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Abstract In this paper, the resilient observer-based
output feedback controller is designed for a class of
networked T–S fuzzy systems under a hybrid-triggered
scheme and mismatched membership functions. In
order to improve network bandwidth utilization, a
hybrid-triggered scheme is introduced between the
state observer and the controller, which is based on
a switching between periodic sampling and an event-
triggered scheme. Considering the inaccurate imple-
mentation of the parameters of the observer-based
controller, a novel hybrid-triggered T–S fuzzy model
is constructed. Sufficient conditions are established
for the augmented fuzzy systems by using Lyapunov
theory and the linear matrix inequality techniques.
Furthermore, the observer-based controller gains are
designed in terms of linear matrix inequalities. Finally,
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a numerical example is provided to demonstrate the
usefulness of the proposed method.
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Observer-based control · Networked control systems
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1 Introduction

During the past few decades, Takagi–Sugeno (T–S)
fuzzy systems have been proved to be an effective
approach to approximate any smooth nonlinear sys-
tems in the formof IF–THEN rules [1–5]. Amajority of
remarkable literature has been published about the sta-
bility analysis and control synthesis via T–S fuzzy sys-
tems [6–8]. Most of the publications make an assump-
tion that the designed controller or filter shares the same
membership functions with the related T–S fuzzy sys-
tems. However, due to the network-induced delay in
networked control systems, it ismore realistic to use the
imperfect premise matching method [9,10]. Recently,
T–S fuzzy control with mismatched membership func-
tions has received considerable research interests [11–
14].

In many practical systems, complete measurement
of the system states is always infeasible to be obtained.
Considering these difficulties, much attention has been
devoted to the controller design that only requires par-
tial state variables in recent years [15–22]. For exam-
ple, in [15], the output feedback control is investi-
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gated for decentralized guaranteed cost stabilization of
large-scale discrete-delay systems. In [17], the robust
observer-based passive control method is developed
for uncertain singular time-delay systems with actu-
ator saturation. In [18], the non-fragile observer-based
H∞ control approach is presented for stochastic time-
delay systems. In [19], the problem of simultaneous
design of observers and controllers is considered for a
class of piecewise affine systems with signal quantiza-
tion. Considering imperfect communication links and
parameter uncertainties, the fuzzy observer-based con-
troller design is discussed in [20] for networked control
systems (NCSs).Notice that the aforementioned results
about observer-based control approaches may be not
applicable to NCSs with constrained network band-
width. This is the first motivation to design observer-
based control for nonlinear systems with limited com-
munication resources.

NCSs have advantages in improving control effi-
ciency [23–27] and reducingmaintenance cost [28,29].
Considerable efforts have been devoted to NCSs. How-
ever, the network bandwidth or sensor power sources
are limited, which may result in overall system per-
formance degradation. Over the past decades, peri-
odic sampling and event-triggered control are main
control strategies to deal with these problems. Peri-
odical transmission of sensor measurement may result
in data redundance, especially when the variation of
the sensor measurement is small. While the event-
triggered scheme can improve data transmission effi-
ciency, under which the sampled data can be transmit-
ted into communication link only when it violates pre-
defined threshold in an event generator [30,31]. There-
fore, event-triggered control is advantageous over peri-
odic sampling in avoiding unnecessary transmission
and waste of network resources. Much efforts have
been dedicated to developing event-triggered schemes
[32–37]. For instance, the adaptive control is consid-
ered in [34] for a class of event-trigger-based uncer-
tain nonlinear systems. The authors in [32] propose
a new event-triggered scheme and investigate event-
triggered H∞ controller design for NCSs. However,
when the imperfect networked environment encoun-
ters random changes, neither periodic sampling nor the
event-triggered scheme is suitable to determine when
or how frequently the sensor should transmit the sam-
pled data. Very recently, a hybrid-triggered scheme is
proposed in [38] to deal with this problem. Note that
the results of hybrid-triggered control for nonlinear sys-

tems are still very limited, which motivates the current
work.

Inspired by the above observations, we focus on
resilient observer-based control for networked T–S
fuzzy systems under the hybrid-triggered scheme. The
contributions of this paper are shown as follows. (1)
The hybrid-triggered scheme is adopted to save lim-
ited network resources and achieve better performance,
which is implemented based on randomly switching
between the periodic sampling and the event-triggered
scheme. (2) Different from the existing publications,
the control law is updated according to transmitted
observer states. In order to reflect the controller imple-
mentation uncertainties, the variation of the gains
is taken into account. (3) By employing the Lya-
punov functional approach, the sufficient conditions
are obtained which can guarantee the asymptotical sta-
bility of the system. Furthermore, by solving a set of
linear matrix inequalities, the gains of observer-based
controller are designed for the discussed closed-loop
system.

This paper is organized as follows. Section 2 intro-
duces the problem of resilient observer-based con-
trol for hybrid-triggered T–S fuzzy systems. The main
results are presented in Sect. 4. A numerical example is
employed to verify usefulness of the proposed method
in Sect. 5. Finally, the conclusion is drawn in Sect. 5.

