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Abstract This paper is mainly concerned with event-trig-

gered state estimation for Takagi–Sugeno (T–S) fuzzy

neural networks subjected to stochastic cyber-attacks. An

event-triggered scheme is utilized to decide whether the

sampled data should be delivered or not. By taking the

influence of the cyber-attacks into consideration, a T–S

fuzzy model for the state estimation of neural networks is

established with the event-triggered scheme. Through the

utilization of Lyapunov stability theory and linear matrix

inequality (LMI) techniques, the sufficient conditions are

derived which can ensure the stability of estimator error

systems. In addition, the gains of the estimator are acquired

in the form of LMIs. Finally, a simulated example is pre-

sented to illustrate the effectiveness of the proposed

method.

Keywords Event-triggered scheme � T–S fuzzy neural

networks � Stochastic cyber-attacks � State estimation

1 Introduction

Since the 1980s of the twentieth century, due to the unique

nonlinear adaptive information processing capability, neural

networks have received considerable attentions and have

been widely used in the fields of automatic control [1–5],

pattern recognition [6–8], intelligent robots [9] and so on.

Plenty of scholars devote themselves to studying different

classes of neural networks. From the control perspective,

different issues on neural networks have been investigated,

such as H1 filter design [10], the robust stability [11, 12],

synchronization [13] and state estimator design [14]. For

example, in [15], the temporal properties problems for

neural networks by using support vector regression are
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addressed. With the consideration of stochastic cyber-at-

tacks, the problem of H1 filter design for neural networks is

investigated in [16]. In [17], the authors propose a dissipa-

tivity-based state estimation method for static neural net-

works with time-varying delay. The authors in [18]

concentrate on the reduced-order state estimation problem

for a class of neural networks with the help of an integral

inequality. H1 filter design for a class of neural network

systems with event-triggered communication scheme and

quantization is discussed in [10]. Quantized state estimation

for neural networks with cyber-attacks is studied in [19].

As a mathematical tool, T–S fuzzy model is widely used

in the analysis and modeling of nonlinear systems [20–25].

For instance, network-based fault-tolerant control is

addressed for a T–S fuzzy system in [22]. By using the

smooth membership functions, the authors in [26] are con-

cerned with the adaptive control for the multi-input and

multi-output system via T–S fuzzy model. For the T–S

fuzzy systems with time delays, the fault detection problem

is investigated in [27]. A newly slack variable technique is

proposed in [28] which can effectively improve the relax-

ation quality of control synthesis for discrete-time T–S fuzzy

systems. T–S fuzzy models can help not only ordinary

nonlinear systems but also neural networks to carry out

control analysis. As a fusion of fuzzy logic and neural net-

works, fuzzy neural networks have the advantages of both

and avoid some shortcomings. Therefore, it has become one

of the hot spots in the research of intelligent control. By

using the wavelet fuzzy neural network, a robust adaptive

sliding-mode control is studied in [29]. For the estimation of

the unknown functions in the dynamics fractional-order

chaotic systems, the self-evolving nonsingleton type-2 fuzzy

neural networks are presented in [30]. The state estimation

of T–S fuzzy neural networks with Markovian jumping

parameters via sampled-data control is investigated in [31].

In addition, with the consideration of probabilistic actuator

faults and leakage terms, robust reliable control for T–S

fuzzy neural networks is addressed in [32].

In the past few years, the restrictions of energy and

bandwidth in networked control systems have stirred

remarkable interests. For solving the problem, different

communication transmission mechanisms have been pro-

posed. Under time-triggered scheme, the signals are sampled

and transmitted at a fixed interval, which brings great burden

to the network. In order to overcome the shortcomings of the

time-triggered scheme, event-triggered scheme is adopted in

[14]. Up to the present, various event-triggered schemes

have been proposed, one of which is an event-triggered

scheme relying on discrete supervision of the system states.

This event-triggered scheme firstly proposed in [33] only

supervises the difference between the states sampled in

discrete instants and the data can be transmitted only when

they satisfy the given conditions. A low transmission

frequency and decrease in the release times of the sensor are

regarded as the main advantages of the event-triggered

scheme. Based on [33], different issues have been addressed

under different event-triggered schemes and a great many

research results have been published [34, 35]. For example,

the authors in [36] address the problem of adaptive model-

based event-triggered control for an uncertain continuous

system. In [37], the event-triggered-based control is inves-

tigated for discrete-time T–S fuzzy systems. Motivated by

the work in [33], the distributed event-triggered scheme is

adopted to design H1 filter for sensor networks [35]. On the

basis of the work in [33], the authors propose a hybrid-driven

communication scheme which can further improve the sys-

tem performance and reduce the transmission of sampled

signals at the same time in [38]. Based on the hybrid-driven

communication scheme in [38], a H1 filter design method is

proposed for hybrid-driven networked systems with

stochastic cyber-attacks in [39]. Under hybrid-driven com-

munication scheme in [38], the authors in [40] focus on the

resilient observer-based output feedback controller design

for hybrid-triggered networked T–S fuzzy systems.

