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This paper is concerned with event-triggered non-fragile state estimator design for delayed neural net-
works subject to randomly occurring sensor nonlinearity. Different from the existing event-triggered
scheme, a new event-triggered scheme is designed which is dependent on the incomplete measurement.
The adopted event-triggered scheme is introduced between the neural networks and state estimator for

the purpose of energy saving. Considering the sensor nonlinearity and using the event-triggered scheme,
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a new estimation error system is modeled. Based on this model, a sufficient condition is derived to guar-
antee the asymptotical stability of estimation error system. Furthermore, a desired event-triggered non-
fragile estimator is designed by solving a set of linear matrix inequalities. Finally, a numerical example is
provided to illustrate the usefulness of the proposed method.
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1. Introduction

In the past several decades, neural networks have received con-
siderable attention due to the fact that they have widely applica-
tions in signal processing, target tracking, pattern recognition and
so on. Many outstanding results have been achieved [1-4]. It is
well known that understanding the neuron states is an essential
step to apply the neural networks and realize the desired perfor-
mance in practice. However, it is often difficult to acquire the com-
plete information immediately of all the neuron states, and only a
series of observations can we obtain. Therefore, much effort has
been devoted to the neuron state estimation problem [5-7].

In many practical systems, there exist many unavoidable fac-
tors such as drastic variations of flow rates, pressures, and tem-
peratures. Such harsh environments can make the sensor measure-
ment imperfect, which result in nonlinear characteristic of sensors.
The method based on linear measurements can not deal with the
sensor nonlinearity effectively. Therefore, how to solve sensor non-
linearity on filter and controller design has been paid much atten-
tion [8-14]. For example, in [8], the authors are concerned with the
problem of asynchronous I, — I, filtering for discrete-time stochas-
tic Markov jump systems with sensor nonlinearity. In [10], the is-
sue of finite state estimation is investigated for coupled Marko-
vian neural networks subject to sensor nonlinearities. The filter de-
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sign is discussed in [9] for Markov jump systems with incomplete
transition probabilities subject to sensor nonlinearities. The Hy, fil-
tering problem is considered for discrete time-delay systems with
quantization and stochastic sensor nonlinearity in [14]. However,
in most aforementioned literatures, communication constraints be-
tween the system plant and the state estimator is not considered.
All the sampled sensor measurements will be transmitted to the
estimator leading to an unnecessary transmission of sampled data.
In some cases, the network bandwidth is limited, it is of great ne-
cessity to make high utilization of the precious communication re-
sources in neural networks with sensor nonlinearity, which is the
first motivation of this paper.

In recent years, the event-triggered communication strategy de-
pendent on state or output measurements has attracted consider-
able attention in control community [15-18]. Different from the
time-triggered case where the sampled signals are executed pe-
riodically, the sampled data under event-triggered scheme can be
transmitted only if the predefined triggering condition is violated.
The main advantage of the event-triggered scheme is that it can
reduce the transmission amount while maintaining the desired sta-
bility and performance criteria. Due to the explicit engineering
prospects, event-triggered schemes have been active areas of re-
search [19-24]. In [19], the reliable control design is considered
for networked control systems against probabilistic actuator and
sensor fault with different failure rates. The event-triggered ro-
bust fusion estimation problem is discussed in [20] for uncertain
multirate sampled-data systems with stochastic nonlinearities and


http://dx.doi.org/10.1016/j.neucom.2017.08.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.08.011&domain=pdf
mailto:jafang@dhu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2017.08.011

2 L. Zha et al./ Neurocomputing 273 (2018) 1-8

the colored measurement noises. The authors in [21] construct a
discrete event-triggered communication scheme to save the lim-
ited network resource while preserving the desired performance.
The problem of fault detection is investigated in [22] for nonlin-
ear discrete-time event-triggered networked systems. In [23], the
consensus problem under event-triggered communication scheme
is considered for discrete-time heterogeneous multi-agent systems
on a directed interconnection topology. The event-triggered multi-
objective control problems are considered in [24] for time-varying
systems with randomly occurring saturations, stochastic nonlinear-
ities and state multiplicative noise. It is noticed that the majority
of the existing event-triggered strategies do not take the sensor
nonlinearity into consideration, then, the existing performance and
stability results in the published work may not valid in the pres-
ence of sensor nonlinearity. Therefore, it is challenging to study
event-triggered scheme which takes the sensor nonlinearity into
account. This is the second motivation of this paper.

