ξ T (t)N[x̄(t − τ(t)) − x̄(t − τM)]

+ 2ξ T (t)S[x̄(t) − x̄(t − d(t))]
+ 2ξ T (t)Z[x̄(t − d(t)) − x̄(t − dM)]

+ (τ (t) − τm)ξ T (t)MR−1
1 MT ξ(t)

+ (τM − τ(t))ξ T (t)NR−1
1 NT ξ(t)

+ d(t)ξ T (t)SR−1
3 ST ξ(t) + (dM − d(t))ξ T (t)ZR−1

3 ZT ξ(t)

− α


x̄(t)

ḡ(H(x̄(t)))

T 
Ū1 Ū2

Ū2 I

 
x̄(t)

ḡ(H(x̄(t)))


− β


x̄(t)

ḡ(H(x̄(t − τ(t))))

T 
Ū1 Ū2

Ū2 I

 
x̄(t)

ḡ(H(x̄(t − τ(t))))


+ σ x̄T (t − d(t))Ψ x̄(t − d(t)) − eTk (t)Φek(t)

+ (τM − τm)˙̄x
T
(t)R1 ˙̄x(t) + τ 2

m
˙̄x
T
(t)R2 ˙̄x(t)

+ dM ˙̄x
T
(t)R3 ˙̄x(t) − γ 2wT (t)w(t) + z̄T (t)z̄(t). (36)

By Schur complement, from Eq. (36) we can obtain:

V̇ (t) − γ 2wT (t)w(t) + z̄T (t)z̄(t)

≤ ξ T (t)Σ11ξ(t) + (τ (t) − τm)ξ T (t)MR−1
1 MT ξ(t)

+ (τM − τ(t))ξ T (t)NR−1
1 NT ξ(t)

+ d(t)ξ T (t)SR−1
3 ST ξ(t) + (dM − d(t))ξ T (t)ZR−1

3 ZT ξ(t)

+ (τM − τm)˙̄x
T
(t)R1 ˙̄x(t) + τ 2

m
˙̄x
T
(t)R2 ˙̄x(t)

+ dM ˙̄x
T
(t)R3 ˙̄x(t) + z̄T (t)z̄(t). (37)

By using Lemma 3 and Schur complement, from Eq. (37), it is
easy to see that Eq. (27) with p = 1, 2, q = 1, 2 can lead to:

V̇ (t) ≤ γ 2wT (t)w(t) − z̄T (t)z̄(t). (38)

Then integrating both sides of Eq. (38) from 0 to t and letting
t → +∞, we can get ∥z(t)∥2 ≤ γ ∥w(t)∥2.

Suppose w(t) = 0, Ξ(t) = e2ktV (t), and taking the time
derivative of Ξ(t) yields, repeated above prove and using the sim-
ilar method (Mao, 1996), there exist l0 > 0, k > 0 such that
V (t) ≤ l0e−2kt sup−δ≤θ≤0 ∥Φ∥