Nowadays, the channels in control systems are connected

via communication network, which results that the systems

are vulnerable to suffer from cyber-attacks. In general, the

cyber-attacks are classified into three kinds including

deception attacks, denial of service (DoS) attacks and

eavesdropping attacks. Deception attacks degrade system

performance via replacing normal data by pretending to be

trusted parties. DoS attacks send plenty of spam or jamming

information to destroy service system. Different from the

above attacks, eavesdropping attacks bring about informa-

tion leakage by methods of network monitoring, illegal

access to data and password files. Recently, the control

synthesis of the system against cyber-attacks has been a hot

topic. For example, the remote estimator over a multi-

channel network is investigated for cyber-physical system

under the DoS attacks in [41]. The load frequency control is

studied for multi-area power systems with energy-limited

DoS attacks in [42]. By taking the influence of the deception

attacks into account, the authors in [43] adopt an event-

triggered mechanism against false data injection (deception)

attack on distributed network. Under the influence of

deception attacks, quadratic cost criterion safety control

problem is addressed for a class of discrete-time stochastic

nonlinear systems in [44]. A method is proposed in [45],

which is capable of detecting compromised sensor networks

vulnerable to DoS attacks. Moreover, with the consideration

of stochastic cyber-attacks, quantized stabilization is dis-

cussed for T–S fuzzy systems under hybrid-triggered

mechanism in [46]. In view of the cyber-attacks and lossy

sensors, the observer-based event-triggering consensus

control problem is studied for a class of discrete-time multi-

agent systems in [47]. To the best of our knowledge, the
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event-triggered state estimation for T–S fuzzy neural net-

works with stochastic cyber-attacks has not been investi-

gated, which still remains as a challenging problem.

The rest of this paper is organized as follows. In Sect. 2,

the problem under consideration is presented and system

modeling is described. In Sect. 3, the sufficient conditions

guaranteeing the stability of the system are acquired and

the desired estimator gains are accurately derived. In

Sect. 4, a practical paradigm is supplied to prove the use-

fulness of designed estimator.

Notation Rm and Rm�n represent the m-dimensional

Euclidean space, and the set of m� n real matrices; the

superscript T denotes matrix transposition; I is the identity

matrix with appropriate dimension; E is the expectation

operator; the notation X[ 0 (respectively, X� 0), for X 2
Rm�m stands for that the matrix X is real symmetric positive

definite (respectively, positive semi-definite). For a matrix

B and two symmetric matrices A and C,
A �
B C

� �
represents

a symmetric matrix, where � refers to the entries implied by

symmetry. The set f1; 2; . . .; rg is represented as L.

2 System Description

A T–S fuzzy model with r plant rules is exhibited, which

can describe the following neural networks.

IF g1ðxðtÞÞ is Hi
1 and gqðxðtÞÞ is Hi

q, THEN

_xðtÞ ¼ �AixðtÞ þWigðxðtÞÞ þ Vigðxðt � /ðtÞÞÞ
yðtÞ ¼ CixðtÞ

�
ð1Þ

where r is the number of IF-THEN rules, xðtÞ ¼ ½x1; x2,

. . .; xm�T 2 Rm is the state vector of network and yðtÞ ¼
½y1; y2; . . .; ym�T 2 Rm is the measurement output. gðxðtÞÞ ¼
½g1ðx1ðtÞÞ; g2ðx2ðtÞÞ; . . .; gmðxmðtÞÞ�T denotes the neuron

activation function, /ðtÞ represents the time-varying delay

satisfying 0�/ðtÞ�/M , /M is the upper bound of /ðtÞ
and Hi

v ði 2 L; v ¼ 1; 2; . . .; qÞ denotes the fuzzy sets,

gvðxðtÞÞ are fuzzy premise variables; for simplicity, gðxÞ is

used to represent gvðxðtÞÞ and gðxÞ ¼ ½g1ðxÞ; g2 ðxÞ; . . .; gq
ðxÞ�. Ai ¼ diagfai1; ai2. . .aimg[ 0 is a constant real matrix;

Wi and Vi are the connection weight matrix and the delayed

connection weight matrix, respectively; Ci is the parameter

matrix with appropriate dimensions.

By utilizing center-average defuzzifier, product inter-

ference and singleton fuzzifier, fuzzy system (1) is inferred

as follows:

_xðtÞ ¼
Pr
i¼1

uiðgðxÞÞ �AixðtÞ þWigðxðtÞÞ½

þVigðxðt � /ðtÞÞÞ�

yðtÞ ¼
Pr
i¼1

uiðgðxÞÞCixðtÞ

8>>>>><
>>>>>:

ð2Þ

where uiðgðxÞÞ ¼
liðgðxÞÞPr

i¼1
liðgðxÞÞ

, liðgðxÞÞ ¼
Qq

v¼1 l
i
vðgvðxÞÞ,

livðgvðxÞÞ represents the grade membership value of gvðxÞ.
uiðgðxÞÞ is the normalized membership function which

satisfies uiðgðxÞÞ� 0;
Pr

i¼1 uiðgðxÞÞ ¼ 1 for i 2 L.

In this paper, the estimator design is investigated for T–S

fuzzy neural networks with event-triggered scheme and

stochastic cyber-attacks. As is shown in Fig. 1, an event

generator is located between the sensor and the estimator,

which is utilized to decide whether the sampled signals should

be transmitted into the network. The influence of stochastic

cyber-attacks in the network is also taken into account.

Since there exists network-induced delay, the premise

variable uiðgðxÞÞ of system (2) is mismatched with the one

in fuzzy estimator. The state estimator model is designed as

follows

IF g1ðx̂ðtÞÞ is G
j
1 and gpðx̂ðtÞÞ is Gj

p, THEN

_̂xðtÞ ¼ �Ajx̂ðtÞ þ Kj ~yðtÞ � ŷðtÞð Þ
ŷðtÞ ¼ Cjx̂ðtÞ

(
ð3Þ

where x̂ðtÞ 2 Rm is the estimated state vector andKj denote the

state estimator parameters to be determined, ~yðtÞ is the actual

input of the state estimator and ŷðtÞ is the estimation of y(t).

G
j
‘ðj 2 L; ‘ ¼ 1; 2; . . .; pÞ denotes the fuzzy sets, and g‘ðx̂ðtÞÞ

is premise variables. For simplicity, gðx̂Þ is used to represent

g‘ðx̂ðtÞÞ and gðx̂Þ ¼ ½g1ðx̂Þ; g2ðx̂Þ; . . .; gpðx̂Þ�.Aj areCj are the

parameter matrices with appropriate dimensions.