Motivated by the above statement, in this paper, the problem of
event-triggered non-fragile state estimation is investigated for de-
layed neural networks with randomly occurring sensor nonlinear-
ity. The sensor nonlinearity is assumed to occur randomly accord-
ing to a Bernoulli distributed stochastic variable. For the purpose
of energy saving, a event triggered scheme is constructed based
on the available sensor measurement. Under the event-triggered
scheme, a new state estimation error system is constructed. Suf-
ficient conditions are obtained which can ensure the performance
and the stability of the augmented system. Furthermore, the de-
sired state estimator is derived by solving certain linear matrix in-
equalities. Finally, a simulation example is provided to demonstrate
the usefulness of the proposed event-triggered non-fragile state es-
timator.

The rest of this paper is organized as follows. In Section 2,
we introduce the state estimation error system considering sen-
sor nonlinearity and the event-triggered scheme. In Section 3, suf-
ficient conditions are provided to ensure the stability of the aug-
mented system. Moreover, the estimator gain is designed. An il-
lustrative example is given in Section 4. Finally, the conclusion is
drawn in Section 5.

Notation: R" and R™™ denote the n-dimensional Euclidian
space, and the set of n x m real matrices; the superscript T stands
for matrix transposition; I is the identity matrix of appropriate
dimension; the notation X >0 (respectively, X>0), for X e R™*"
means that the matrix X is real symmetric positive definite (re-
spectively, positive semi-definite); Prob{X} denotes probability of
event X to occur; £ denotes the expectation operator; for a matrix

B and two symmetric matrices A and C, g ¢l denotes a symmetric

matrix, where * denotes the entries implied by symmetry.

2. System description

Consider the following continuous-time delayed neural network
with n neurons:

x(t) = Ax(t) + Bg(x(t)) + Eh(x(t — d(t))) + Dw(t)
y(©) = (1 —a(t))Cx(t) +a(t) F(Cx(L)) (1)
z(t) = Lx(t)

where x(t) =[x1(t), x(t),...,Xn (t)]T € R" is the state vector, and
y(t) e R™ is the measurable output, z(t) € RP is the signal to be
estimated, w(t) e RY is the noise input belonging to £;[0, co).
d(t) is a time-varying delay satisfying 0 <d(t)<d,;, where dy is
a constant. A = diag{a;,a;,...,as} <0 is a constant real matrix,
B € R™M" and E € R™" are the interconnection matrices represent-
ing coefficients of the neurons. D, C and L are known real constant
matrices with appropriate dimensions.

Remark 1. Nowadays, due to the simplicity and low cost, smart
sensor technology has become increasingly active development
and widely used in various fields of aerospace, aviation, defense,
science and technology and industrial and agricultural production
etc. It should be noticed that smart sensor in Fig. 1 is embedded
to sense, sample, exchange information, transmit useful collected
information over a network. Smart sensor in this paper is made up
of sensor, sampler, event generator and data memory.

Assumption 1. [25] The neuron activation function g(x(t)) =
(g1 (x1 (D). &2(X2(0). ... gnn ()] and hx(t —d(1))) =
[hy(xq(t = d(t), hy(Xa(t —d(t)), ..., hn(xa(t — d(t)))]T satisfy for
1=1,2,....,n, Vs; #5;

by < BEDZEE) g )
¢ < hi(s1) = hi(s2) <ot 3)

S1—352

- bt b bt
where ¢gl’ ¢g, ®p» ¢ are known constants.

flCx(t)) is assumed to be continuous with f(0) = 0, and satisfies
the following condition [10]:

I£(Cs1(6) = FCs2ENII* < IFC(s1(E) = s2(NII? (4)

for all ¢;(t), () e R", in which F is a constant matrix. The
stochastic variable «(t)e{0, 1} is a Bernoulli distributed white se-
quence which accounts for the phenomena of randomly occurring
sensor nonlinearity and Prob{«(t) = 0} = &.

