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Abstract: This study addresses the issue of distributed event-triggered H∞ state estimators subject to deception attacks for
sensor networked systems. A decentralised event-triggered scheme (ETS) is introduced to determine whether the sampling
data of each sensor is transmitted or not, respectively. In this scheme, each sensor node is independent to decide to deliver the
local measurement output through the corresponding ETS. Due to the insertion of the network, the effect of the deception
attacks along with time delay and packet dropouts are considered in this study. A novel estimator network is established to
realise the estimation of the decoupling output measurements and coupling intercommunication measurements. Firstly, a
distributed event-triggered H∞ estimating system with deception attacks is constructed in a mathematical model. Secondly,
sufficient conditions are derived, which can ensure the stability of the designed H∞ estimating error systems and the related
parameters of the desired distributed estimators are presented in an accurate form. Finally, a simulated example is given to
demonstrate the effectiveness of the designed event-triggered distributed H∞ state estimator systems under the deception
attacks.

1 Introduction
The sensor networks, which are distributed spatially to monitor
physical or environmental conditions, can realise the autonomous
data sampling such as temperature, sound, and pressure [1–3].
Hundreds or thousands of sensor nodes constitute the sensor
networks. Due to the convenience, flexibility and low cost of large
numbers of sensors, the sensor networks play an important role in a
wide domain of the applications such as environmental monitoring,
traffic system, manufacturing automation, and object tracking
systems [4]. Hence, an ever-increasing interest has gained in the
research field and large amounts of fruitful achievements have
been achieved in the recent year. For example, in [5], the authors
proposed a novel distributed information-weighted Kalman
consensus filter algorithm for sensor networks, which can
effectively solve the challenging issues such as poor local sensor
node estimation. The authors of [6] applied a leader-following-
based Kalman filtering algorithm for sensor networks with
communication delays. The authors of [7] proposed distributed
algorithms to deal with the distributed energy resource
coordination problem over multiple time periods.

The sensor networks discussed above early are based on the
periodic sampling (time-triggered scheme), in which all the
sampled data is delivered through the network [8, 9]. The adoption
of a time-triggered scheme can generate a lot of redundancy if the
sampling period is short, which can result in network congestion
[10–13]. To overcome the shortcomings of the time-triggered
scheme, the event-triggering strategy is proposed by many scholars
such as Tabuada [14], Lunze [15], and Yue [16], to reduce the
number of transmitted packets and alleviate the communication
load. For example, in [16], the authors proposed a novel event-
triggered scheme (ETS) in which a set threshold is used to
determine whether the current signals are delivered to the network
or not. In comparison with the ETS proposed in [15], where the
ETS needs to obtain the continuous states to judge whether the
current state violates the ETS or not, however, the advantage of
this ETS [16] can realise the supervision of system states in
discrete instants. Based on the proposed triggered scheme in [16],

large numbers of research studies have achieved the different
results of the control fields [17, 18], e.g. the authors of [19]
designed the non-fragile state estimator for delayed neural
networks with an ETS to save the limited resource. To reduce the
network burden, the authors of [20] focused on designing a non-
parallel distribution compensation controller for Takagi–Sugeno
fuzzy systems. The event-triggered communication mechanism
was applied in [21] to investigate the fuzzy filtering for a class of
nonlinear networked control systems. The literature above is based
on the centralised ETS, nonetheless, due to the complexity of the
network, there are lots of control devices distributed physically
such as sensors and estimators. Suppose that large numbers of
sensors sample data through an ETS, it may result in the collapse
of this scheme. To overcome this scenario, a distributed ETS has
increased the investigating interests, which can trigger the partial
information independently through the preset event-triggering
condition. In [22], the authors proposed a distributed event-
triggered communication optimisation for economic dispatch to
reduce information exchange requirements in smart grids. In [23],
the problem of distributed event-triggered cooperative control was
investigated for frequency and voltage stability in the microgrid.
By applying an adaptive distributed event-based scheme in [24],
the authors studied the fuzzy control problem for uncertain
nonlinear multi-agent systems in the strict feedback form.
Motivated by the aforementioned results, this study applies a
decentralised event-triggered communication mechanism to decide
whether the sampled data of each corresponding sensor is delivered
through the network or not.