Then, the fuzzy state estimator can be described as

follows.

_̂xðtÞ ¼
Pr
j¼1

hj gðx̂Þð Þ �Ajx̂ðtÞ þ Kj ~yðtÞ � ŷðtÞð Þ
� �

ŷðtÞ ¼
Pr
j¼1

hjðg x̂Þð ÞCjx̂ðtÞ

8>>><
>>>:

ð4Þ

where hjðgðx̂ÞÞ ¼
.jðgðx̂ÞÞPr

j¼1
.jðgðx̂ÞÞ

, .jðgðx̂ÞÞ ¼
Qp

‘¼1 G
j
‘ðg‘ðx̂ÞÞ,

G
j
‘ðg‘ðx̂ÞÞ denotes the grade membership value of g‘ðx̂Þ.

hjðgðx̂ÞÞ presents the normalized membership function

satisfies hjðgðx̂ÞÞ� 0;
Pr

j¼1 hjðgðx̂ÞÞ ¼ 1.

Remark 1 As a powerful mathematical tool, T–S fuzzy

model can provide an effective way of representing complex

nonlinear systems by a series of simple local linear dynamic

systems with their linguistic description. In this paper, the

T–S fuzzy model is adopted to investigate state estimation

of the delayed neural networks with event-triggered

scheme and stochastic cyber-attacks shown in Fig. 1.

Motivated by [10], an event generator is designed at the

sensor side, and the sampling data will not be delivered

when they satisfy following inequality (5):
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eTk ðtÞXekðtÞ� ryTðtkhþ khÞXyðtkhþ khÞ ð5Þ

where r 2 ½0; 1Þ, X[ 0 and k ¼ 1; 2; . . .. The threshold

error is ekðtÞ ¼ yðtkhÞ � yðtkhþ khÞ.
It should be noted that once the sample signal is released

into network at instant tkh, then, it will be forwarded to the

state estimator at instant tkhþ stk , in which stk is network-

induced communication delay. Similar to what is depicted

in [48], the interval ½tkhþ stk ; tkþ1hþ stkþ1
Þ can be divided

into several subintervals. Suppose that there exists a con-

stant 1 which satisfies ½tkhþ stk , tkþ1hþ stkþ1
Þ ¼

S1
k¼1 Pk,

where Pk ¼ ½tkhþ khþ stkþk, tkhþ khþ hþ stkþkþ1�,
k ¼ f1; 2; . . .; 1g, 1 ¼ tkþ1 � tk � 1. Define sðtÞ ¼ t � tk

h� kh, 0� stk � sðtÞ� hþ stkþkþ1
,sM .

Then, the sampled signals via event-triggered

scheme can be expressed as follows.

�yðtÞ ¼ yðt � sðtÞÞ þ ekðtÞ ð6Þ

Remark 2 In inequality (5), r is a positive parameter,

which can decide the frequency of event-triggered scheme.

When r ¼ 0, �yðtÞ ¼ yðtÞ, it indicates that all sampled data

are delivered. When r 2 ð0; 1Þ, it means that the mea-

surement data will be transmitted via the network only

when they exceed the threshold in (5) and the transmitted

signal is �yðtÞ ¼ yðt � sðtÞÞ þ ekðtÞ.

The use of communication network makes neural net-

works vulnerable to the malicious signals, and the threats

of the cyber-attacks can not be neglected. The malicious

signals may substitute the normal transmitted data when

the networks suffer from stochastic cyber-attacks f(y(t)). In

this paper, the transmitted signals are assumed to be

attacked by cyber-attacks randomly; then, the real signal

received by the state estimator is

~yðtÞ ¼ hðtÞf ðyðt � dðtÞÞÞ þ ð1 � hðtÞÞ�yðtÞ ð7Þ

where dðtÞ 2 ½0; dM�, dM is the upper bound of d(t); hðtÞ 2
f0; 1g and hðtÞ is a Bernoulli variable with the following

statistical properties.

EfhðtÞg ¼ �h; E ðhðtÞ � �hÞ2
n o

¼ �h 1 � �h
� �

¼ q2

where �h denotes the expectation of hðtÞ and q2 is utilized to

represent the mathematical variance of hðtÞ.

Remark 3 It needs to be pointed out that the cyber-attacks

discussed in this paper belong to stochastic attacks, which

corrupt the data transmission in the way of replacing the

normal signals with the attack signals randomly. Bernoulli

variable hðtÞ in (7) is utilized to depict the appearance

probability of the random cyber-attacks. When hðtÞ ¼ 0,

~yðtÞ ¼ �yðtÞ, the data are transmitted without stochastic

attacks. When hðtÞ ¼ 1, the false signals ~yðtÞ ¼ f ðyðt �
dðtÞÞÞ substitute for the original transmission signals.

Remark 4 In recent years, cyber-attacks have received

increasing research interests, which aim at damaging the

system performance and reducing the reliability of the net-

work [34, 35]. It should be pointed out that the problem of

state estimator design for neural networks can be investi-

gated by considering different types of cyber-attacks, such as

DoS attacks, deception attacks and reply attacks. Due to page

limitation, in this paper, the state estimator for neural net-

work is designed only considering the randomly occurring

deception attacks whose aim is to degrade the system sta-

bility by injecting false data on the state estimator inputs.

Define eðtÞ ¼ xðtÞ � x̂ðtÞ; then, by combining (2), (4),

(6) and (7), one can obtain the estimation error

_eðtÞ ¼
Xr
i¼1

Xr
j¼1

uiðgðxÞÞhj gðx̂Þð Þ Aj � Ai þ KjCj

� �
xðtÞ

�

� Aj þ KjCj

� �
eðtÞ � ð1 � hðtÞÞKjCixðt � sðtÞÞ

� ð1 � hðtÞÞKjekðtÞ � hðtÞKjf ðyðt � dðtÞÞÞ
þWigðxðtÞÞ þ Vigðxðt � /ðtÞÞÞ�

ð8Þ

To simplify representation, uiðgðxÞÞ and hjðgðx̂ÞÞ are

abbreviated as ui and hj, respectively.