Remark 2. In this paper, the output measurement model in (1) is
introduced to reflect the phenomenon of sensor nonlinearity,
which is often encountered due to the harsh environment. A
Bernoulli distributed stochastic variable «(t) is used to describe the
randomly occurring sensor nonlinearity.

Remark 3. As is known to all, time delays are unavoidable due
to the finite switching speed of the amplifiers and the finite sig-
nal propagation time. In practice, time delays always result in poor
performances or even instability of the system. In view of this, it
makes sense to deal with the effect of time delays on the system
stability. Many important results have been achieved in the past
few years [26,27].

In this paper, we are interested in designing the non-fragile
state estimator as follows:

R(t) = AR(t) + Bg(X(t)) + Eh(R(t — d(t))) + (K + AK) (y(t)
y(t) = CX(t)
2(t) = LR(t)

where X(t), y(t) and Z(t) are the estimations of x(t), y(t) and z(t),
respectively. K is the estimator gain to be designed, AK denote the
structure HF(t)G, in which H and G are the given constant matrices,
K(t) is an unknown time-varying matrix satisfying F'(t)F(t) <I.

Remark 4. Considering the complex and changeable environment,
the state estimator gains may undergo drafts and fluctuations,
then, the realized parameter of the state estimator may be inac-
curate [28]. Hence, it is necessary to consider the non-fragile state
estimator problem. In this paper, we assume AK is the correspond-
ing small uncertainties on state estimator implementation.

In order to achieve high utilization of the communication band-
width, as is shown in Fig. 1, between the neural networks and the
state estimator, we introduce an event-triggered scheme which de-
pends on the available output measurements. The event-triggered
condition is predesigned as follows [18]:

er (OWie(t) < oy’ (tyh + jR)Way(tih + jh) (6)
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Fig. 1. The structure of event-triggered neural networks.

where e (t) =y(tsh+ jh) —y(tyh), o is a given positive scalar,
W; >0 and W, >0 are the matrices with appropriate dimension,
kh is the sampling instants, t;h is the sequence of the event-
triggering instants. The latest sampled signal y(t;h+ jh) can be
triggered as long as the predesigned condition (6) is violated.

Remark 5. Different from the continuous case of the event-
triggered scheme, in which one will always face a problem called
“Zeno behavior”, in this paper, the sensor measures are only sam-
pled at discrete instants kh(k =1,2,...), which means the inter-
event times are at least h. Therefore, the event-triggered scheme
in this paper can avoid this Zeno behavior.

Remark 6. It can be observed that the amount of transmission in
the communication channel can be adjusted by setting different
triggering parameters of o in (6). The smaller value of o, the more
data can be sent to the state estimator. When o = 0, the event-
triggered scheme reduces to time-triggered scheme.

For convenience of analysis, let d = 3,1 —t, — 1, 7; and 7,
denote the time delay in the network communication chan-
nel at instant t;h and ¢, h, respectively. The holding inter-
val [tgh + Ty, tey1h + Tr,, ) under the influence of the logic ZOH

can be expressed as [txh + 7y, g h + Ty, ) = Ule U;, where ) =
[th+th+7 . tkh+1h+h+7 ] Denote t(t)=t—th—Ih,
O<ty <t(t)<h+ Tt 4141 £ 131, Then, the real input of the state
estimator can be rewritten as

y(©) = 1 —at - 7))Cx(t —T(t))
+at —T)f(Cx(t—T(t))) +er(t) (7)
By defining the estimation error e(t) = x(t) — X(t), g(e(t)) =
gx(t)) —gX(t)), h(et—d(t))) =hx(t—d(t))) - hX(t - d(¢))),

we obtain the estimation error dynamical system as follows:
é(t) = Ae(t) + Bg(e(t)) + Eh(e(t — d(t))) + Dw(t)
—(K+ AK)ep(t) — (1 —a)(K+ AK)Cx(t — T (t))
—d(K+ AK) f(Cx(t —T(t))) — @ —a(t —T({)](K+ AK)
xCx(t—1(t)) —[a(t—1(t))
—a)(K+ AK)f(Cx(t — (1)) + (K+ AK)C(x(t) —e(t)) (8)