In recent years, the insertion of the network has brought about
countless advantages such as high transmission rate, low control
cost, and flexible communication approaches [25, 26]. However,
with the rapid development of the network, the risk and
vulnerability have been emerging gradually [27], especially in the
aspect of network security. One of the factors threatening the
network security is cyber-attacks. As described in most references
[28, 29], the cyber-attacks can be divided into three categories,
denial of service (DoS) [30, 31], replay attacks [32, 33], and
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deception attacks [34, 35]. The main purpose of the cyber-attacks is
to decline the normal performance of the networked system and
collapse the stability of the system platform. In this study, the
discussed cyber-attacks are classed as deception attacks. By
injecting false data into the normal data during the transmission,
deception attacks intend to damage the normal transmission to
obtain the secret information or fabricate the data [36]. Due to the
huge threat brought by deception attacks, there are numerous
scholars interested in investigating the deception attacks and the
satisfactory results have been obtained. The authors of [37] dealt
with the problem of distributed recursive filters for a class of
discrete time-delayed systems by taking the uniform quantisation
and deception attacks into account. In [38], a novel event-triggered
distributed state estimator algorithm was proposed to defend
against the false data injection attack in wireless sensor networks.
The false data injection attacks were detected by the resilient attack
detection estimators, which can also provide locally reliable state
estimations in [39].

Motivated by the aforementioned discussions, this study is
concerned with the problem of distributed event-triggered H∞ state
estimation under the deception attacks for sensor networked
systems. Large numbers of sensors construct the sensor networks.
The sampled data from each sensor is determined independently by
the corresponding ETS to be delivered or not. The main
contributions of this study can be summarised as follows. (i) To
reduce the transmitted data in the network, each sensor is equipped
with an independent ETS, which can determine whether the current
sampled data is sent to the network or not. (ii) Due to the threat of
the cyber security, the influence of deception attacks is firstly
considered in the design of distributed H∞ state estimators, whose
occurring probability is governed by a Bernoulli variable. (iii)
Distributed H∞ estimators are formulated to estimate the output
measurements from the decentralised ETS and the inner
information from adjacent estimators. This study firstly realises the
co-design of the distributed H∞ state estimator by considering the
decentralised ETS and stochastic deception attacks.

The rest of the paper is organised as follows. In Section 2, a
mathematical model of H∞ distributed estimating error systems is
constructed by considering both decentralised ETSs and deception
attacks into consideration. In Section 3, sufficient conditions which
can guarantee the stability of the augmented system are derived by
using Lyapunov stability theory and linear matrix inequality (LMI)
techniques. Thus, the estimated gains and coupling parameters are
presented in an explicit form. A simulated example is given to
demonstrate the effectiveness of the designed H∞ distributed
event-triggered estimators in Section 4. Finally, a conclusion is
given to make a summarisation.

Notation: Rn and Rn × m denote the n-dimensional Euclidean
space, and the set of n × m real matrices; the superscript “T” stands
for matrix transposition; I is the identity matrix of appropriate
dimension; ⊗ denotes Kronecker product; the notation X > 0, for
X ∈ Rn × n means that the matrix X is real symmetric positive
definite. For a matrix B and two symmetric matrices A and C,

A ∗
B C

 denotes a symmetric matrix, where ∗ denotes the entry

implied by symmetry.

2 System description
In this study, there is an estimator network consisting of m state
estimators which can be represented by a directed weighted graph
G = (V , E, W), where V are the vertices of the graph numbered
1, 2, …, m, E ∈ V × V  are edges of graph G, W = [wi j] denotes the
weight of each associated edge, which can be represented by the
adjacency matrix. An ordered pair (i, j) ∈ E denotes a directed
edge from state estimator i to state estimator j, it means that
estimator i can obtain information from estimator j, but the reverse
is false. If (i, j) ∈ E, then wi j = 1; otherwise, wi j = 0. The degree
matrix of graph G is defined as χ = diag{Σw1 j, Σw2 j, …, Σwm j}.
Ξ = χ − W  is used to represent the Laplacian matrix of the directed
graph [40].

Consider the following linear system:

ẋ(t) = Ax(t) + Bω(t),
z(t) = Lx(t), (1)

where x(t) ∈ Rn and z(t) ∈ Rm are the state vector and the output to
be estimated by state estimators, respectively. w(t) ∈ Rp denotes
the external perturbance satisfying ω(t) ∈ L2[0, ∞). A, B and L are
known matrices with appropriate dimensions.

The output measurement of the ith sensor can be represented by

yi(t) = Cxi(t), i = 1, 2, …, m, (2)

where yi(t) ∈ Rq, C is the known matrix with appropriate
dimensions.

In this study, the problem of distributed event-triggered state
estimation with deception attacks is investigated. As is shown in
Fig. 1, there are m sensors distributed in different space, the output
measurement yi(t) of each sensor is delivered to its corresponding
state estimator through the ETS and the network. m state estimators
construct the estimation network in which each state estimator can
receive information from other estimators. The adoption of the
ETS is to alleviate the burden of the network, which can determine
whether the current sampled data is delivered or not. Similar to
[16], for the sampled data from the ith sensor, the judgement of the
ETS is introduced as follows:

eki
T(tkh)Ωieki(tkh) ≤ yi

T(tkh + lh)σiΩiyi(tkh + lh),
i = 1, 2, …, m,

(3)

where h denotes the sampling period, tkh ⊆ {t0h, t1h, t2h, …} are
release times, t0 = 0 is the initial time, σi ∈ [0, 1), Ωi > 0 and
l = 1, 2, …. The threshold error eki(tkh) = yi(tkh + lh) − yi(tkh). 