Notation: Rn and R
n×m denote the n-dimensional

Euclidean space, and the set of n × m real matrices,
respectively; the superscript T stands for matrix trans-
position; I is the identity matrix of appropriate dimen-
sion; the notation X > 0 (respectively, X ≥ 0), for
X ∈ R

n×n means that the matrix X is real symmetric
positive definite (respectively, positive semi-definite);
Prob{X} denotes probability of event X to occur;
rank(C) denotes the rank of the matrix C; E denotes
the expectation operator; for a matrix B and two sym-

metric matrices A and C,

[
A ∗
B C

]
denotes a symmetric

matrix, where ∗ denotes the entries implied by symme-
try.

2 System description

In this paper, a T–S fuzzy dynamic model is used to
describe a nonlinear NCS. The i th rule of the fuzzy
model is expressed as follows:

Plant Rule i : IF θ1(x) is Mi
1, . . ., and θg(x) is Mi

g
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Fig. 1 Block diagram of
the networked T–S fuzzy
system

Then{
ẋ(t) = Ai x(t) + Biu(t)
y(t) = Ci x(t)

(1)

where Mi
q (i = 1, . . . , r, q = 1, 2, . . . , g) is the fuzzy

set, θq(x) (q = 1, 2, . . . , g) denotes the premise vari-
able, x(t) ∈ R

n is the state vector, and y(t) ∈ R
m

is the measurable output, u(t) ∈ R
u is the control

input. Ai , Bi and Ci are known real constant matrices
with appropriate dimensions.Byusing a center-average
defuzzifier, product fuzzy inference, and a singleton
fuzzifier, system (1) can be inferred as⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) =

r∑
i=1

hi (θ(x))[Ai x(t) + Biu(t)]

y(t) =
r∑

i=1
hi (θ(x))Ci x(t)

(2)

where θ(x) = [
θ1(x), θ2(x), . . . , θg(x)

]
, hi (θ(x)) =

μi (θ(x))∑r
i=1 μi (θ(x))

and μi (θ(x)) = ∏g
m=1 M

i
m(θm(x)),

Mi
m(θm(x)) is the membership value of θm(x) in

Mi
m, hi (θ(x)) ≥ 0,

∑r
i=1 hi (θ(x)) = 1.

The main objective of this paper is to design
an observer-based controller for the system (2). The
observer model is presented as follows:

Observer Rule j : IF θ1(x) is M j
1 , . . ., and θg(x) is

M j
g

Then
˙̂x(t) = A j x̂(t) + Bju(t)

+(L j + ΔL j )(y(t) − C j x̂(t)) (3)

where x̂(t) is the estimation of the state vector
x(t), L j is the observer gain to be designed later.

ΔL j = M1 jΔ1(t)N1 j represents the uncertainties in
the observer gain, in which ΔT

1 (t)Δ1(t) ≤ I, M1 j and
N1 j are the known matrices with appropriate dimen-
sions. The global model of the observer is deduced as

˙̂x(t) =
r∑
j=1

h j (θ(x))[A j x̂(t) + Bju(t)

+(L j + ΔL j )(y(t) − C j x̂(t))] (4)

As shown in Fig. 1, the observer and the con-
troller are connected by a communication network
with resource constraints. A hybrid-triggered scheme
is introduced at the observer side to improve the effi-
ciency of the communication network. Whether the
observer state is transmitted or not will be determined
by a switching strategy between the periodic sampling
and the event-triggered scheme.

For ease of exposition, we make the following
assumptions:

(1) The state of the observer is sampled at a constant
period h. {sh | s ∈ N} represents the set of sampled
instants.

(2) The set of the transmission instants is denoted by
{tkh | tk ∈ N}, which is determined by the sam-
pled state x̂(tkh). x̂(tkh) represents the signalwhich
arrives at the controller successfully.

(3) τtk represents the communication delays between
the observer and the controller. τtk ∈ [0, τ̄ ), τ̄ is
the upper bound of τtk .

It should be noticed that the premise variables
between the observer and the controller may be asyn-
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chronous because of the existing network-induced
communication delays. With consideration of the mis-
matched membership functions, the hybrid-triggered
scheme and the implementation of the observer-based
controller, the controller can be designed as follows:

Controller Rule l: IF ω1(x̂) is Wl
1, . . ., and ωp(x̂) is

Wl
p
Then

u(t) = (Kl + ΔKl)x̂(tkh),

t ∈ [tkh + τtk , tk+1h + τtk+1) (5)

where Kl are the controller gains to be determined later.
The fuzzy controller is given by

u(t) =
r∑

l=1

ml(ω(x̂))(Kl + ΔKl)x̂(tkh),

t ∈ [tkh + τtk , tk+1h + τtk+1) (6)

where ω(x̂) = [
ω1(x), ω2(x), . . . , ωg(x)

]
,ml(ω(x̂))

= ol (ω(x̂))∑r
l=1 ol (ω(x̂))

and ol(ω(x̂)) = ∏p
d=1 W

l
d(ωd(x̂)),

Wl
d(ωd(x̂)) is the membership value of ωd(x̂) in

Wl
d , ol(ω(x̂)) ≥ 0,

∑r
l=1 ol(ω(x̂)) = 1.