Set £(t) = [e(t) X" (t)]", 2(t) = z(t) — 2(¢t). Then, the estimation
error system (8) and the neural network (1) can be expressed as

follows:

E(t) = A& (t) + Bg(E (1)) + Eh(E (t — d(t))) + Dw(t)
—H; (K + AK)e(t)

—Hi(1 —@)(K+ AK)CHE(t — T(t)) — oHy (K + AK)
fCHE (t =T (1))

—[o —a(t —t(t))]Hi(K+ AK)CH§ (t — T (1))

—[ee(t — 7(t)) —@[H1 (K + AK) f(CHE (t — T (1))
+H; AKCH5& (t)

(9)

Z(t) =L&(t)
where
A [A e ’;C] B — diag(B, B}, E — diag(E, E},

o-B i} wep o
Hy=[-1 1]. [=LH].g6@®) = [g(e“))]

£(x(0))
h(E (- d()) = [ﬁﬁf}g:%;]

Remark 7. In this paper, in order to reduce the number of trans-
mitted sampled data, we introduce an event-triggered scheme be-
tween the neural networks and state estimator. The triggering con-
dition is dependent on the error between the latest transmitted
data and newly sampled one. Up to now, there are no publications
taking both of the event-triggered scheme and the sensor non-
linearity into consideration. This is an obvious difference between
the event-triggered scheme in this paper and the ones in the ex-
isting results. We will show the advantage of the adopted event-
triggered scheme in saving precious network resources in the sim-
ulation part.

Lemma 1. [29] Consider the augmented system with t(t) that satis-
fies 0 < t(t) < . For any matrices Xe R"*" and U e R"*" that satisfy

[J‘T )‘{] > 0, the following inequality holds:
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t . , £(t) !
2 [ FexE@ < [sa-T@)

Et-1)
X * * E)
x |:XT -UT  2X+U+UT :||:§(t— t(t)):| (10)
uT XT-uT -X E(t—1)

Lemma 2. [30] Given matrices F; = FlT, F, and F3 of appropriate di-
mensions, we have F + EA(t)F, + ET AT(t)E] < 0 for all A(t) satis-
fying AT(t)A(t) <1, if and only if there exists a positive scalar & <0,
such that F; + e 'RF] + ¢FJF <0

3. Main results

For presentation convenience, we denote

@, = diag(d, 051 DB - - DenPan)-
- e + _
®} = diag ¢g]+¢g],¢g2; gz,...,qsg";r%l}

& 2
@, = diag{y; > PryPrys -+ PrnPin)-
o :diag{¢h1 ;%, Pt ¢hn;¢ﬁn}

2
@7 = diag{®,, O}, & = diag{®;, DF},
&; = diag{®d;, &} '}, OF = diag{ P}, O;}
ch(t)y =[ri®) &Mt —t(t)) ET(t — Tm) ex(t)

g &) g EE—d®) fTCHE®) w(t)]
ri(®) =[ET(t) ET(t —d(t)) ET(t —dum)],
(O =[ET(®) ET(E -7 () ET(t — M) ]

The following Theorem will give sufficient asymptotical sta-
bility conditions for the estimation error system (9) by using
Lyapunov-Krasovskii functional approach.

Theorem 1. For given positive scalars &, Ty, dy, v, o, &(i=
1,2,3,4,5) and matrix K, H, G, the augmented system (9) is asymp-
totically stable if there exist positive matrices P>0, Q; >0, Q; >0,
R{ >0, R, >0, W; >0, W, >0, appropriately dimensioned M, N, and
appropriately dimensioned diagonal matrices U, V satisfying the fol-
lowing inequalities

B * * *
—_ Ho1 B * *
E=| 4 - 0 11
i3t O 33 * < ( )
LH]T 0 0 —I
Ry =
|:M R1j| >0 (12)
Rz %
|:N R2i| >0 (13)
where
- |:E111 * i|
“M = e o) 5
Si12 8113
Iy * *
Em=|Ri-M -2R{+M+M' -V, *
M Ri—-M - -k