 
Remark 1: In the light of event-triggered algorithm (3), σi is a

positive parameter, which can determine the frequency of event-
trigger, when σi = 0, it means that the scheme is time-triggered, all
the sampled data are released. Different from the event-triggered
condition in [16], σi is one of the triggered parameters of the
distributed ETSs in this study, which can make its own decision on
whether the current signals are transmitted through the network or
not. The introduction of the decentralised ETSs can effectively
make full use of the networked resources.

By taking the analogous sampling method in [41], some
uncertainties including network-induced delay, packet dropouts,
and external perturbance are all considered in this study. However,
when the output measurements are delivered through the network,
it may be subject to the malicious signals, which are defined as
deception attacks in this study. By injecting the false data into the
normal transmission, deception attacks aim to paralyse the
networked system and destroy the stability of the platform.
Therefore, it is necessary to consider the effect of the deception

Fig. 1  Structure of distributed event-triggered state estimators with
deception attacks
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attacks when the distributed state estimators are designed for
networked sensor systems. In this study, the nonlinear function
f (y(t)) is utilised to represent the deception attacks.

According to Fig. 1, the zero-order-holder (ZOH) can maintain
the current instant until the next instant in the process of signal
transmission. To analyse easily, similar to [20], for the holding
interval [tkh + τtk, tk + 1h + τtk + 1) affected by ZOH, it is divided into
several subintervals. To describe the holding zone Λ of ZOH,
suppose there exists a constant ϖ satisfying

Λ = [tkh + τtk, tk + 1h + τtk + 1) = ⋃
l = 0

ϖ
Λl,

where

Λl = [tkh + lh + τt + l, tkh + lh + h + τt + l + 1],

l = {1, 2, …, ϖ}, ϖ = tk + 1 − tk − 1 .

Define τ(t) = t − tkh − lh, 0 ≤ τtk ≤ τ(t) ≤ h + τtk + l + 1 ≜ τM. Define
d(t) = t − tkh, d(t) ∈ [0, dM], where dM is the upper bound of d(t).
Then, the output measurement, which is transmitted to the state
estimator, can be described as follows:

ȳi(t) = α(t) f i(y(t − d(t)))
+(1 − α(t))(yi(t − τi(t)) − eki(t)),

(4)

where α(t) ∈ {0, 1}, eki(t) = yi(t − τi(t)) − yi(t). ᾱ and ρ2 are utilised
to represent the expectation and the mathematical variance of α(t),
respectively. f i(y(t)) represents the deception attacks to the
corresponding output measurements through the ith ETS.

 
Remark 2: Inspired by [28, 37], the random Bernoulli variable

α(t) is used to govern the deception attacks. When α(t) = 0, (4) can
be written as ȳi(t) = yi(t − τi(t)) − eki(t) it means that the data is
transmitted without deception attacks; otherwise,
ȳi(t) = f i(y(t − d(t))), the normal signals are substituted by false
data.

 
Remark 3: It is noted that the deception attacks f (y(t)) is a

nonlinear function related to y(t) instead of yi(t). As is shown in
Fig. 1, some of the transmitted signals through the decentralised
ETS may be delivered to the networked simultaneously, and these
signals may suffer from the same malicious signals randomly.

This study aims to design the distributed state estimators over
sensor networks. Then, the ith state estimator can be described as
follows:

x^̇i(t) = Ax^i(t) + Ki(ȳi(t) − y^i(t))

+ Di ∑
j = 1

m
wi j(y^ j(t) − y^i(t)),

ẑi(t) = Lx^i(t),
y^i(t) = Cx^i(t),

(5)

where t ∈ Λl, i = 1, 2, …, m. x^i(t), y^i(t) and ẑi(t) are the estimations
of xi(t), yi(t) and zi(t), respectively. Ki and Di are the decoupling and
coupling gains of the ith estimator to be determined.

Define the estimation error ei(t) = xi(t) − x^i(t), substitute (4)
into (5), ėi(t) can be described as follows:

ėi(t) = (A − KiC)ei(t) + KiCxi(t) + Bωi(t) − α(t)Ki

f i(y(t − d(t))) − (1 − α(t))KiCxi(t − τi(t))

+(1 − α(t))Kieki(t) − Di ∑
j = 1

m
wi j(y^ j(t) − y^i(t)) .