If the observer state x̂(t) are transmitted through
the network periodically, similar to [38], define τ(t) =
t − tkh, the control law in (6) can be rewritten as

u(t) =
r∑

l=1

ml(ω(x̂))(Kl + ΔKl)x̂(t − τ(t)),

t ∈ [tkh + τtk , tk+1h + τtk+1) (7)

In periodic sampling, the limited network bandwidth
is unavoidable waste, under which the sampled signals
are still transmitted into the network even when the
system states have little change. For energy-saving pur-
pose, event-triggered scheme is employed as an alter-
native transmission strategy. The event-triggered con-
dition is designed as follows:

[x̂(tkh + sh) − x̂(tkh)]T W1[x̂(tkh + sh) − x̂(tkh)]
≤ σ x̂ T (tkh + sh)W2 x̂(tkh + sh) (8)

where x̂(tkh) is the latest transmitted observer state,
s = 0, 1, 2 . . . , σ ∈ [0, 1),W1 and W2 are matrices
with appropriate dimensions. h is the sampling constant
period. The holding interval Ω = [tkh + τtk , tk+1h +
τtk+1) can be described as Ω = ⋃s=tk+1−tk−1

s=0 Ωs ,
in which Ωs = [tkh + sh + τtk+s , tkh + sh + h +
τtk+s+1), s = 0, 1, . . . , tk+1 − tk − 1. Set ek(t) =
x̂(tkh)− x̂(tkh+sh), d(t) = t−tkh−sh, d(t) satisfies
0 ≤ τtk ≤ d(t) ≤ h + τtk+s+1 � dM . Then, (6) can be
represented as

u(t) =
r∑

l=1

ml(ω(x̂))(Kl + ΔKl)[x̂(t − d(t)) + ek(t)],

t ∈ [tkh + τtk , tk+1h + τtk+1) (9)

In this paper, under the hybrid-triggered scheme,
the real control output can be presented as a switch-
ing between (7) and (9). α(t) is used to describe the
switching law in the hybrid-triggered scheme. We can
derive

u(t) =
r∑

l=1

ml(ω(x̂))(Kl + ΔKl)

[(1 − α(t))
(
x̂(t − d(t)) + ek(t)

)
+α(t)x̂(t − τ(t))],
t ∈ [tkh + τtk , tk+1h + τtk+1) (10)

where Kl are the controller gains to be determined,
ΔKl denote the norm-bounded parameter uncertainty.
ΔKl = M2lΔ2(t)N2l , in which M2l and N2l are the
given constant matrices, Δ2(t) satisfies ΔT

2 (t)Δ2(t) ≤
I .

Remark 1 It should be pointed out that the fluctu-
ations or drafts on the parameters of the observer-
based controller are unavoidable. The small uncer-
tainties on the controller gains should be considered
in controller implementation. Therefore, the resilient
observer-based control problem is necessary to be con-
sidered.

Defining the estimation error η(t) = x(t) − x̂(t).
Substitute (10) into (2) and (4), we can get

ẋ(t) =
r∑

i=1

r∑
l=1

hi (θ(t))ml(ω(x̂))

{Ai x(t) + Bi KlX (t)} (11)

˙̂x(t) =
r∑
j=1

r∑
l=1

h j (θ(t))ml(ω(x̂))

{Πi j x̂(t) + (L j + ΔL j )Ciη(t)

+Bj (Kl + ΔKl)X (t)} (12)

η̇(t) =
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(t))h j (θ(t))ml(ω(x̂))

{
(Ai − Πi j )x̂(t) + [Ai − (L j + ΔL j )Ci ]η(t)

+(Bi − Bj )(Kl + ΔKl)X (t)
}

(13)

where Πi j = A j + (L j + ΔL j )(Ci − C j ),X (t) =
X̄ (t) + (α(t) − ᾱ)(x̂(t − τ(t)) − x̂(t − d(t)) −
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ek(t)), X̄ (t) = (1− ᾱ)
(
x̂(t − d(t)) + ek(t)

)+ ᾱ x̂(t−
τ(t)).

Remark 2 It is noted that Bernoulli distributed random
variable α(t) is introduced to model the switching law
of periodic sampling and the event-triggered scheme in
the hybrid-triggered scheme. The sojourn probability ᾱ

can be obtained through the statistical method in [38].

The aim of this paper is to design L j and Kl for the
stability of system (11), (12) and (13). The following
lemmas are useful in deriving our main results.

Lemma 1 [39] Consider the augmented system with
τ(t) that satisfies 0 < τ(t) ≤ τ̄ . For any matrices

X ∈ R
n×n and U ∈ R

n×n that satisfy

[
X U
UT X

]
≥ 0,

the following inequality holds:

−τ̄

∫ t

t−τ̄

ξ̇ T (s)X ξ̇ (s) ≤
⎡
⎣ ξ(t)

ξ(t − τ(t))
ξ(t − τ̄ )

⎤
⎦
T

⎡
⎣ −X ∗ ∗
XT −UT −2X +U +UT ∗

UT XT −UT −X

⎤
⎦

⎡
⎣ ξ(t)

ξ(t − τ(t))
ξ(t − τ̄ )

⎤
⎦ (14)

Lemma 2 [40] Given matrices F1 = FT
1 , F2 and F3

of appropriate dimensions, we have F1 + F3Δ(t)F2 +
FT
2 ΔT (t)FT

3 < 0 for all Δ(t) satisfying ΔT (t)Δ(t) ≤
I , if and only if there exists a positive scalar ε < 0,
such that F1 + ε−1F3FT

3 + εFT
2 F2 < 0.