—(1 —d)HzTCT(K+ AK)THlTP-i-Rz—N 0 07
N 0 0
—(K + AK)THlTP 0 0
B = BTP+ ®TU 0 0,
ETp o3V 0
—&(K+ AK)THTP 0 o
L DTp 0 0|
B33 = diag{Ex., Exn}
I * * * * * *
R, —N —Q;—R, = * * * *
0 0 W % * * *
Emz=| O 0 0 Ul =« * ®
0 0 0 0 -VI * *
0 0 0 0 0 -A+206*W, =«
0 0 0 0 o0 0 —y2
['y = PA+ AP + PH; AKCH; + H}CT (AK)THI P 4+ Q,
+ Qz —Ri —Ry —U(D;
[y = —2R, + N+ N' + AHICT FT FCH, + 20 (1 — &)?HI C"W,CH,,
s=a(l-a)
= (duEon  duBa ]| : 1 1
Bu=| M2 ~42 | By, = diag{—PR;'P, —PR;'P},
A | TME21  TmEa 2 g{-PR, 2 P}
U = diag{U,, U,},V = diag{V;,V,}
(0143 +28dyPH; (K + AK)CH, 01,4 0 0
= | 013 V28TyPH; (K + AK)CHy Og.4 0 0
=T 01 0 Orra v28dyPH; (K + AK) 0
LO1.3 0 O1xa ~28TyPH;(K+ AK) 0

Eon = [PA+PH{AKCH; 0 0 — (1 — &)PH; (K + AK)CH, 0 — PH; (K + AK)]
Ba12 = [PB PE — a@PH; (K + AK) PD]

Proof. Lyapunov-Krasovskii functional candidate for system (9) is
chosen as follows:

V() =Vi(t) +Va(t) + V(D) (14)
where
Vi(t) = ET(PE(t)
Va(t) = / ET(5)QuE (5)ds + / E7(5)Quk (s)ds
t—dy -ty

t t . .
V3(t) = du /tid ET(V)R1€ (v)dvds

t t. .
+w ft_ / ET(0)Ry£ (v)dvds

Taking derivation on Vj(t) and taking expectation on them, we
obtain

Vi ()} = €027 (H)PE (1)} (15)

EVL(®)} = ETO)(Q1 + Q)E() — ET(t — Tn) Q& (t — Ti)
—xT(t —dy)Qix(t — dy) (16)

S5O} = EOREO —du [ ETGREG)S

t . .
- Tm ET(5)R2& (5)ds (17)

t—Ty
where R = dyR; + TR,
Notice that

EL2ET()PX(t)} = 2ET (t)PA (18)

EET(RE(L)) = ATRA + 282[H; (K + AK)CHyE (t — T (t)]”
x R[H; (K + AK)CHE (t — T(t))]
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+28%[Hi (K + AK) f(CHE (t — T (H))]”
x R[Hi (K + AK) f(CHE (t — T(1)))] (19)
where
A= Ag(t) +Bg(&(t)) + Eh(§ (t — d(t)))
+Dw(t) — Hi (K + AK)e,(t) + H] AKCH3& (t)
— (1 —a)H; (K + AK)CHE (t — T(t))
—aH; (K + AK) f(CH2E (t — T(t)))

By Lemma 1, for matrices M and N satisfying (12) and (13), we
derive

t . .
~dy [ EORE@ds =T ©OSIn©) (20)
t—dy
t . .
—Tum s ET(RE(s)ds < 1 (1)Sara (t) (21)
where
—R; Ry — MT M7
Si=|Ri =M —2R,+M+MT R, —M'
M R —M —R
R, Ry —NT NT
So=|Ry=N —2R,+N+NT R,—NT
N R,—N R,
It is not difficult to get from (2) that
T
e(t) -U;®; U D e(t) -
[g(e(t))} [ oU; U } [g(e(t))} =0 (22)
T
x(t) ~U % Uy | x©) .
[g(x(r))] [ OU; Uy } [g(x(r))} =0 (23)
Remind that e =[O KO, g(E(0) =
e e(t)) &' (x(t))]", from (22) and (23), one can get
- T
&(t) -Ud, UDS || &)
EG <t>>} [ ofU U } [g(é <t>>] =0 (24)