2.
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0)
Π =



Φ11 ∗ ∗ ∗ ∗ ∗ ∗

Φ21 Σ22 ∗ ∗ ∗ ∗ ∗

Φ31 Φ32 Φ33 ∗ ∗ ∗ ∗

Σ
(p)
41 0 0 R1 ∗ ∗ ∗

Σ
(q)
51 0 0 0 R3 ∗ ∗

Φ61 0 Φ63 0 0 −
ε4

δ2
I ∗

Φ71 0 Φ73 0 0 0 −ε4I


< 0 (p = 1, 2; q = 1, 2) (4

where

Φ11 =



Φ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R2 Φ2 ∗ ∗ ∗ ∗ ∗ ∗

0 M3 − MT
2 Φ3 ∗ ∗ ∗ ∗ ∗

0 0 N4 − NT
3 Φ4 ∗ ∗ ∗ ∗

HT B̃TP + S5 − ST1 0 0 0 Φ5 ∗ ∗ ∗

0 0 0 0 Z6 − ZT
5 Φ6 ∗ ∗

W̄ T
0 P − αŪT

2 0 0 0 0 0 −αI ∗

W̄ T
1 P 0 −βŪ2 0 0 0 0 −βI


,

Φ21 =

 B̃TP 0 0 0 0 0 0 0
ĀT

wP 0 0 0 0 0 0 0
L̄ 0 0 0 0 0 0 0

 , Φ32 =

c21R1B̃1 c21R1Āw 0
c1R2B̃1 c1R2Āw 0
d1R3B̃1 d1R3Āw 0

 ,

Φ31 =

c21R1Ā 0 0 0 c21R1B̃H 0 c21R1W̄0 c21R1W̄1

c1R2Ā 0 0 0 c1R2B̃H 0 c1R2W̄0 c1R2W̄1

d1R3Ā 0 0 0 d1R3B̃H 0 d1R3W̄0 d1R3W̄1

 , B̃ =


0

Bf C


, B̃1 =


0

−Bf


,

Φ33 = diag{−2ε1P1 + ε2
1R1, −2ε2P1 + ε2

2R2, −2ε3P1 + ε2
3R3},

Φ61 =

B̃T
f 0 0 0 0 0 0 0


, Φ71 =


0 0 0 0 ε4C 0 0 0


,

Φ63 =

c21B̃T

f c1B̃T
f d1B̃T

f


, Φ73 =


−ε4I 0 0


, B̃f =


BT
f P2 BT

f P3
0 0


.

Box II.
For V (t) ≥ V1(t) ≥ λmin(P) ∥x̄(t)∥2, we get λmin(P) ∥x(t)∥2
≤

l0e−2kt sup−δ≤θ≤0 ∥φ∥
2, i.e.

∥x̄(t)∥2
≤

l0
λmin(P)

e−2kt sup
−δ≤θ≤0

∥φ∥
2 . (39)

Squaring both sides we get ∥x̄(t)∥ ≤


l0

λmin(P)
e−2kt sup−δ≤θ≤0 ∥φ∥.

Suppose l =


l0

λmin(P)
and ∥x̄(t)∥2

≤ le−2kt sup−δ≤θ≤0 ∥φ∥
2. By

Definition 1, the system (19) is exponentially stable. This complete
the proof.

Remark 4. In Theorem 1, a sufficient condition is given which can
guarantee the exponential stability of the augmented system (19).
Note that there exist nonlinear terms ∆q in Theorem 1. Similar to
Qu et al. (2015), applying a well-known bounding inequality, we
eliminate ∆q and an equivalent expression of (27) is obtained in
the following Theorem 2.

Theorem 2. For given positive parametersγ , τm, τM , dM , ε1, ε2, ε3, ε4,
and σ , the system (19) is exponentially stable under the event trig-
ger scheme (2) and the action of quantizer (3), if there exist matrices
P > 0,Qi > 0, Ri > 0(i = 1, 2, 3), Φ > 0, Mj(j = 2, 3),Nk(k =

3, 4), Sl(l = 1, 5), Zs(s = 5, 6) with appropriate dimensions and
parameters α > 0, β > 0 such that the inequality given in Box II
holds.

Other parameters are the same as Theorem 1.
Proof. Pre-andpost-multiplying (27)with diag =


I, . . . , I  

11

, PR−1
1 ,

PR−1
2 , PR−1

3 , I, I

and its transpose, one has:

Γ̃ =


Σ11 ∗ ∗ ∗ ∗

Σ21 Σ̄22 ∗ ∗ ∗

Σ̃31 Σ̃32 Σ̃33 ∗ ∗

Σ
(p)
41 0 0 −R1 ∗

Σ
(q)
51 0 0 0 −R3

 (41)

where

Σ̃31 =

c21PĀ 0 0 0 c21PB̄H 0 c21PW̄0 c21PW̄1

c1PĀ 0 0 0 c1PB̄H 0 c1PW̄0 c1PW̄1

d1PĀ 0 0 0 d1PB̄H 0 d1PW̄0 d1PW̄1

 ,

Σ̃32 =

c21PB̄1 c21PĀw 0
c1PB̄1 c1PĀw 0
d1PB̄1 d1PĀw 0

 ,

Σ̃33 = diag{−PR1P, −PR2P, −PR3P}.