Lemma 3 [41]For full rankmatrix rank(C) = m,C ∈
R
m×n, the singular value decomposition (SVD) for C

can be described as C = O
[
S 0

]
V T , where O ·OT =

I and V ·V T = I . Let X > 0, M ∈ R
m×m, N ∈ R

n×n.
Then, there exists X̄ such that CX = X̄C if and only if
X = Vdiag{M, N }V T .

3 Main results

3.1 Stability analysis

In this section, we are in position to give suffi-
cient conditions for the stability of the discussed
hybrid-triggeredT–S fuzzy systembyusingLyapunov–
Krasovskii functional approach.

Theorem 1 For given positive scalars ᾱ, τM , dM , σ ,
and the membership functions satisfying ml(ω(x̂)) −
ρl hl(θ(x)) ≥ 0 (0 < ρl ≤ 1), the augmented sys-
tem (12) and (13) with the resilient fuzzy control (10)
are asymptotically stable if there exist positive matri-
ces P > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 >

0,W1 > 0,W2 > 0,U1,U2 and V with compat-
ible dimensions satisfying the following inequalities
(i, j, l = 1, . . . , r),

ρlΞ
i jl + ρ jΞ

il j − ρ jV − ρlV + 2V < 0 (15)

Ξ i jl + Ξ il j − 2V < 0 (16)[
R1 ∗
U1 R1

]
> 0 (17)

[
R2 ∗
U2 R2

]
> 0 (18)

where

Ξ i jl =

⎡
⎢⎢⎣

Ξ
i jl
11 ∗ ∗

Ξ
i jl
21 Ξ22 ∗

Ξ
i jl
31 0 Ξ33

⎤
⎥⎥⎦ ,

V =
⎡
⎢⎣
V

0

0

⎤
⎥⎦ ,

Ξ
i jl
11 =

⎡
⎣Ξ

i jl
111 ∗

Ξ
i jl
112 Ξ

i jl
113

⎤
⎦

Ξ
i jl
111 =

⎡
⎢⎢⎢⎢⎢⎣

Γ
i jl
1 ∗ ∗ ∗

Γ
i jl
2 −2R1 +U1 +UT

1 ∗ ∗
U1 R1 −U1 −Q1 − R1 ∗
Γ

i jl
3 0 0 Γ4

⎤
⎥⎥⎥⎥⎥⎦

Ξ
i jl
112 =

⎡
⎢⎢⎣

U2 0 0 R2 −U2

Γ
i jl
5 ᾱΓ

i jl
6 0 (1 − ᾱ)Γ

i jl
6

Γ
i jl
8 0 0 0

⎤
⎥⎥⎦

Ξ
i jl
113 =

⎡
⎢⎢⎢⎣

−Q2 − R2 ∗ ∗
0 Γ

i jl
7 + Γ

i jl
7

T ∗
0 (1 − ᾱ)Γ

i jl
6

T −W1

⎤
⎥⎥⎥⎦

Γ
i jl
1 = PΠi j + ΠT

i j P + Q1 + Q2 − R1 − R2

Γ
i jl
2 = ᾱ(Kl + ΔKl)

T BT
j P + R1 −U1
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Γ
i jl
3 = (1 − ᾱ)(Kl + ΔKl)

T BT
j P + R2 −U2,

Γ4 = −2R2 +U2 +UT
2 + σW2

Γ
i jl
5

T = P(L j + ΔL j )Ci + (Ai − Πi j )
T P,

Γ
i jl
6 = P(Bi − Bj )(Kl + ΔKl)

Γ
i jl
7 = PAi − P(L j + ΔL j )Ci ,

Γ
i jl
8 = (1 − ᾱ)(Kl + ΔKl)

T BT
j P

Ξ
i jl
21 =

[
τMF i jl

dMF i jl

]
, Ξ

i jl
31 =

[
τMGi jl

dMGi jl

]
,

Ξ22 = diag{−PR−1
1 P,−PR−1

2 P}
Ξ33 = Ξ22,

F i jl = [F i jl
1 P(L j + ΔL j )Ci

(1 − ᾱ)PBj (Kl + ΔKl)]
F i jl
1 = [Πi j ᾱPBj (Kl + ΔKl) 0 (1 − ᾱ)

PBj (Kl + ΔKl) 0]
Gi jl = [0 δPBj (Kl + ΔKl) 0 − δPBj

(Kl + ΔKl)00 − δPBj (Kl + ΔKl)]

Proof The Lyapunov functional candidate is chosen as
follows:

V (t) = x̂ T (t)Px̂(t) + ηT (t)Pη(t)

+
∫ t

t−τM

x̂T (s)Q1 x̂(s)ds

+
∫ t

t−dM
x̂T (s)Q2 x̂(s)ds

+ τM

∫ t

t−τM

∫ t

s

˙̂xT (v)R1
˙̂x(v)dvds

+ dM

∫ t

t−dM

∫ t

s

˙̂xT (v)R2
˙̂x(v)dvds (19)