Similarly, from (3), one can have

Ce(t —d(t)) T[_vﬂ); v1<1>;] |:e(t—d(t)) ]>0 (25)
Lh(et —d(t)))] [PiVi Vi |[h(e(t —d(t)))] ~

[ x(t—d(t)) ]T[—v2q>h vzclﬂ[ X(t — d(t)) }20 26)
(hx(@E—d() | | P4V V2 |[hx(t—d(1)))

From the definitions &(t —d(t)) = [eT(t —d(t)) ' (t—d(®)]",

gEt—d®)) =g et —d®) g xE—don],
from (25) and (26), we can obtain that

sc-do) V[-vey verl &e-do) 1.4 o
hEe-don ] [ oy -V |[nEe-do) |

where U;, U, V; and V, are appropriately dimensioned diagonal
matrices, U = diag{U;, U}, V = diag{V;,V,}.

From the definition in (4), for any appropriately dimensioned
diagonal matrix A, it can be seen that

AET(t — T (t))HICTFTFCHE (t — T (¢))
— AfT(CHE (t — T()) f(CHE(t—T(¢))) = 0 (28)
Recalling the definition of 7(t), it follows from (6) that
CTWLHC + 20 82[Cx(t — T (1)) IWh[Cx(t — T(t))]
+2082 fT(Cx(t — T (£)))Waf(Cx(t — T(t)))
—ep (H)Qe(t) = 0 (29)

in which ¢ = (1 — @)Cx(t — T (t)) + af(Cx(t))
Note that (29) can be rewritten as
CTWLC + 20 82 [CHL (t — T (1)) W5 [CHLE (£ — T(1))]
+20 8% fT(CHaE (t — T (t)))Wa f (CHE (t — T (1))
—ep (HWe(t) > 0 (30)
where € = (1 — @)CHy& (t — T(t)) + a f(CHE (1))
Combining (15)-(30), we can obtain that
VO + 2N (OZ() — y*w (Hw(t)
<{TMOEng () + ATRA
+28%[Hy (K + AK)CH2E (t — T (t)]"
x R[H; (K + AK)CHRE(t — T(t))]
+282[H; (K + AK) f(CHE(t — T ()]
x R[H; (K + AK) f(CHy& (t — T(t)))] + & (OHILTLHE () (31)
It can be concluded that £{V(t)} < 0 can be easily obtained from
(11). Therefore, the asymptotical stability of (9) can be ensured by

(11)-(13).
This completes the proof. O

Based on the obtained result in Theorem 1, we are now in
position to design the gain matrix of the estimator.

Theorem 2. For given positive scalars &, Ty, dy, ¥, o, &(i=
1,2,3,4,5) and matrices K, H, G, the augmented system (9) is
asymptotically stable if there exist positive matrices P = diag{P;, P,},
Q;>0, Q;>0, Ry>0, R, >0, W; >0, W, >0, and appropriate di-
mensioned M, N, and diagonal matrices Uy, U, Vq, V, with appro-
priate dimensions satisfying the following inequalities

@11 X * *
@21 E2» ¥ *
8= 5_31 0 533 * <0 (32)
_L _0 _O —I x
B51 Es;; Es3 0 Ess
R] *
|:M R1:| >0 (33)
Rz *
|:N R2:| >0 (34)
where

o

Em *
n=|s =) B
S112 =113

r * *
EBm=|Ri-M —2Ri+M+M -V, * }
L M Ry -M -Q -k
r—(1-a@Ml+R,-N 0 0
N 0 0
] ml 0 o0
Ein = I3 + &fU 0 0|,
M, ®V 0
alll 0 0
L I1s 0 0
m-[s 3 ]m-tr o
T T
M = |:BOP1 BTOP2 :| m, = |:E OP1 EPPZ]’ s = [DTP1 DTPZ]
I, * * * * * *
R, — N —Q; — Ry * * * * *
~ 0 0 -W; * * * *
B3 = 0 0 0 -U * * *
0 0 0 0 -V * *
0 0 0 0 0 M+ 20a*W, *
0 0 0 0 0 0 -y



[=2]

[y =Tu+I+Q+Q R

Ry —U® Py :|:P1A—YC YC]