(6)

Set ξ(t) = eT(t) xT(t) T, z~(t) = z(t) − ẑ(t), the estimation error
systems can be expressed as follows:

ξ̇(t) = A
~
ξ(t) + B

~
ω(t) + (1 − α(t))KH2ek(t)

− (1 − α(t))KC̄H2H1ξ(t − τ(t))
− α(t)KH2 f (C̄H1ξ(t − d(t))),

z~(t) = L
~
ξ(t),

(7)

where

x(t) = [x1
T(t) x2

T(t) … xm
T(t)]T,

x^(t) = [x^1
T(t) x^2

T(t) … x^m
T(t)]T,

ω(t) = [ω1
T(t) ω2

T(t) … ωm
T(t)]T,

ek(t) = [ek1
T (t) ek2

T (t) … ekm
T (t)]T,

f (y(t − d(t))) =

f 1(y(t − d(t)))
f 2(y(t − d(t)))

…
f m

T(y(t − d(t)))

,

A
~ = Ā − KC̄ + DΞC̄ KC̄ − DΞC̄

0 Ā
,

B = B̄
B̄

, H1 = 0 I , H2 = I
0 ,

K = diag{K1, K2, …, Km},
D = diag{D1, D2, …, Dm},
Ā = A ⊗ Im, B̄ = B ⊗ Im, C̄ = C ⊗ Im,
L̄ = L ⊗ Im, L

~ = L̄ 0 ,

Ξ =

∑
j = 1

m
w1 j −w12 … −w1m

−w21 ∑
j = 1

m
w2 j … −w2m

… … … …

−wm1 −wm2 … ∑
j = 1

m
wm j

.

An assumption and some important lemmas are introduced as
follows.

 
Assumption 1: The deception attacks f (y(t)) introduced above

are assumed to satisfy the following constraints [42, 43]:

∥ f (y(t)) ∥2 ≤ ∥ My(t) ∥2 , (8)

where M is the upper bound of the deception attacks.
 
Lemma 1: Suppose τ(t) ∈ [0, τM], d(t) ∈ [0, dM], Ξ1, Ξ2, Ξ3, Ξ4

and Ω are matrices with appropriate dimensions [44], then

τ(t)Ξ1 + (τM − τ(t))Ξ2 + d(t)Ξ3

+(dM − d(t))Ξ4 + Ω < 0, (9)

if and only if

τMΞ1 + dMΞ3 + Ω < 0,
τMΞ2 + dMΞ3 + Ω < 0,
τMΞ1 + dMΞ4 + Ω < 0,
τMΞ2 + dMΞ4 + Ω < 0.

(10)
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Lemma 2: Suppose that τ(t) satisfies 0 < τ(t) ≤ τ̄. For any

matrices X∈ Rn × n and U∈ Rn × n that satisfy 
X U

UT X
≥ 0, the

following inequality holds [45]:

−τ̄ ∫
t − τ̄

t

ξ̇T(s)Xξ̇(s)ds ≤
ξ(t)

ξ(t − τ(t))
ξ(t − τ̄)

T

−X ∗ ∗
XT − UT −2X + U + UT ∗

UT XT − UT −X

ξ(t)
ξ(t − τ(t))
ξ(t − τ̄)

.

(11)

3 State estimator design
 

Theorem 1: If there exists P > 0, Qk > 0, Rk > 0, Uk > 0
(k = 1, 2) with appropriate dimensions, the estimation error system
can be asymptotically stable with the given positive scalars ᾱ, τM,
dM, γ, σi (i = 1, 2, …, m), matrices K, D, Ξ and M, such the
inequalities hold

Υ11 ∗ ∗ ∗ ∗
Υ21 −I ∗ ∗ ∗
Υ31 0 −P ∗ ∗
Υ41 0 0 Υ44 ∗
Υ51 0 0 0 Υ55

< 0, (12)

Rk ∗
Uk Rk

> 0, (k = 1, 2) . (13)

where

Υ11 =
Φ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Φ21 Φ22 ∗ ∗ ∗ ∗ ∗ ∗
U1