Calculating derivative on V (t) and taking expectation
on them, we have

E{V̇ (t)} = 2x̂ T (t)PE{ ˙̂x(t)} + 2ηT (t)PE{η̇(t)}
+x̂ T (t)(Q1 + Q2)x̂(t)

−x̂ T (t − τM )Q1 x̂(t − τM )

− x̂ T (t − dM )Q2 x̂(t − dM )

+ E{ ˙̂xT (t)(τ 2M R1 + d2M R2) ˙̂x(t)}
− τM

∫ t

t−τM

˙̂xT (s)R1
˙̂x(s)ds

− dM

∫ t

t−dM

˙̂xT (s)R2
˙̂x(s)ds (20)

Note that

E{ ˙̂x(t)} =
r∑
j=1

r∑
l=1

h j (θ(x))ml(ω(x̂))Ai jl (21)

E{η̇(t)} =
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))ml(ω(x̂))

{
(Ai − Πi j )x̂(t)

+[Ai − (L j + ΔL j )Ci ]η(t)

+(Bi − Bj )(Kl + ΔKl)X̄ (t)
}

(22)

E{ ˙̂xT (t)(τ 2M R1 + d2M R2) ˙̂x(t)}

=
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))ml(ω(x̂))

{
(Ai jl)TRAi jl + δ2(Bi jl)TRBi jl

}
(23)

whereAi jl = Πi j x̂(t)+(L j +ΔL j )Ci (η(t)+ x̂(t))+
Bj (Kl +ΔKl)X̄ (t),Bi jl = Bj (Kl +ΔKl)X̄ (t),R =
τ 2M R1 + d2M R2.

By Lemma 1, from (17) and (18), we obtain

−τM

∫ t

t−τM

˙̂xT (s)R1
˙̂x(s)ds

≤ ξ T1 (t)

⎡
⎣ −R1 ∗ ∗
R1 −U1 −2R1 +U1 +UT

1 ∗
U1 R1 −U1 −R1

⎤
⎦ ξ1(t)

(24)

−dM

∫ t

t−dM

˙̂xT (s)R2
˙̂x(s)ds

≤ ξ T2 (t)

⎡
⎣ −R2 ∗ ∗
R2 −U2 −2R2 +U2 +UT

2 ∗
U2 R2 −U2 −R2

⎤
⎦ ξ2(t)

(25)

where

ξ T1 (t) = [
x̂ T (t) x̂ T (t − τ(t)) x̂ T (t − τM )

]
ξ T2 (t) = [

x̂ T (t) x̂ T (t − d(t)) x̂ T (t − dM )
]

From (8), we can obtain

eTk (t)W1ek(t) ≤ σ x̂ T (t − d(t))W2 x̂(t − d(t)) (26)

Define ξ T (t) = [ξ T1 (t)x̂ T (t − d(t))x̂ T (t − dM )

ηT (t) eTk (t)]
Recalling (20–26), we derive

E{V̇ (t)} ≤
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))ml(ω(x̂))
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{
ξ T (t)Θ i jlξ(t)

}
(27)

in whichΘ i jl = Ξ
i jl
11 +(F i jl)TRF i jl +(Gi jl)TRGi jl .

Similar to [41], a slack matrix V with appropriate
dimension is introduced

r∑
i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))

[hl(θ(x)) − ml(ω(x̂))]V = 0 (28)

Substituting (28) into (27), we can get

E{V̇ (t)} ≤
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))

{
ml(ω(x̂))ξ T (t)[Θ i jl + (hl(θ(x))

−ml(ω(x̂)))V ]ξ(t)

=
r∑

i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))

{
hl(θ(x))ξ T (t)(ρlΘ

i jl − ρl V + V )ξ(t)

+(ml(ω(x̂)) − ρl hl(θ(x)))ξ T (t)

(Θ i jl − V )ξ(t)
}

(29)

= 1

2

r∑
i=1

r∑
j=1

r∑
l=1

hi (θ(x))h j (θ(x))

{
hl(θ(x))ξ T (t)(ρlΘ

i jl + ρ jΘ
il j

−ρ j V − ρl V + 2V )ξ(t)

+1

2
(ml(ω(x̂)) − ρl hl(θ(x)))

ξ T (t)(Θ i jl + Θ il j − 2V )ξ(t)
}

(30)

With ml(ω(x̂)) − ρl hl(θ(x)) ≥ 0, E{V̇ (t)} < 0 is
ensured by

ρlΘ
i jl + ρ jΘ

il j − ρ j V − ρl V + 2V < 0 (31)

Θ i jl + Θ il j − 2V < 0 (32)

By utilizing Schur complement, it can be concluded
that (31) and (32) can be obtained from (15) and (16),
respectively.

Therefore, the asymptotical stability of the system
can be ensured by (15–18).

This completes the proof. ��

3.2 Observer-based controller design

On the basis of Theorem 1, the following theorem pro-
vides the explicit design method of the gain matrix of
observer-based controller.