Define

�xðtÞ ¼ xTðtÞ eTðtÞ
� �T

�Aij ¼
�Ai 0

Aj � Ai þ KjCj �ðAj þ KjCjÞ

� �

�Bij ¼
0 0

�KjCi 0

� �
; �Wi ¼

Wi

Wi

� �
; �Vi ¼

Vi

Vi

� �
H1 ¼ I 0½ �;H2 ¼ 0 I½ �T

Then, we have

_�xðtÞ ¼
Xr
i¼1

Xr
j¼1

uihj
�Aij�xðtÞ þ �Wi�gðH1�xðtÞÞ
�

þ �Vi�gðH1�xðt � /ðtÞÞÞ þ ð1 � hðtÞÞ�Bij�xðt � sðtÞÞ
� hðtÞH2Kjf ðCiH1�xðt � dðtÞÞÞ
� ð1 � hðtÞÞH2KjekðtÞ

�
ð9Þ

Fig. 1 The structure of the event-triggered neural networks with

stochastic cyber-attacks
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In the following, some important assumptions and lemma

are introduced, which assist us in deriving the main results.

Assumption 1 [10] The neuron activation function is

assumed to satisfy the following condition:

gðxÞ � U1x�T ½gðxÞ � U2x
� �

� 0 ð10Þ

where the real constant matrices U1, U2 satisfy

U2 � U1 � 0.

Assumption 2 [39, 46] The cyber-attacks function f(y(t))

is presumed to satisfy the following condition

k f ðyðtÞÞ k2 � k FyðtÞ k2 ð11Þ

where F is a given constant matrix which represents the

upper bound of cyber-attacks.

Lemma 1 [49] Assume sðtÞ 2 ½0; sM�, for any constant

matrices X 2 Rm�m and S 2 Rm�m satisfying
X �
S X

� �
� 0,

the following inequality holds:

� sM

Z t

t�sM

_xTðsÞX _xðsÞds�
xðtÞ

xðt � sðtÞÞ
xðt � sMÞ

2
64

3
75
T

�X� �
X þ S �2X � S� ST �
�S X þ S �X

2
64

3
75

xðtÞ
xðt � sðtÞÞ
xðt � sMÞ

2
64

3
75

ð12Þ

3 Main Results

Theorem 1 For the given positive parameters �h, time

delays /M [ 0, sM [ 0, dM [ 0, trigger parameter r,

matrices Kj and F, system (9) is stable if there exist

matrices X, P[ 0, Ql [ 0, Rl [ 0, Sl [ 0 ðl ¼ 1; 2; 3Þ with

appropriate dimensions and parameters a[ 0, b[ 0, such

that the following inequalities hold with hj � fjuj � 0 for

all i; j 2 L.

Uij � Zi\0; ð13Þ

fiUii � fiZi þ Zi\0; ð14Þ

fjUij þ fiUji � fjZi � fiZj þ Zi þ Zj\0ði\jÞ; ð15Þ

Rl �
Sl Rl

� �
� 0; ðl ¼ 1; 2; 3Þ: ð16Þ

where

Uij ¼
w11� �
w21 w22 �
w31 0 w33

2
64

3
75 ð17Þ

in which

w11 ¼

!1� � �
!2 !3� �
!4 0 !5 �
0 !6 0 �I

2
6664

3
7775

!1 ¼
W1� �

R1 þ S1 W2 �
�S1 R1 þ S1 �Q1 � R1

2
64

3
75

W1 ¼ P�Aij þ �AT
ijPþ Q1 þ Q2 þ Q3 � R1

� R2 � R3 � a �U1

W2 ¼ �2R1 � S1 � ST1 � b �U1

!2 ¼

�h1
�BT
ij þ R2 þ S2 0 0

�S2 0 0

R3 þ S3 0 0

�S3 0 0

2
6664

3
7775

!3 ¼

W3� � �
R2 þ S2 �Q2 � R2� �

0 0 W4 �
0 0 W5 �Q3 � R3

2
6664

3
7775

W3 ¼ �2R2 � S2 � ST2 þ rHT
1 CiXCiH1

W4 ¼ �2R3 � S3 � ST3 ;W5 ¼ R3 þ S3

!4 ¼

�WT
i P� a �UT

2 0 0

�VT
i �b �UT

2 0

��h1K
T
j H

T
2 P 0 0

��hKT
j H

T
2 P 0 0

2
66664

3
77775

!5 ¼ diagf�aI;�bI;�X;��hIg

!6 ¼ 0 0
ffiffiffi
�h

p
FH1 0

h i
w21 ¼ !7 !8 !9 !10½ �

!7 ¼
/MR1

�Aij 0 0

sMR2
�Aij 0 0

dMR3
�Aij 0 0

2
64

3
75

!8 ¼
/M

�h1R1
�Bij 0 0 0

sM �h1R2
�Bij 0 0 0

dM �h1R3
�Bij 0 0 0

2
64

3
75

!9 ¼
/MR1

�Wi /MR1
�Vi

sMR2
�Wi sMR2

�Vi

dMR3
�Wi dMR3

�Vi

2
64

3
75

!10 ¼
�/M

�h1R1H2Kj �/M
�hR1H2Kj 0

�sM �h1R2H2Kj �sM �hR2H2Kj 0

�dM �h1R3H2Kj �dM �hR3H2Kj 0

2
64

3
75

w31 ¼ 03�3 !11 03�2 !12½ �

!11 ¼
/MqR1

�Bij 0 0 0

sMqR2
�Bij 0 0 0

dMqR3
�Bij 0 0 0

2
64

3
75

!12 ¼
�/MqR1H2Kj /MqR1H2Kj 0

�sMqR2H2Kj sMqR2H2Kj 0

�dMqR3H2Kj dMqR3H2Kj 0

2
64

3
75

w22 ¼ w33 ¼ diagf�R1;�R2;�R3g

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hð1 � �hÞ

q
; �h1 ¼ 1 � �h

536 International Journal of Fuzzy Systems, Vol. 21, No. 2, March 2019

123



Proof The following Lyapunov–Krasovskii functional is

constructed for system (9) [50]:

Vð�xtÞ ¼ V1ð�xtÞ þ V2ð�xtÞ þ V3ð�xtÞ ð18Þ

where

V1ð�xtÞ ¼ �xTðtÞP�xðtÞ

V2ð�xtÞ ¼
Z t

t�/M

�xTðsÞQ1�xðsÞdsþ
Z t

t�sM

�xTðsÞQ2�xðsÞds

þ
Z t

t�dM

�xTðsÞQ3�xðsÞds

V3ð�xtÞ ¼
Z t

t�/M

Z t

s

_�xTðvÞR1 _�xðvÞdvdsþ
Z t

t�sM

Z t

s

_�xTðvÞR2 _�xðvÞdvds

þ
Z t

t�dM

Z t

s

_�xTðvÞR3 _�xðvÞdvds

where P[ 0, Ql [ 0, Rl [ 0 ðl ¼ 1; 2; 3Þ.
By taking the derivative and mathematical expectation

of equations above, then we can obtain

E _V1ð�xtÞ

 �

¼
Xr
i¼1

ui

Xr
j¼1

hj2�x
TðtÞP �Aij�xðtÞ

�

þ �WigðH1�xðtÞÞ þ �VigðH1�xðt � /ðtÞÞÞ
� hðtÞH2Kjf ðCiH1�xðt � dðtÞÞÞ
þ ð1 � hðtÞÞ�Bij�xðt � sðtÞÞ
� ð1 � hðtÞÞH2KjekðtÞ

�

ð19Þ

E _V2ð�xtÞ

 �

¼ �xTðtÞðQ1 þ Q2 þ Q3Þ�xðtÞ
� �xTðt � /MÞQ1�xðt � /MÞ
� �xTðt � sMÞQ2�xðt � sMÞ
� �xTðt � dMÞQ3�xðt � dMÞ

ð20Þ

E _V3ð�xtÞ

 �

¼
Xr
i¼1

Xr
j¼1

uihjE _�xðtÞTð/2
MR1




þ s2
MR2 þ d2

MR3Þ _�xðtÞ
�

�
Z t

t�/M

_�xTðsÞR1 _�xðsÞds

�
Z t

t�sM

_�xTðsÞR2 _�xðsÞds

�
Z t

t�dM

_�xTðsÞR3 _�xðsÞds

ð21Þ

Notice that

E ð _�xðtÞT /2
MR1 þ s2

MR2 þ d2
MR3

� �
_�xðtÞ


 �

¼
Xr
i¼1

Xr
j¼1

uihj AT
ij
~RAij þ q2BT

ij
~RBij

� 


where

Aij ¼ �Aij�xðtÞ þ �h1�xðt � sðtÞÞ � �h1H2KjekðtÞ
� �hH2Kjf ðCiH1�xðt � dðtÞÞÞ þ �WigðH1�xðtÞÞ
þ �VigðH1�xðt � /ðtÞÞÞ

Bij ¼ �Bij�xðt � sðtÞÞ � H2KjekðtÞ
þ H2Kjf ðCiH1�xðt � dðtÞÞÞ

~R ¼ /2
MR1 þ s2

MR2 þ d2
MR3

By using Lemma 1, we have

�/M

Z t

t�/M

_�xTðsÞR1 _�xðsÞds� nT1 ðtÞU1ðtÞn1ðtÞ ð22Þ

�sM

Z t

t�sM

_�xTðsÞR2 _�xðsÞds� nT2 ðtÞU2ðtÞn2ðtÞ ð23Þ

�dM

Z t

t�dM

_�xTðsÞR3 _�xðsÞds� nT3 ðtÞU3ðtÞn3ðtÞ ð24Þ

where

nT1 ðtÞ ¼ �xTðtÞ �xTðt � /ðtÞÞ �xTðt � /MÞ
� �

nT2 ðtÞ ¼ �xTðtÞ �xTðt � sðtÞÞ �xTðt � sMÞ
� �

nT3 ðtÞ ¼ �xTðtÞ �xTðt � dðtÞÞ �xTðt � dMÞ
� �

UlðtÞ ¼
�Rl� �
Rl þ Sl �2Rl � Sl � STl �
�Sl Rl þ Sl �Rl

2
64

3
75

ðl ¼ 1; 2; 3Þ

Considering condition (5), the following inequality is

obtained.

r�xTðt � sðtÞÞHT
1 C

T
i XCiH1�xðtÞðt � sðtÞÞ

� eTk ðtÞXekðtÞ� 0
ð25Þ

From Assumption 1, we have

�xðtÞ
gðH1�xðtÞÞ

� �T �U1 �
�U2 I

� �
�xðtÞ

gðH1�xðtÞÞ

� �
� 0 ð26Þ
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where �U1 ¼ HT
1
UT

1
U2H1þHT

1
UT

2
U1H1

2
, �U2 ¼ � HT

1
UT

1
þHT

1
UT

2

2
. For the

parameters a[ 0, b[ 0, it is easy to get:

� a
�xðtÞ

gðH1�xðtÞÞ

� �T �U1 �
�U2 I

� �
�xðtÞ

gðH1�xðtÞÞ

� �
� 0 ð27Þ

� b
�xðtÞ

gðH1�xðt � dðtÞÞÞ

� �T �U1 �
�U2 I

� �

�
�xðtÞ

gðH1�xðt � dðtÞÞÞ

� �
� 0

ð28Þ

Based on condition (11) in Assumption 2, one can get

�h�xTðt � dðtÞÞHT
1 F

TFH1�xðt � dðtÞÞ�
�hf TðCiH1�xðt � dðtÞÞÞf ðCiH1�xðt � dðtÞÞÞ� 0

ð29Þ

By combining (18)–(29) and using Schur complement, then

we have

E _Vð�xðtÞÞ

 �
¼ E _V1ð�xðtÞÞ


 �
þ E _V2ð�xðtÞÞ

 �

þ E _V3ð�xðtÞÞ

 �

�
Xr
i¼1

Xr
j¼1

uihj w11 þ wT
21w22w21 þ wT

31w33w31

� �
nðtÞ

¼
Xr
i¼1

Xr
j¼1

uihjnðtÞTUijnðtÞ

ð30Þ

where nðtÞ ¼ ½�xðtÞ; �xðt � /ðtÞÞ; �xðt � /MÞ; �xðt � sðtÞÞ, �xðt�
sMÞ; �xðt � dðtÞÞ; �xðt � dMÞ; �gðH1�xðtÞÞ; �gðH1�xðt � /ðtÞÞÞ; ek
ðtÞ; f ðCiH1�xðt � dðtÞÞÞ; I; I; I; I; I; I; I�T .

Similar to the analysis in [46], consider a slack matrix Zi
that

Xr
i¼1

Xr
j¼1

uiðuj � hjÞZi

¼
Xr
i¼1

ui

Xr
j¼1

uj �
Xr
j¼1

hj

 !
Zi

¼ 0

ð31Þ

where Zi ¼ ZT
i 2 Rn�n [ 0, i ¼ 1; 2; . . .; r, are arbitrary

matrices. We can get that

E _VðxðtÞÞ

 �

�
Xr
i¼1

Xr
j¼1

uihjn
TðtÞUijnðtÞ

¼
Xr
i¼1

Xr
j¼1

uihjn
TðtÞUijnðtÞ þ

Xr
i¼1

Xr
j¼1

ui

nTðtÞ uj � hj þ fjuj � fjuj

� �
ZinðtÞ

¼
Xr
i¼1

Xr
j¼1

uiujn
TðtÞ fjUij � fjZi þ Zi

� �
nðtÞ

þ
Xr
i¼1

Xr
j¼1

ui hj � fjuj

� �
nTðtÞ Uij � Zi

� �
nðtÞ

�
Xr
i¼1

u2
i n

TðtÞ fiUii � fiZi þ Zið ÞnðtÞ

þ
Xr
i¼1

ui hj � fjuj

� �
nTðtÞ Uij � Zi

� �
nðtÞ

þ
Xr
i¼1

X
i\j

nTðtÞ fjUij þ fiUji

�

�fjZi � fiZj þ Zi þ Zj
�
nðtÞ

ð32Þ

According to (13)–(15) and (32), it yields that

E _VðxðtÞÞ

 �

�
Xr
i¼1

Xr
j¼1

uihjn
TðtÞUijnðtÞ\0 ð33Þ

With hj � fjuj � 0 for any j 2 L, there is a scalar d[ 0

which satisfies the inequality Ef _VðxðtÞÞg� � d k nðtÞ k2

for nðtÞ 6¼ 0; then, Ef _VðxðtÞÞg\0. This completes the

proof. h

In Theorem 1, the sufficient conditions which can

guarantee the stability of system (9) are obtained. Based on

Theorem 1, an estimator design method is proposed and the

parameters of the estimator are given in Theorem 2.

Theorem 2 For given positive parameters �h, /M [ 0,

sM [ 0, dM [ 0, and �l ðl ¼ 1; 2; 3Þ, trigger parameter r,

matrix F, system (9) with stochastic cyber-attack is

stable if there exist positive matrices P1 [ 0, P2 [ 0,

Q̂l [ 0, R̂l [ 0, Ŝl [ 0 ðl ¼ 1; 2; 3Þ, X and Yj with appro-

priate dimensions and parameters a[ 0, b[ 0, then the

following LMIs hold with hj � fjuj � 0 for all i; j 2 L.

Ûij � Ẑi\0; ð34Þ

fiÛii � fiẐi þ Ẑi\0; ð35Þ

fjÛij þ fiÛji � fjẐi � fiẐj þ Ẑi þ Ẑj\0ði\jÞ; ð36Þ
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R̂l �
Ŝl R̂l