T Φ32 Φ33 ∗ ∗ ∗ ∗ ∗
Φ41 0 0 Φ44 ∗ ∗ ∗ ∗
U2

T 0 0 Φ54 Φ55 ∗ ∗ ∗
Φ61 0 0 0 0 −αI ∗ ∗
Φ62 0 0 0 0 0 −Ω ∗
B
~TP 0 0 0 0 0 0 −γ2I

,

Φ11 = PA
~ + A

~TP + Q1 + Q2 − R1 − R2,
Φ21 = − α1H1

TH2
TC̄TKTP + R1

T − U1
T,

Φ22 = − 2R1 + U1 + U1
T + σH1

TC̄TΩC̄H1,
Φ32 = R1

T − U1
T, Φ33 = − Q1 − R1,

Φ41 = R2
T − U2

T, Φ44 = − 2R2 + U2 + U2
T,

Φ54 = R2
T − U2

T, Φ55 = − Q2 − R2,
Φ61 = − αH2

TKTP, Φ62 = − α1H2
TKTP,

Υ21 = L
~ 0 0 0 0 0 0 0 ,

Υ31 = 0 0 0 αPMC̄H1 0 0 0 0 ,
Υ44 = Υ55 = diag{ − PR1

−1P, − PR2
−1P}

Υ41 = Υ411 Υ412 ,

Υ411 =
τMPA

~ −ᾱ1τMPKC̄H2H1 0 0
dMPA

~ −ᾱ1dMPKC̄H2H1 0 0
,

Υ412 =
0 −ᾱτMPKH2 ᾱ1τMPKH2 0
0 −ᾱdMPKH2 ᾱ1dMPKH2 0 ,

Υ51 = Υ511 Υ512 ,

Υ511 =
0 ρτMPKC̄H2H1 0 0
0 ρdMPKC̄H2H1 0 0

,

Υ512 =
0 −ρτMPKH2 −ρτMPKH2 0
0 −ρdMPKH2 −ρdMPKH2 0 .

.

 
Proof: Consider the following Lyapunov–Krasovskii functional

V(t) = V1(t) + V2(t) + V3(t), (14)

where

V1(t) = ζT(t)Pζ(t),

V2(t) = ∫
t − τM

t
ζT(s)Q1ζ(s) ds + ∫

t − dM

t
ζT(s)Q2ζ(s) ds,

V3(t) = τM∫
t − τM

t ∫
s

t
ζ̇T(v)R1ζ̇(v) dv ds

+dM∫
t − dM

t ∫
s

t
ζ̇T(v)R2ζ̇(v) dv ds,

P > 0, Qk > 0, Rk > 0 (k = 1, 2) .

By taking the derivative and mathematical expectation of (14),
the following equations are obtained:

E{V̇1(t)} = 2ξT(t)PA, (15)

E{V̇2(t)} = ξT(t)(Q1 + Q2)ξ(t) − ξT(t − τM)Q1

ξ(t − τM) − ξT(t − dM)Q2ξ(t − dM),
(16)

E{V̇3(t)} = E{ξ̇T(t)(τM
2 R1 + dM

2 R2)ξ̇(t)} − τM ∫
t − τM

t

ξ̇T(s)

R1ξ̇(s)ds − dM ∫
t − dM

t

ξ̇T(s)R2ξ̇(s)ds .

(17)

With the calculation of E{ξ̇T(t)(τM
2 R1 + dM

2 R2)ξ̇(t))} in (17)
above, the following equality can be gained:

E{ξ̇T(t)(τM
2 R1 + dM

2 R2)ξ̇(t))} = ATR
~A + ρ2ℬTR

~ℬ, (18)

where

A = A
~
ξ(t) + B

~
ω(t) − ᾱKH2 f (C̄H1ξ(t − d(t)))

−(1 − ᾱ)[KC̄H2H1ξ(t − τ(t)) − KH2ek(t)],
ℬ = KC̄H2H1ξ(t − τ(t))

−KH2ek(t) − KH2 f (C̄H1ξ(t − d(t))),
R
~ = τM

2 R1 + dM
2 R2 .

According to the event-triggered judgement algorithm (3), the
following condition is derived:

ξT(t − τ(t))H1
TCTσΩCH1ξ(t − τ(t))

−ek
T(t)Ωek(t) ≥ 0,

(19)

where σ = diag{σ1, σ2, …, σm}, Ω = diag{Ω1, Ω2, …, Ωm}.
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Considering the definition of deception attacks (4), then the
following inequality can be obtained:

ᾱξT(t − d(t))H1
TC̄TMTPMC̄H1ξ(t − d(t))

−ᾱ f T(CH1ξ(t − d(t))) f (CH1ξ(t − d(t))) ≥ 0.
(20)

Define that

ζT(t) = ζ1
T(t) ζ2

T(t) ζ3
T(t) ,

ζ1
T(t) = ξT(t) ξT(t − τ(t)) ξT(t − τM) ,

ζ2
T(t) = ξT(t − d(t)) ξT(t − dM) ,

ζ3
T(t) = f T(C̄H1ξ(t − d(t))) ek

T(t) ωT(t) .

By Lemma 2, we can obtain that

−τM ∫
t − τM

t

ξ̇T(s)R1ξ̇(s)ds ≤ ζ1
T(t)F1ζ1(t), (21)

−dM ∫
t − dM

t

ξ̇T(s)R2ξ̇(s)ds ≤ ζ4
T(t)F2ζ4(t), (22)

where

ζ4
T(t) = ξT(t) ξT(t − d(t)) ξT(t − dM) ,

F1 =
−R1 ∗ ∗

R1
T − U1

T −2R1 + U1 + U1
T ∗

U1
T R1

T − U1
T −R1

,

F2 =
−R2 ∗ ∗

R2
T − U2

T −2R2 + U2 + U2
T ∗

U2
T R2

T − U2
T −R2

.