By using Lemma 4, we can obtain the following inequality:−PR−1
1 P ≤ −2ε1P + ε2

1R1

−PR−1
2 P ≤ −2ε2P + ε2

2R2

−PR−1
3 P ≤ −2ε3P + ε2

3R3.

(42)
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Define P =


P1 PT2
P2 P3


,

since P̄3 > 0, there exist nonsingular matrices P2 and P3 > 0
satisfying P̄3 = PT

2 P
−1
3 P2. Applying Schur complement, P > 0 is

equal to P1 − P̄3 > 0.
The matrix (27) can be rewritten as the following form:

Π = Π11 + JB∆qJC + JTC ∆qJTB (43)

where

JTB =


B̃T
f 0, . . . , 0  

10

c21B̃T
f c1B̃T

f d1B̃T
f 0 0


,

JC =


0 0 0 0 C 0 0 0 −I 0, . . . , 0  

7


,

B̃f =


BT
f P2 BT

f P3
0 0


,

Π11 =


Φ11 ∗ ∗ ∗ ∗

Φ21 Σ22 ∗ ∗ ∗

Φ31 Φ32 Φ33 ∗ ∗

Σ
(p)
41 0 0 R1 ∗

Σ
(q)
51 0 0 0 R3

 .

Using Lemma 2, there exists ε4 > 0,

Π ≤ Π11 + ε−1
4 JB∆2

q J
T
B + ε4JTC JC (44)

and

∆2
q ≤ δ2I. (45)

By Schur complement, we can get (40) according to (27).
This completes the proof.

Remark 5. From Theorem 2, the solution of inequality (40) is not
only dependent on the upper and lower bounds of the network
delay, but also affected by the quantization parameter δ of the
quantizer.

Based on the event trigger scheme (2) and the action of
quantizer (3), the stability condition is conducted in Theorem 2.
The explicit expression of the parameters of the designed filter are
given in the following theorem in terms of LMIs.

Theorem 3. For given positive parameters γ , τm, τM ,
dM , ε1, ε2, ε3, ε4 and σ , the augmented system (19) is exponentially
stable under the event trigger scheme (2) and the action of quan-
tizer (3), if there exist matrices P1 > 0, P̄3 > 0, Q̄i > 0, R̄i >
0(i = 1, 2, 3), Φ > 0, Āf , B̄f , C̄f , M̄j(j = 2, 3), N̄k(k = 3, 4), S̄l(l =

1, 5), Z̄s(s = 5, 6) with appropriate dimensions and parameters
α > 0, β > 0 such that the LMIs given in Box III hold, and other
parameters are the same as Theorem 2.

Moreover, if the above conditions are feasible, the parameter
matrices of the filter are given by:Af = Āf P̄−1

3
Bf = B̄f

Cf = C̄f P̄−1
3 .

Proof. Let J =


I 0
0 PT2 P

−1
3


, Λ = diag


J, . . . , J  

6

, I, . . . , I  
5

,

J, . . . , J  
5

, I, I

.

Multiplying Λ and ΛT on both sides of (40), respectively, and
defining P̄ = JPJT =


P1 P̄3
P̄3 P̄3


, Q̄i = JQiJT , R̄i = JRiJT (i =
1, 2, 3), M̄j = JMiJT (j = 2, 3), N̄k = JNkJT (k = 3, 4), S̄l =

JSlJT (l = 1, 5), Z̄s = JZsJT (s = 5, 6).
Define variables:Āf = Âf P̄3, Âf = PT

2 Af P−T
2

B̄f = PT
2 Bf

C̄f = Ĉf P̄3, Ĉf = Cf P−T
2 .

(47)

Then, by the above equivalent linear transformation, we can
obtain (46) is equivalent to (40).