0 RA

s r 5[0 0 _o2f0 0
[ =-2R, +N+N +A|:O T A £C +20(1-a) 0 CTW,C

= [dMEZ“ dMim], By = diag{—2&1P + e2Ry, —2&,P + €3R,}
Tm 21 Tm =212
013 —+/28dy Tl 01,4 0 0
= |03 —v28tyIl;  O1y4 0 0
S04, 0 O1x4 —28dyIl, 0
01,3 0 014 7«581',\/,1'[2 0
é diag{ uzz uzz}
Eon [ 0 0 (-am o0 M
Epp=[N] mf anf nIili=[L o]
€301 0o 0 0 0 0 0o 0 q 0
Oz 0 0 -1-a)® 0 -G 0 0 -6G 0
Eo 0o 0 0 0 0 0o 0 0 0
=5 0 0 4 0 0 0 o0 0 0
0o 0 0 0 0 0o 0 0 0
0 o0 0 0 0 o0 O G 0
Ess = diag{—esl, —e3l, —e4l, —e4l, —&5l, —&51}
©1=[H' 0].0=[-GC GC].0:=[0 GC]
re3dy®q 3Ty O
0 0
= 0 0
S5y = 0 0
0 0
L O 0
r 0 0 0 0
0 0 0 0
S 84«/de{S®1 84«/2‘[;\48@1 0 0
=3 0 0 0 0
0 0 85«/2(1)\/’8@1 85«/2'[;\/,5@1
L 0 0 0 0
Moreover, the desired state estimator gain matrix is given by
K=plY (35)

Proof. It can be seen that (11) in Theorem 1 can be written as

E =3+ YTF®)Ts + YIF(E)Ts + YIF(t)Ts < 0 (36)
where

B % * *
5 _ i Ep ok 0.8, = I:Em * ]

3 O OFERIE ' En2  Ems]

LHT 0 0 -

| * *
Em=|R-M =2R+M+M -V, =«
| M Ri-M —Q -
[—(1 —o)HICTKTHIP 0O 07
N 0 0
—KTHTP 0 0
—~ =T
Eip=|BP+P5U 0 0
E'P ®IV 0
—aKTHTP 0 0
D'p 0 0]
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01,3 ~28dyPHKCH, 014 O 0
5 |03 V28tyPHIKCH; 014 O 0
o 0 014 ~28dyPHK 0
01,3 O 01,4 ~28tyPHIK 0
Ty =PA+AP+Q +Q —Ri —R, —U®D,
Em=[PA 0 0 —(1-@PHKCH, 0 —PH/K]
Emn=[PB PE -aPHK PD]
=[H"H[P 01,5 dyH"H]P TyH"H]P O]
=[GCH; 00 — (1 -@)GCH 0 —G 00 G O1,4]
= (0112 V2duSH'HIP  V2tySHTHIP  0y.3].
:[01><3 GCH, 01><l3]
=[01x14  V2duSH'H[P  V2tySH'HIP 0],
=[01is G O1]

By using Lemma 2, there exist positive scalar €3, €4 and ¢s,
such that

E<T+e YY1 +e3" VI +e4 XI5+, Y Yu+ 65715
+e5' 16 <0 (37)

By using Schur complement, we can obtain

@1] * * * *
Bz Ex * *
2= 331 0 333 * * <0 (38)
T 0 0 - .«
Bs1 Es2 Es3 0  Esg
From
(Re — &xP)R," (R — &xP) = 0 (39)
we can get
—PR'P < —2&P + €1Ry (40)

Denote Y = P;K and replacefPleP with 728,(P+8,%Rk, we can
get (32). It is easy to see that (32) holds implies (11) holds and
the augmented system is asymptotically stable. This completes the
proof. O

Remark 8. In this paper, the event-triggered non-fragile state es-
timation problem is investigated for delayed neural works in pres-
ence of sensor nonlinearity. According to Theorem 2, the estimator
gain can be designed by solving equalities (32)-(34). The following
simulation example validates the proposed design method.

Remark 9. With the development of the computer, we can find the
feasible solution to the LMIs in Theorem 2 by using LMI SOLVER
FEASP in MATLAB LMI tool box even when the size of the state
vector is big.