By combining (14)–(22), then we have

E{V̇(t) + z~Tz~ − γ2ωT(t)ω(t)}
≤ 2ξT(t)PA + ξT(t)(Q1 + Q2)ξ(t)

−ξT(t − τM)Q1ξ(t − τM) − ξT(t − dM)Q2ξ(t − dM)
+ATR

~A + ρ2ℬTR
~ℬ + ξT(t)L~TL

~
ξ(t) − γ2ωT(t)ω(t)

+ξT(t − τ(t))H1
TCTσΩCH1ξ(t − τ(t))

+ᾱξT(t − d(t))H1
TC̄TMTPMC̄H1ξ(t − d(t))

−ᾱ f T(CH1ξ(t − d(t))) f (CH1ξ(t − d(t)))
+ζ1

T(t)F1ζ1 + ζ4
T(t)F2ζ4 − ek

T(t)Ωek(t)
≤ ζT(t)Ψζ(t),

(23)

where Ψ = Υ11 + Υ21
T IΥ21 + Υ31

T P−1Υ31 − Υ41
T Υ44

−1Υ41 − Υ51
T Υ55

−1Υ51.
Υ11, Υ21, Υ31, Υ41, Υ44, Υ51 and Υ55 are defined in the Theorem 1. It
can be obtained that

E{V̇(t) + z~Tz~ − γ2ωT(t)ω(t)} ≤ ζT(t)Φζ(t) . (24)

Similar to [46, 47], by applying Schur complement and Lemma
1, if (24) holds and Ψ < 0, there exists a scalar λ > 0 such that
E{V̇(t) + z~Tz~ − γ2ωT(t)ω(t)} ≤ − λ ∥ ζ(t) ∥2 for ζ(t) ≠ 0, then
E{V̇(t) + z~Tz~ − γ2ωT(t)ω(t)} < 0, it indicates that the system is
asymptotically stable. The proof is completed. □

In Theorem 1, it drives the sufficient conditions, which can
guarantee the stability of the system (7). On the basis of Theorem
1, the design problem of the distributed estimators will be dealt
with in Theorem 2.

 

Theorem 2: For the given occurring probability of deception-
attacks ᾱ, time-delay bounds τM and dM, trigger scalars σi
(i = 1, 2, …, m), γ, ϵk (k = 1, 2) and matrices Ξ, M, the estimator
error distributed system (7) is asymptotically stable if there exists
matrices P̄i > 0, K̄i, D̄i (i = 1, 2, …, m), Qk > 0, Rk > 0, Uk > 0
(k = 1, 2) with appropriate dimensions, then, the following LMIs
hold:

Ῡ11 ∗ ∗ ∗ ∗
Υ21 −I ∗ ∗ ∗
Υ31 0 −P̄ ∗ ∗
Ῡ41 0 0 Ῡ44 ∗
Ῡ51 0 0 0 Ῡ55

< 0, (25)

Rk ∗
Uk Rk

> 0, (k = 1, 2) . (26)

where

Ῡ11 =
Φ̄11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Φ̄21 Φ̄22 ∗ ∗ ∗ ∗ ∗ ∗
U1

T Φ32 Φ33 ∗ ∗ ∗ ∗ ∗
Φ41 0 0 Φ44 ∗ ∗ ∗ ∗
U2

T 0 0 Φ54 Φ55 ∗ ∗ ∗
Φ̄61 0 0 0 0 −αI ∗ ∗
Φ̄62 0 0 0 0 0 −Ω ∗
B^ 0 0 0 0 0 0 −γ2I

,

Φ̄11 = A^ + A^ T + Q1 + Q2 − R1 − R2,
Φ̄21 = − ᾱ1C

^ + R1
T − U1

T,
Φ̄22 = − 2R1 + U1 + U1

T + Ω^ ,
Φ̄61 = − ᾱK^ , Φ̄62 = ᾱ1K

^ ,

A^ = P̄Ā − K̄C̄ + D̄ΞC̄ K̄C̄ − D̄ΞC̄
0 P̄Ā

,

C^ =
0 0

C̄TK̄T 0
, Ω^ =

0 0
0 σC̄TΩC̄

,

K^ = K̄T 0 , B^ = B̄TP̄ B̄TP̄ ,
P̄ = diag{P̄1, P̄2, …, P̄m},
K̄ = diag{K̄1, K̄2, …, K̄m},
D̄ = diag{D̄1, D̄2, …, D̄m},
Ῡ44 = Ῡ55 = diag{ − 2ϵ1P̄ + ϵ1

2R1, − 2ϵ2P̄ + ϵ2
2R2},

Ῡ41 = Ῡ411 Ῡ412 ,

Ῡ411 =
τMPA^ −ᾱ1τMC^ T 0 0

dMPA^ −ᾱ1dMC^ T 0 0
,

Ῡ412 =
0 −τMᾱK^ T τMᾱ1K

^ T 0

0 −dMᾱK^ T dMᾱ1K
^ T 0

,

Ῡ51 = Ῡ511 Ῡ512 ,

Ῡ511 =
0 ρτMC^ T 0 0

0 ρdMC^ T 0 0
,

Ῡ512 =
0 −ρτMK^ T −ρτMK^ T 0

0 −ρdMK^ T −ρdMK^ T 0
.