" #
� 0; ðl ¼ 1; 2; 3Þ: ð37Þ

where

Ûij ¼
ŵ11� �
ŵ21 ŵ22 �
ŵ31 0 ŵ33

2
64

3
75 ð38Þ

in which

ŵ11 ¼

!̂1� � �
!̂2 !̂3� �
!̂4 0 !̂5 �
0 !̂6 0 �I

2
6664

3
7775

!̂1 ¼
Ŵ1� �

R̂1 þ Ŝ1 Ŵ2 �
�Ŝ1 R̂1 þ Ŝ1 �Q̂1 � R̂1

2
64

3
75

Ŵ1 ¼ C1 þ CT
1 þ Q̂1 þ Q̂2 þ Q̂3

� R̂1 � R̂2 � R̂3 þ C2

Ŵ2 ¼ �2R̂1 � Ŝ1 � ŜT1 þ C3

!̂2 ¼

C4 þ R̂2 þ Ŝ2 0 0

�Ŝ2 0 0

R̂3 þ Ŝ3 0 0

�Ŝ3 0 0

2
6664

3
7775

!̂3 ¼

Ŵ3� � �
R̂2 þ Ŝ2 �Q̂2 � R̂2� �

0 0 Ŵ4 �
0 0 Ŵ5 �Q̂3 � R̂3

2
6664

3
7775

Ŵ3 ¼ �2R̂2 � Ŝ2 � ŜT2 þ C5

Ŵ4 ¼ �2R̂3 � Ŝ3 � ŜT3 ; Ŵ5 ¼ R̂3 þ Ŝ3

!̂4 ¼

C6 0 0

C7 C8 0

C9 0 0

C10 0 0

2
6664

3
7775

!̂5 ¼ diagf�aI;�bI;�X̂;��hIg
!̂6 ¼ 0 0 C11 0½ �
ŵ21 ¼ !̂7 !̂8 !̂9 !̂10

� �

!̂7 ¼
/MC1 0 0

sMC1 0 0

dMC1 0 0

2
64

3
75

!̂8 ¼
/MC12 0 0 0

sMC12 0 0 0

dMC12 0 0 0

2
64

3
75

!̂9 ¼
/MC13 /MC14

sMC13 sMC14

dMC13 dMC14

2
64

3
75

!̂10 ¼
�/M

�h1C15 �/M
�hC15 0

�sM �h1C15 �sM �hC15 0

�dM �h1C15 �dM �hC15 0

2
64

3
75

ŵ31 ¼ 03�3 !̂11 03�2 !̂12

� �

!̂11 ¼
/MqC12 0 0 0

sMqC12 0 0 0

dMqC12 0 0 0

2
64

3
75

!̂12 ¼

�/MqC15 /MqC15 0

�sMqC15 sMqC15 0

�dMqC15 dMqC15 0

c

2
6664

3
7775

ŵ22 ¼ ŵ33 ¼ diagf�2�1Pþ �2
1R̂1;�2�2Pþ �2

2R̂2;

� 2�3Pþ �2
3R̂3g;P ¼ diagfP1;P2g

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hð1 � �hÞ

q
; �h1 ¼ 1 � �h

C1 ¼
�P1Ai 0

P2Aj � P2Ai þ YjCj �P2Aj � YjCj

� �

C2 ¼ � a
2
ðUT

1 U2 þ UT
2 U1Þ 0

0 0

" #

C3 ¼ � b
2
ðUT

1 U2 þ UT
2 U1Þ 0

0 0

2
4

3
5

C4 ¼ 0 ��h1C
T
j Y

T
j

0 0

" #
;C5 ¼

rCT
i XCi 0

0 0

� �

C6 ¼ WT
i P1 þ

a
2
ðUT

1 þ UT
2 Þ WT

i P2

h i

C7 ¼ VT
i P1 VT

i P2

� �
;C8 ¼ b

2
ðUT

1 þ UT
2 Þ 0

� �

C9 ¼ 0 ��h1Y
T
j

h i
;C10 ¼ 0 ��hYT

j

h i

C11 ¼
ffiffiffi
�h

p
F 0

h i
;C12 ¼

0 0

�YjCi 0

� �

C13 ¼
P1Wi

P2Wi

� �
;C14 ¼

P1Vi

P2Vi

� �
;C15 ¼

0

�Yj

� �

Moreover, the state estimator gains are achieved as

follows.

Kj ¼ P�1
2 Yj ð39Þ

Proof Define
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K ¼ diagfI; I; . . .; I|fflfflfflfflffl{zfflfflfflfflffl}
12

;-1;-1g; Yj ¼ P2Kj

where

-1 ¼ diagfPR�1
1 ;PR�1

2 ;PR�1
3 g

Multiplying K and KT on both sides of (17), respectively.

we can get

~Uij ¼
ŵ11 � �
~w21

~w22 �
~w31 0 ~w33

2
4

3
5 ð40Þ

where

~w21 ¼ ~!7
~!8

~!9
~!10

� �

~!7 ¼
/MP

�Aij 0 0

sMP�Aij 0 0

dMP�Aij 0 0

2
64

3
75

~!8 ¼
/MP�Bij 0 0 0

sMP�Bij 0 0 0

dMP�Bij 0 0 0

2
64

3
75

~!9 ¼
/MP �Wi /MP �Vi

sMP �Wi sMP �Vi

dMP �Wi dMP �Vi

2
64

3
75

~!10 ¼
�/M

�h1PH2Kj �/M
�hPH2Kj 0

�sM �h1PH2Kj �sM �hPH2Kj 0

�dM �h1PH2Kj �dM �hPH2Kj 0

2
64

3
75

~w31 ¼ 03�3
~!11 03�2

~!12

� �

~!11 ¼
/MqP�Bij 0 0 0

sMqP�Bij 0 0 0

dMqP�Bij 0 0 0

2
64

3
75

~!12 ¼
�/MqPH2Kj /MqPH2Kj 0

�sMqPH2Kj sMqPH2Kj 0

�dMqPH2Kj dMqPH2Kj 0

2
64

3
75

~w22 ¼ ~w33 ¼ diagf�PR�1
1 P;�PR�1

2 P;

� PR�1
3 Pg

Owing to ðRl � ��1
l PÞR�1

l ðRl � ��1
l PÞ� 0 ðl ¼ 1; 2; 3Þ, we

have

�PR�1
l P� � 2�lPþ �2

l Rl ð41Þ

That is

�PR�1
1 P� � 2�1Pþ �2

1R1 ð42Þ

�PR�1
2 P� � 2�2Pþ �2

2R2 ð43Þ

�PR�1
3 P� � 2�3Pþ �2

3R3 ð44Þ

Then, replace the terms w22
ij and w33

ij in (13)–(15) with

ŵ22
ij ¼ diagf�2�1Pþ �2

1R1;�2�2Pþ �2
2R2;�2�3Pþ �2

3R3g
and ŵ33

ij ¼ diagf�2�1Pþ �2
1R1;�2�2Pþ �2

2R2;�2�3Pþ
�2

3R3g, respectively, and then, we can obtain (34). Similar

to Theorem 1, we have

Xr
i¼1

Xr
j¼1

uiðuj � hjÞẐi

¼
Xr
i¼1

ui

Xr
j¼1

uj �
Xr
j¼1

hj

 !
Ẑi

¼ 0

ð45Þ

With the help of the conditions (34)–(36) and (45), it yields

that

E _Vð�xðtÞÞ

 �

�
Xr
i¼1

Xr
j¼1

uihjn
TðtÞÛijnðtÞ\0 ð46Þ

Hence, the system is stable. Furthermore, according to

Yj ¼ P2Kj, we can obtain that the state estimator gains are

Kj ¼ P�1
2 Yj. This completes the proof. h

4 Simulation Examples

In this section, a numerical example is presented to illus-

trate the effectiveness of the obtained results.