Theorem 2 Considering the membership functions
ml(ω(x̂)) − ρl hl(θ(x)) ≥ 0 (0 < ρl ≤ 1), for given
positive scalars ᾱ, τM , dM , σ, εi (i = 1, 2, 3, 4, 5), the
augmented system (12) and (13) with the resilient state
feedback fuzzy control (10) are asymptotically stable if
there exist positive matrices X > 0, Q̄1 > 0, Q̄2 >

0, R̄1 > 0, R̄2 > 0, W̄1 > 0, W̄2 > 0, Ū1, Ū2 and
V̄ with compatible dimensions satisfying the following
linear matrix inequalities (i, j, l = 1, . . . , r),

ρlΞ̄
i jl + ρ j Ξ̄

il j − ρ j V̄ − ρl V̄ + 2V̄ < 0 (33)

Ξ̄ i jl + Ξ̄ il j − 2V̄ < 0 (34)[
R̄1 ∗
Ū1 R̄1

]
> 0 (35)

[
R̄2 ∗
Ū2 R̄2

]
> 0 (36)

where

Ξ̄ i jl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̄
i jl
11 ∗ ∗ ∗ ∗ ∗

Ξ̄
i jl
21 Ξ̄22 ∗ ∗ ∗ ∗

Ξ̄
i jl
31 0 Ξ̄33 ∗ ∗ ∗

Ξ̄
i jl
41 Ξ̄

i jl
42 0 Ξ̄44 ∗ ∗

Ξ̄
i jl
51 Ξ̄

i jl
52 0 0 Ξ̄55 ∗

Ξ̄
i jl
61 0 Ξ̄

i jl
63 0 0 Ξ̄66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V̄

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ξ̄
i jl
11 =

⎡
⎣Ξ̄

i jl
111 ∗

Ξ̄
i jl
112 Ξ̄

i jl
113

⎤
⎦

Ξ̄
i jl
11 =

⎡
⎢⎢⎢⎢⎢⎣

Γ̄
i jl
1 ∗ ∗ ∗

Γ̄
i jl
2 −2R̄1 + Ū1 + Ū T

1 ∗ ∗
Ū1 R̄1 − Ū1 −Q̄1 − R̄1 ∗
Γ̄

i jl
3 0 0 Γ̄4

⎤
⎥⎥⎥⎥⎥⎦

Ξ̄
i jl
112 =

⎡
⎢⎢⎣

Ū2 0 0 R̄2 − Ū2

Γ̄
i jl
5 ᾱΓ̄

i jl
6 0 (1 − ᾱ)Γ̄

i jl
6

Γ̄
i jl
8 0 0 0

⎤
⎥⎥⎦
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Ξ̄
i jl
113 =

⎡
⎢⎢⎣

−Q̄2 − R̄2 ∗ ∗
0 Γ̄

i jl
7 + (Γ̄

i jl
7 )T ∗

0 (1 − ᾱ)(Γ̄
i jl
6 )T −W̄1

⎤
⎥⎥⎦

Γ̄
i jl
1 = Π̄i j + Π̄T

i j + Q̄1 + Q̄2 − R̄1 − R̄2

Γ̄
i jl
2 = ᾱY T

l BT
j + R1 −U1,

Π̄i j = A j X + Z j (Ci − C j )

Γ̄
i jl
3 = (1 − ᾱ)Y T

l BT
j + R̄2 − Ū2,

Γ̄4 = −2R̄2 + Ū2 + Ū T
2 + σ W̄2

(Γ̄
i jl
5 )T = Z jCi + X (AT

i − Π̄T
i j ), Γ̄

i jl
6 = (Bi − Bj )Yl

Γ̄
i jl
7 = Ai X − Z jCi , Γ̄

i jl
8 = (1 − ᾱ)Y T

l BT
j

Ξ̄
i jl
21 =

[
τM F̄ i jl

dM F̄ i jl

]
, Ξ

i jl
31 =

[
τM Ḡi jl

dM Ḡi jl

]

Ξ̄22 = diag{−2ε1X + ε21 R̄1,−2ε2X + ε22 R̄2},
Ξ̄33 = Ξ̄22

F̄ i jl = [
Π̄i j ᾱBjYl 0 (1 − ᾱ)BjYl 0 Z jCi (1 − ᾱ)BjYl

]

Ḡi jl = [
0 δBjYl 0 −δBjYl 0 0 − δBjYl

]

Ξ̄
i jl
41 =

⎡
⎣ ε3MT

1l 0 0 0 0 −ε3MT
1l 0

N1l(Ci − C j )X 0 0 0 0 N1lCi X 0

⎤
⎦ ,

Ξ̄
i jl
42 =

⎡
⎣ε3τMMT

1l ε3dMMT
1l

0 0

⎤
⎦

Ξ̄44 = diag{−ε3 I, −ε3 I },
Ξ̄55 = diag{−ε4 I, −ε4 I },
Ξ̄66 = diag{−ε5 I,−ε5 I }

Ξ̄
i jl
51 =

[
ε4MT

2l B
T
j 0 0 0 0 ε4MT

2l(Bi − Bj )
T 0

0 ᾱN2l X 0 (1 − ᾱ)N2l X 0 0 N2l X

]

Ξ̄
i jl
52 =

[
ε4τMMT

2l B
T
j ε4dMMT

2l B
T
j

0 0

]
,

Ξ̄
i jl
63 =

[
ε5τMδMT

2l B
T
j ε4dMδMT

2l B
T
j

0 0

]

Ξ̄
i jl
61 =

[
0 0 0 0 0 0 0

0 N2l X 0 −N2l X 0 0 −N2l X

]