Moreover, the decoupling and coupling gains of the ith state
estimator are obtained.
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Ki = Pi
¯ −1Ki

¯ , Di = Pi
¯ −1Di

¯ (i = 1, 2, …, m) . (27)

 
Proof: Define

P̄ = P = diag{P̄1, P̄2, …, P̄m},
K̄ = P̄K = diag{K̄1, K̄2, …, K̄m},
D̄ = P̄D = diag{D̄1, D̄2, …, D̄m} .

By applying the definitions of P̄, K̄, D̄ into inequality matrix
(12), we can obtain the following equivalent inequality matrix:

Ῡ11 ∗ ∗ ∗ ∗
Υ21 −I ∗ ∗ ∗
Υ31 0 −P̄ ∗ ∗
Ῡ41 0 0 Υ~ 44 ∗
Ῡ51 0 0 0 Υ~ 55

< 0, (28)

where Υ~ 44 = Υ~ 55 = diag{ − P̄R1
−1P̄, − P̄R2

−1P̄}.
Due to

(Rk − ϵk
−1P̄)Rk

−1(Rk − ϵk
−1P̄) ≥ 0, (29)

where k = 1, 2.
Then, it yields that

−P̄Rk
−1P̄ ≤ − 2ϵkP̄ + ϵk

2Rk . (30)

That is

−P̄R1
−1P̄ ≤ − 2ϵ1P̄ + ϵ1

2R1,
−P̄R2

−1P̄ ≤ − 2ϵ2P̄ + ϵ2
2R2 .

Next, Υ~ 44, Υ~ 55 in (28) are replaced by −2ϵ1P̄ + ϵ1
2R1 and

≤ − 2ϵ2P̄ + ϵ2
2R2, respectively. Then, we can obtain the LMIs (25).

In Theorem 1, by applying inequalities (12) and (13), we obtain

E{V̇(t) + z~Tz~ − γ2ωT(t)ω(t)} < 0. (31)

Therefore, with the help of inequalities (25), (26) and (31), the
desired distributed estimation error system (7) is asymptotically
stable.

Moreover, on account of the definition of K̄ = P̄K and D̄ = P̄D,
then, K = P̄−1K̄, D = P̄−1D̄.

Since P̄ = diag{P̄1, P̄2, …, P̄m}, then

K = diag{P̄1
−1K̄1, P̄2

−1K̄2, …, P̄m
−1K̄m},

D = diag{P̄1
−1D̄1, P̄2

−1D̄2, …, P̄m
−1D̄m} .

(32)

Hence, the decoupling and coupling gains of the ith estimator
can be expressed as Ki = P̄i

−1K̄i, Di = P̄i
−1D̄i, (i = 1, 2, …, m). That

completes the proof. □

4 Simulation examples
In this section, a practical example is given to show the feasibility
of the designed distributed state estimator system.

Consider the continuous stirred tank reactor system borrowed
from [48]. As is shown in Fig. 2, ψA and ψB denote the educt and
product, respectively. The balance equations of the continuous
stirred tank reactor are shown as follows [49]:

dWA
dt = F

V (WA0 − WA) − g1WA, (33)

dWB
dt = − F

V WB + g1WA − g2WB,

dT
dt = F

V (T0 − T) + gωAR
δWPV (Ts − T)

(34)

− g1WAΔHR
AB + g2WBΔHR

BC

δWP
, (35)

where Tables 1 and 2 present the definitions of the variables and
model parameters, respectively. Based on (33)–(35), the linearised
state-space model of the continuous stirred tank reactor near the
operating point can be obtained as follows:

ẋ(t) = Ax(t) + Bω(t), (36)

where x(t) = x1(t) x2(t) x3(t) T, x1(t) denotes the concentration
of the educt ψA at instant t, x2(t) represents the concentration of the
product ψB at instant t, x3(t) is the reactor temperature at instant t.
B = 0 0.6474 0.6779 T and the linearised system matrix A can
be derived as follows:

A =

− F
V − g1 0 EA1

RTs
2 g1WAs

g1 − F
V − g2 β23

− g1ΔHR
AB

δWP
− g2ΔHR

BC

δWP
β33

=
−0.9388 0 0.0459

0.625 −0.9388 −0.0125
−0.9335 2.4449 −0.8894

,

β23 = − EA1

RTs
2 g1WAs + EA2

RTs
2 g2WBs,

β33 = − F
V − gωAR

δWPV

+
EA1g1WAsΔHR

AB + EA2g2WBsΔHR
BC

RTs
2δWP

.