Next, we will solve the filter parameters.
By observing (46), we cannot solve P2 and P3 directly. The

continuous transfer function from ŷ(t) and zf (t) can be expressed
as:

Tzf ŷ = Cf (sI − Af )
−1Bf

= C̄f P−T
2 P3(sI − P−1

2 Āf P−T
2 P3)−1P−1

2 B̄f

= C̄f (sP̄3 − Āf )
−1B̄f

= C̄f P̄−1
3 (sI − Āf P̄−1

3 )−1B̄f . (48)

So the filter parameters can be described as follows:Af = Āf P̄−1
3

Bf = B̄f

Cf = C̄f P̄−1
3 .

(49)

This complete the proof.

4. Simulation examples

In this section, an illustrative example is presented to demon-
strate the effectiveness of the proposed filter design approach for
the neural network (1).

Consider a neural network (1) with the following parameters:

A =


2 0
0 1


, W0 =


0.3 −0.4

−0.4 0.3


,

W1 =


0.3 0.3
0.3 0.3


,

U1 =


0.3 0.2
0 0.2


, U2 =


0.5 0.2
0 0.95


, C =


0.9 0.8


,

Aw =

0.1 0.2


,

w(t) =

0.5, tϵ[5, 10)
−0.5, tϵ[15, 20)
0, else

,

g(t) =


0.5x1(t) − tanh(0.2x1(t)) + 0.2x2(t)

0.95x2(t) − tanh(0.75x1(t))


.

We assume α = 0.64604, β = 0.57723, γ = 1.5, ε1 = ε2 =

ε3 = ε4 = 1, time delay τm = 0.1, τM = 0.2, dM = 0.1,
the corresponding trigger parameter σ = 0.05 and quantization
parameters ρ = 0.8, where δ =

1−ρ

1+ρ
, by using the LMI toolbox of

Matlab, it is easy to obtain the following matrices:

P1 =


4.0462 0.3022
0.3022 2.6851


, P̄3 =


1.7982 0.1632
0.1632 1.2316


,

Af =


−5.8282 −1.2179
−1.7277 −3.7041


, Bf =


−2.7993
−3.2925


,

Cf =

−0.4944 0.2872


,

Āf =


−3.1898 −0.5663
−0.6963 −2.9152


, B̄f =


−2.7993
−3.2925


,

C̄f =

−0.2997 0.2729


, Φ = 14.3288.
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6)
Υ =



Υ11 ∗ ∗ ∗ ∗ ∗ ∗

Υ21 Σ22 ∗ ∗ ∗ ∗ ∗

Υ31 Υ32 Υ33 ∗ ∗ ∗ ∗

Υ
(p)
41 0 0 R̄1 ∗ ∗ ∗

Υ
(q)
51 0 0 0 R̄3 ∗ ∗

Υ61 0 Υ63 0 0 −
ε4

δ2
I ∗

Υ71 0 Υ73 0 0 0 −ε4I


< 0 (p = 1, 2; q = 1, 2) (4

where

Υ11 =



Λ1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

R̄2 Λ2 ∗ ∗ ∗ ∗ ∗ ∗

0 M̄3 − M̄T
2 Λ3 ∗ ∗ ∗ ∗ ∗

0 0 N̄4 − N̄T
3 Λ4 ∗ ∗ ∗ ∗

Λ5 0 0 0 Λ6 ∗ ∗ ∗

0 0 0 0 T̄6 − T̄ T
5 Λ7 ∗ ∗

Λ8 + Γ6 0 0 0 0 0 −αI ∗

Λ9 0 Γ7 0 0 0 0 −βI


,

Λ1 = Γ1 + Γ T
1 + Q̄1 + Q̄2 + Q̄3 − R̄2 + S̄1 + S̄T1 − Γ2,

Γ1 =


−P1A Āf

−P̄3A Āf


, Γ2 =

α
UT
1 U2 + UT

2 U1

2
0

0 0

 , Γ3 =

β
UT
1 U2 + UT

2 U1

2
0

0 0

 ,

Λ2 = −Q̄1 − R̄2 + M̄2 + M̄T
2 , Λ3 = M̄3 − M̄T

3 + N̄3 + N̄T
3 − Γ3,

Λ4 = −Q̄2 − N̄4 − N̄T
4 , Λ5 = S̄5 − S̄T1 + Γ4,

Γ4 =


CT B̄T

f CT B̄T
f

0 0


, Γ5 =


σCTΦC 0

0 0


,

Λ6 = −S̄5 − S̄T5 + Z̄5 + Z̄T
5 + Γ5, Λ7 = −Q̄3 − Z̄6 − Z̄T

6 , L̃ =

L −C̄f


,

Υ21 =

Λ10 0 0 0 0 0 0 0
Λ11 0 0 0 0 0 0 0
L̃ 0 0 0 0 0 0 0

 , Λ8 =

W T

0 P1 W T
0 P̄3


, Γ6 =


α
U1 + U2

2
0


,

Γ7 =


β
UT
1 + UT

2

2
0


, Λ9 =


W T

1 P1 W T
1 P̄3


, Λ10 =


−B̄T

f −B̄T
f


, Λ11 =


AT

wP1 AT
w P̄3


,

Υ31 =

c21Γ1 0 0 0 c21Γ T
4 0 c21ΛT

8 c21ΛT
9

c1Γ1 0 0 0 c1Γ T
4 0 c1ΛT

8 c1ΛT
9

d1Γ1 0 0 0 d1Γ T
4 0 d1ΛT

8 d1ΛT
9

 , Υ32 =

c21ΛT
10 c21ΛT

11 0
c1ΛT

10 c1ΛT
11 0

d1ΛT
10 d1ΛT

11 0

 ,

Υ33 = diag{−2ε1P̄1 + ε2
1 R̄1, −2ε2P̄1 + ε2

2 R̄2, −2ε3P̄1 + ε2
3 R̄3},

Υ
(1)
41 =


0 c21M̄T

2 c21M̄T
3 0 0 0 0 0


, Υ

(2)
41 =


0 0 c21N̄T

3 c21N̄T
4 0 0 0 0 0


,

Υ
(1)
51 =


d1S̄T1 0 0 0 d1S̄T5 0 0 0


, Υ

(2)
51 =


0 0 0 0 d1Z̄T

5 d1Z̄T
6 0 0


,

Υ61 =


B̂T
f 0 0 0 0 0 0 0


, Υ71 =


0 0 0 0 ε4C 0 0 0


,

Υ63 =


c21B̂T

f c1B̂T
f d1B̂T

f


, Υ73 =


−ε4I 0 0


, B̂f =


Bf Bf


.

Box III.
Given the initial condition x(0) =

−0.5 0.1

T , xf (0) =
−0.3 0.5

Tand the sampling period h = 0.05, the event-
triggered release instants and intervals are shown in Fig. 2. In
Fig. 3, we draw a comparison chart of the state y(kjh) before the
quantization and the quantized state y1(kjh), which can better
show the changes before and after quantization. The response of
the filter error z̄(t) is depicted in Fig. 4, which demonstrates that
the designed filter can satisfy the system performance.
5. Conclusion

This paper investigates the event-triggered H∞ filter design for
a class of neural network systems with quantization. In particular,
the event-triggered generator and quantizer inserted in network
have the advantages of reducing the communication load in
the neural network and gearing up its efficiency. Moreover, by
employing the neural network model with the event triggered
scheme and quantization, the fundamental stability criteria are
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Fig. 2. Release instances and release interval.

Fig. 3. Before and after quantization.

Fig. 4. Filter error z̄(t).

obtained. Furthermore, a filter design method is developed and
the explicit expression of the desired filter parameters can be
derived. Lastly, a numerical example has been provided to show
the usefulness of the proposed method. Further work will study
the effects of the distributed event-triggered scheme in the neural
networks. In addition, the cases with respect to limited data
transmission rate, and encoding–decoding algorithms are also
interesting, which is our future research.
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