The observer and controller gains can be derived as
follows

Kl = Yl X
−1, L j = Z j X̄

−1, X̄−1 = OSX−1
1 S−1O−1

(37)

Proof Considering

(Rk − ε−1
k P)R−1

k (Rk − ε−1
k P) ≥ 0(k = 1, 2) (38)

we get

− PR−1
k P ≤ −2εk P + ε2k Rk (39)

From (39) and Ξ i jl in (15), we can obtain

Ξ i jl ≤ Ξ̂ i jl + Υ T
1 Δ1(t)Υ2

+Υ T
3 Δ2(t)Υ4 + Υ T

5 Δ2(t)Υ6 (40)
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where

Ξ̂ i jl =

⎡
⎢⎢⎢⎢⎢⎣

Ξ̂
i jl
11 ∗ ∗

Ξ̂
i jl
21 Ξ̂22 ∗

Ξ̂
i jl
31 0 Ξ̂33

⎤
⎥⎥⎥⎥⎥⎦

, Ξ̂
i jl
11 =

⎡
⎣Ξ̂

i jl
111 ∗

Ξ̂
i jl
112 Ξ̂

i jl
113

⎤
⎦

Ξ̂
i jl
111 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̂
i jl
1 ∗ ∗ ∗

Γ̂
i jl
2 −2R1 +U1 +UT

1 ∗ ∗
U1 R1 −U1 −Q1 − R1 ∗
Γ̂

i jl
3 0 0 Γ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ξ̂
i jl
112 =

⎡
⎢⎢⎢⎣

U2 0 0 R2 −U2

Γ̂
i jl
5 ᾱΓ̂

i jl
6 0 (1 − ᾱ)Γ̂

i jl
6

Γ̂
i jl
8 0 0 0

⎤
⎥⎥⎥⎦

Ξ̂
i jl
113 =

⎡
⎢⎢⎢⎢⎢⎣

−Q2 − R2 ∗ ∗
0 Γ̂

i jl
7 + (Γ̂

i jl
7 )T ∗

0 (1 − ᾱ)(Γ̂
i jl
6 )T −W1

⎤
⎥⎥⎥⎥⎥⎦

Γ̂
i jl
1 = PΠ̂i j + Π̂T

i j P + Q1 + Q2 − R1 − R2,

Γ̂
i jl
2 = ᾱKT

l BT
j P + R1 −U1

Γ̂
i jl
3 = (1 − ᾱ)KT

l BT
j P + R2 −U2,

Π̂i j = PA j + PL j (Ci − C j )

(Γ̂
i jl
5 )T = PL jCi + (Ai − Π̂i j )

T P,

Γ̂
i jl
6 = P(Bi − Bj )Kl

Ξ̂22 = diag{−2ε1P + ε21R1,−2ε2P + ε22R2},

Ξ̂33 = Ξ̂22

Γ̂
i jl
7 = PAi − PL jCi , Γ̂

i jl
8 = (1 − ᾱ)KT

l BT
j P

Ξ̂
i jl
21 =

⎡
⎢⎣

τM F̂ i jl

dM F̂ i jl

⎤
⎥⎦ , Ξ

i jl
31 =

⎡
⎢⎣

τM Ĝi jl

dM Ĝi jl

⎤
⎥⎦

F̂ i jl = [
Π̂i j ᾱPBj Kl 0 (1 − ᾱ)PBj Kl 0 PL jCi (1 − ᾱ)PBj Kl

]

Ĝi jl =
[
0 δPBj Kl 0 −δPBj Kl 0 0 − δPBj Kl

]

Υ1 =
[
MT

1 j P 01×4 −MT
1 j P 0 τMMT

1 j P dMMT
1 j P 0 0

]

Υ2 = [
N1 j (Ci − C j ) 01×4 N1 jCi 01×5

]
Υ3 =

[
MT

2l B
T
j P 01×4 MT

2l(Bi − Bj )
T P 0 τMMT

2l B
T
j P dMMT

2l B
T
j P 0 0

]

Υ4 = [
0 ᾱN2l 0 (1 − ᾱ)N2l 0 0 N2l 01×4

]

Υ5 =
[
01×9 τMδMT

2l B
T
j P dMδMT

2l B
T
j P

]

Υ6 = [
0 N2l 0 −N2l 0 0 −N2l 01×4

]

By using Lemma 2, there exist positive scalars ε3, ε4
and ε5, such that

Ξ i jl ≤ Ξ̂ i jl + ε3Υ
T
1 Υ1 + ε−1

3 Υ T
2 Υ2 + ε4Υ

T
3 Υ3

+ ε−1
4 Υ T

4 Υ4 + ε5Υ
T
5 Υ5 + ε−1

5 Υ T
6 Υ6 (41)

Considering (41), applying the Schur complement, it is
easy to obtain the following inequalities from (15) and
(16),
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ρlΞ̃
i jl + ρ j Ξ̃

il j − ρ j Ṽ − ρl Ṽ + 2Ṽ < 0 (42)

Ξ̃ i jl + Ξ̃ il j − 2Ṽ < 0 (43)

in which

Ξ̃ i jl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̂ i jl ∗ ∗ ∗ ∗ ∗ ∗
ε3Υ

T
1 −ε3 I ∗ ∗ ∗ ∗ ∗

Υ2 0 −ε3 I ∗ ∗ ∗ ∗
ε4Υ

T
3 0 0 −ε4 I ∗ ∗ ∗

Υ4 0 0 0 −ε4 I ∗ ∗
ε5Υ

T
5 0 0 0 0 −ε5 I ∗

Υ6 0 0 0 0 0 −ε5 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ṽ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Define X = P−1, XR1X = R̄1, XR2X =
R̄2, XQ1X = Q̄1, XQ2X = Q̄2, XU1X = Ū1,

XU2X = Ū2, J = diag{J1, I, I, I, I, I, I, }, J1 =
diag{X, . . . , X}, J1V JT1 = V̄ ,Y = Kl X, Z j =
L j X̄ .