4. Simulation examples

In this section, a simulation example is provided to illustrate
the effectiveness of the obtained event-triggered state estimation
scheme for neural networks with randomly occurring sensor
nonlinearities.

Consider the discussed neural networks (1) with parameters

-1 0 1 -2 1 1
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State trajectories of z(t) and its estimation Z(t)

0.4 ‘ ‘ ‘
0 5 10 15 20 25 30

Time(s)

Fig. 2. Evaluation of state x(t) and its estimation X(t).

1 0 0 1 0 03 0
C:[o 1} D:[OJ} L:[o 1} H:[o 0.3]
c 5<t<10
01 0 . ='=
G:[o 0.1] W(t)zi‘l

15 <t <20 ,F(t) =sintl
The active neuron active functions are chosen as

0 else
tanh(0.08x(t))
gkx(t)) = |:tanh(0.06X(t))i|’

tanh(0.08x(t —d(t)))
hix(t -d(®)) = |:tanh(0.08x(t - d(t)))]

which means ®; =0 and @7 = diag{0.04,0.03}, ®, =0 and
d>h+ = diag{0.04, 0.04}
The sensor nonlinearities are assumed to be

tanh(0.01x(t))
fx@®) = I:tanh(0.03X(t))i|

which satisfy (4) with F = diag{0.01, 0.03}

The occurring probability of sensor nonlinearity is & =0.8.
Setting dy; =0.8, 1)y =0.7, y =1, g(i=1,...,5), the parameter
of the triggering condition is given as o = 0.1. With the above
parameters, by application of LMI Toolbox in MATLAB, from
Theorem 2, we can obtain a feasible solution as follows:

P — 2.7079  0.1849 Y — 2.5347 0.1393

17101849 25436 | ~ [0.1196 2.2980

W1 = 29.0350 0.1019 W — 16.1224  0.1958
~ 101019 284225 | 27| 0.1958 16.0293

According to (35), we obtain the corresponding non-fragile esti-
mator gain matrix as

K= 0.9375 —-0.0103
~1-0.0211  0.9042

From the structure of AK, we have H=03I, G=0.1] and
F(t) = sin(t)l. The initial conditions of system (1) and the estima-
tor are chosen as

x=[-03 03] .%=[-025 025]

0.1 T T T T T

0.08

0.06

0.04

0.02

-0.02

Respounse of estimation errors e(t)

-0.04

-0.06
-0.08 L L L L L
0 5 10 15 20 25 30
Time(s)
Fig. 3. Responses of estimation error e(t).
3.5 T T T T T
©
g
g s .
£
@
5 ®
s 25 1
o
C
©
2 2 1
C
S
=
o 1.5F 1
©
K9]
[
- 1F B
&
©
0
‘qc: 0.5 1
* lller  FIOTAT
0 .
0 5 10 15 30

Fig. 4. Release instants and intervals.

We can get the following simulation results from Figs. 2-4.
Fig. 2 shows the response of the state and estimation of the neural
networks. Fig. 3 shows the estimation error dynamics. From Fig. 3,
we can see the estimation error converges to zero asymptotically.
The event-triggered release instants and the corresponding release
intervals are shown in Fig. 4, where the average transmission rate
is 37% . Therefore, the amount of transmission is reduced by using
the event-triggered scheme. These simulation results demonstrate
that the designed non-fragile state estimator performs well.

5. Conclusion

In this paper, the problem of event-triggered non-fragile state
estimator design has been investigated for delayed neural net-
works with randomly occurring sensor nonlinearity. We introduce
a Bernoulli distributed random variable to describe the randomly
occurring sensor nonlinearity. In order to reduce data transmission
in bandwidth limited network, a novel event-triggered communi-
cation scheme has been introduced between the neural networks
and its estimator. Under the proposed event-triggered scheme, the
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non-fragile estimation error system has been modeled. Based on
this model, a criteria for asymptotical stability of the estimation
error system is obtained. In addition, the designed gain matrix of
the estimator is presented by solving certain matrix inequalities.
The usefulness of the proposed method has been demonstrated by
the simulation results of a numerical example.
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