Set the sampling period T = 0.5, the other parameters of the
system are given by

Fig. 2  Continuous stirred tank reactor
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C =
1 0 0
0 1 0
0 0 1

, L = −1 −1 0 ,

ω(t) =
1, 5 ≤ t ≤ 10,
−1, 15 ≤ t ≤ 20,
0, else .

The function of deception attacks
f (y(t)) = [ − tanhT(0.3y1(t)) − tanhT(0.5y2(t)) − tanhT(0.6y3(t))]T,
which can be depicted in Fig. 3. According to Assumption 1, we
can obtain the upper bound matrix M = diag{0.3, 0.5, 0.6}
satisfying inequality (8). 

As is shown in Fig. 2, there are four sensors deployed to
monitor the reactor temperature, correspondingly, assume that there
are four state estimators constructing the estimating network, the
graph of the estimating network is represented in Fig. 4 which is
borrowed from [37]. The estimating system can be described by the
following matrix:

Ξ =

2 −1 −1 0
0 2 −1 −1
0 0 1 −1

−1 0 0 1

.

Set time delays τM = 0.4, dM = 0.3, γ = 1.2 and the triggered
factors of ETS σ1 = 0.9, σ2 = 0.5, σ3 = 0.6, σ4 = 0.3, let the
probability of the deception attacks ᾱ = 0.5, it means that the
distributed state estimating systems are subject to the ETS and
deception attacks. With the initial condition x(0) = 0 0 0 T, the
decoupling and coupling gains of state estimators are obtained by
applying (27) in Theorem 2 as follows:

K1 =
0.0007 0.0108 0.0032
0.0048 0.0627 0.0082
0.0146 0.2486 0.0612

,

K2 =
−0.0004 0.0273 0.0022
−0.0024 0.1467 0.0005
−0.0132 0.6158 0.0353

,

K3 =
0.0026 −0.0109 0.0158
0.0125 −0.0574 0.0767
0.0525 −0.2459 0.3484

,

K4 =
0.0063 −0.0179 0.0219
0.0336 −0.1089 0.1207
0.1356 −0.4282 0.5066

,

D1 =
−0.0590 0.0093 0.0009
−0.2440 −0.2815 0.0564
0.3399 0.0607 −0.0348

,

D2 =
−0.0402 0.0144 −0.0003
−0.3741 −0.2908 0.0675
0.5597 0.1856 −0.0578

,

D3 =
−0.0941 −0.0020 0.0056
−0.4038 −0.0624 0.0489
2.8974 0.4089 −0.2323

,

D4 =
−0.1078 0.0035 0.0069
−0.3617 −0.0071 0.0424
1.6207 0.3519 −0.1172

.

The diagrams of event-triggered instants and intervals are
shown as Figs. 5–8. The response of estimation error z~(t) is
reflected in Fig. 9. The occurring probability α(t) of deception
attacks is depicted in Fig. 10. According to the above figures, one

can see that the design of event-triggered distributed H∞ state
estimators with deception attacks is feasible. 

5 Conclusion
This study concentrates on the investigation of H∞ distributed state
estimating design with decentralised ETSs and deception attacks.
To alleviate the burden of the transmitted burden, the distributed
ETSs are introduced to determine whether the received sampled
data is delivered or not. By using a random Bernoulli variable to
govern the stochastic deception attacks, a mathematical model of
H∞ distributed state estimating error systems has been constructed
for sensor networks. According to the Lyapunov stability theory
and LMI techniques, sufficient conditions which can ensure the
stability of the desired estimating error systems are derived. Thus,

Table 1 Definitions of variables in (33)–(35)
WA concentration of educt ψA

WB concentration of product ψB

WA0 low concentration of educt ψA

T0 initial temperature of the reactor
F normalised process stream inflow
V volume flow
δ density
WP heat capacity

ΔHR
AB reaction enthalpy from ψA to ψB

g1, g2 rate coefficients
 

Table 2 model parameters and main operating point
g0 = 1.2467 × 1012 h−1 EA1/R = EA2/R = 9867.5 K

ΔHR
AB = 4.2 KJ/mol ΔHR

BC = − 11 KJ/mol
δ = 0.9342 kh/l WP = 3.01 kJ/kg K
AR = 0.215 V = 10.01
T0 = 403.15 K gω = 4032 kJ/h m2 K
WAs = 1.235 mol/l WA0 = 5.1 mol/l
WBs = 0.9 mol/l Ts = 407.29 K
F /V = 0.3138 g1 = g2 = 0.625

 

Fig. 3  Graph of cyber-attacks f (y(t))
 

Fig. 4  Topology of the estimator networks
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the designed algorithm of distributed estimators is obtained, also
the estimating parameters and corresponding coupling gains are
derived in an exact expression. Finally, an illustrated example is
given to demonstrate the usefulness of the designed H∞ event-
triggered distributed estimators with deception attacks.
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