By Lemma 3, for X = V

[
X1 ∗
0 X2

]
V T , one can get

CX = X̄C with X̄ = OSX−1
1 S−1O−1.

Pre-multiplying and post-multiplying (42) and (43)
with J and its transpose, and taking the above defini-
tions into consideration, we can get (33) and (34). Pre-
multiplying and post-multiplying (17) and (18) with
diag{X, X}, (35) and (36) can be obtained.

This completes the proof. ��
Remark 3 It can be observed that the hybrid-triggered
scheme in this paper combines the characteristics of
periodic sampling and the event-triggered scheme. It is
very convenient to apply the hybrid-triggered scheme
to balance the network transmission and the system
performance. The transmission amount in the commu-
nication network can be adjusted by selecting different
values of h, ᾱ and σ .

Remark 4 To the best of the authors’ knowledge, the
problem of resilient observer-based control via net-
worked T–S fuzzy systems has not been reported in
the literature. It can be seen from the following simu-
lation part that the obtained controller design method
is effective.

4 Numerical examples

In this section, a simulation example is provided to
demonstrate the effectiveness of the obtained method.

The nonlinear mass–spring system is as follows:{
ẋ1 = x2
ẋ2 = −0.01x1 − 0.67x31 + u

(44)

where x1 ∈ [−1, 1]. Similar to [8], set h1(x1) = 1 −
x21 , h2(x1) = 1−h1(x1), the nonlinear system (44) can
be transferred as the following T–S fuzzy model:

Rule i : x1 is hi , then{
ẋ(t) = Ai x(t) + Biu(t)
y(t) = Ci x(t), i = 1, 2

(45)

where

A1 =
[

0 1

−0.68 0

]
, A2 =

[
0 1

−0.01 0

]
,

Bi =
[
0

1

]
,Ci =

[
1

0

]

By choosing dM = 0.1, tM = 0.1, ᾱ = 0.4, b =
0.01, εi = 1(i = 1, . . . , 5), ρl = 0.8(l = 1, 2), M11=[
0.1
0.2

]
, M12 =

[
0.2
0.4

]
, M21 = [

0.1 0.2
]
, M22 =[

0.2 0.3
]
, N11 = 0.1, N12 = 0.2, N21 =[

0.1 0
0 0.2

]
, N22 =

[
0.2 0
0 0.3

]
, and applying The-

orem 2, we can obtain:

Y1 =
[
2.0651 −12.7919

]
,

Y2 =
[
−4.5906 −10.3668

]

Z1 =
[
1.2162

4.6035

]
, Z2 =

[
1.3320

3.3731

]
,

X =
[

6.2477 −2.1553

−2.1553 5.6193

]

W1 =
[
33.0477 −0.7668

−0.7668 70.0641

]
,
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Fig. 2 State response of system (45) under hybrid-triggered
scheme

W2 =
[
7.7877 0.4772

0.4772 23.6749

]

According to (37),wederive the corresponding resilient
matrices as

K1 =
[
−0.5241 −2.4774

]
,

K2 =
[
−1.5803 −2.4509

]

L1 =
[
0.3239

1.2258

]
, L2 =

[
0.3547

0.8982

]

The initial conditions of system (45) and the estimator
are chosen as

x0 = [
1 −1

]T
, x̂0 = [

1 −1
]T

Some simulation results are given below. Figure 2
shows the response of the state, from which we can
see that the closed-loop fuzzy system is asymptoti-
cal stable. The output of the designed controller is
depicted in Fig. 3. A possible switching method of
hybrid-triggered scheme is shown in Fig. 4. The sim-
ulation result demonstrates that the designed resilient
observer-based controller performs well.
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Fig. 3 The output control u(t) under hybrid-triggered scheme
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Fig. 4 The Bernoulli stochastic variable α(t) with ᾱ = 0.4

5 Conclusions

This paper focuses on resilient observer-based control
for a class of T–S fuzzy systems under hybrid-triggered
scheme. The data transmission strategy is governed
by the adopted hybrid-driven scheme, in which the
event-triggered scheme and the periodic sampling are
switched stochastically. By using the Lyapunov func-
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tional approach, sufficient conditions for the asymptot-
ical stability of the discussed system are established.
Moreover, the gains of the observer-based controller
are derived by solving a set of linear matrix inequali-
ties. An illustrative example is utilized to show the use-
fulness of the developed approach. In our future work,
the hybrid-driven scheme will be applied in more chal-
lenge and interesting investigations such as distributed
control systems and cascade control systems.
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