Consider neural network (1) with the following system

matrices:

A1 ¼ diagf1:06; 1:06g; A2 ¼ diagf1:6; 2:3g

W1 ¼
0:3 �0:42

�0:42 0:3

� �
; W2 ¼

0:2 �0:32

�0:32 0:2

� �

V1 ¼
0:3 0:3

0:3 0:3

� �
; V2 ¼

0:4 0:4

0:4 0:4

� �

C1 ¼
�3 �0:15

�0:75 �2

� �
; C2 ¼

�0:95 �0:85

�1:75 �0:55

� �

U1 ¼
0:3 0:2

0 0:2

� �
; U2 ¼

0:5 0:1

0 0:95

� �

gðxðtÞÞ ¼
0:5x1ðtÞ � tanhð0:2x1ðtÞ þ 0:2x1ðtÞÞ

0:95x2ðtÞ � tanhð0:75x1ðtÞÞ

� �
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The cyber-attack function is assumed to be

f ðyðtÞÞ ¼
� tanhð0:02yðtÞÞ
� tanhð0:5yðtÞÞ

� �

which satisfies inequality (25) with F ¼ diagf0:5; 0:02g.

The corresponding initial parameters of system (2) are

given by xð0Þ ¼ 1:7 �2:6½ �T ; x̂ð0Þ ¼ 0:9 �1:9½ �T :
In the following, we present two cases to prove the

usefulness of the designed method.

Case 1 There is no cyber-attack occurring, which means
�hðtÞ ¼ 0. Set event-triggered factor r ¼ 0:4, �k ¼ 1

ðl ¼ 1; 2; 3Þ, sample period h ¼ 0:1s, the upper bound of

time delays /M ¼ 0:01, sM ¼ 0:01, dM ¼ 0:02. By using

LMI toolbox in MATLAB, we obtain

Y1 ¼
�0:0565 �0:0720

�0:0407 �0:0188

� �
; Y2 ¼

0:1040 �0:0610

�0:1182 0:5993

� �

P2 ¼
3:3758 �0:0273

�0:0273 2:9639

� �
;X ¼

4:3839 �0:0957

�0:0957 4:5214

� �

Then, according to equality (39) in Theorem 2, state esti-

mator gains are obtained as follows.

K1 ¼
�0:0168 �0:0214

�0:0139 �0:0065

� �
;K2 ¼

0:0305 �0:0164

�0:0396 0:2020

� �

The state responses of the neural network and its estimation

are depicted in Fig. 2. The estimator error e(t) is shown in

Fig. 3. It can be obtained from the above graphs that the

designed state estimator performs well.

Case 2 The influence of cyber-attacks is considered,

which means �h ¼ 0:5. Set event-triggered factor r ¼ 0:4,

�k ¼ 1 ðl ¼ 1; 2; 3Þ, sample period h ¼ 0:1s, the upper

bound of time delays /M ¼ 0:01, sM ¼ 0:01, dM ¼ 0:02.

With the help of the MATLAB LMI Toolbox, we can get

Y1 ¼
�0:0321 �0:0467

�0:0274 �0:0195

� �
; Y2 ¼

0:1210 �0:1495

�0:1471 0:7606

� �

P2 ¼
6:1439 �0:0611

�0:0611 5:3578

� �
;X ¼

1:3477 �0:7540

�0:7540 2:5211

� �

Then, we can obtain the gains of the state estimator

according to (39).

K1 ¼
�0:0053 �0:0076

�0:0052 �0:0037

� �
;K2 ¼

0:0194 �0:0229

�0:0272 0:1417

� �

Simulation results in case 2 are presented. The occur-

rence probability of stochastic cyber-attack is shown in

Fig. 4. The state responses of x(t) and its estimations x̂ðtÞ
are shown in Fig. 5. Figure 6 denotes the release instants

and intervals of event-triggered scheme, which reveals that

the amount of transmitted data is reduced obviously.
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Fig. 2 Response of x(t) and its estimations x̂ðtÞ in case 1
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Fig. 3 The estimator error e(t) in case 1

Fig. 4 The graph of hðtÞ in case 2
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5 Conclusion

In this paper, the state estimation for T–S fuzzy neural

networks with event-triggered scheme and stochastic

cyber-attacks is investigated. First of all, an event-triggered

scheme is adopted to alleviate the load of network trans-

mission. A T–S fuzzy mathematical model for estimating

event-triggered neural networks with stochastic cyber-at-

tacks is constructed. In addition, under the assistance of

Lyapunov stability theory and LMIs technologies, suffi-

cient conditions which guarantee the stability of the system

are acquired and the gains of the estimator are obtained in

terms of LMIs. Finally, the simulation results have

demonstrated the feasibility of the designed method. In the

future, in order to improve network bandwidth utilization

more effectively, the control synthesis for T–S fuzzy neural

networks under different kinds of triggering schemes will

be studied. Moreover, we would like to consider the

impacts of attacks with different kinds for T–S fuzzy neural

networks, such as deception attacks and DoS attacks.
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