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Abstract 

This paper is concerned with the problem of distributed event-triggered controller design for net- 
worked control systems (NCSs) with stochastic cyber-attacks. A decentralized event-triggered scheme 
is introduced to save the energy consumption and alleviate the transmission load of the network. Each 
sensor can make its own decision to determine whether the sampled data is delivered to the network 
or not. By taking two kinds of random cyber-attacks into consideration, a novel mathematical model is 
constructed for distributed event-triggered NCSs. Sufficient conditions which can guarantee the stability 
of the control system are obtained by applying Lyapunov stability theory, and the design method of 
the controller gain is presented in an exact expression. Finally, an example is given to demonstrate the 
effectiveness of the proposed method. 
© 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

1. Introduction 

NCSs consisting of sensors, controllers, actuators and networks play an increasingly signif- 
icant role in the infrastructures of society, such as intelligent homes, smart grids and modern
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ublic transportation systems [1–3] . There is no doubt that the insertion of network into the
ontrol systems brings about numerous advantages and convenience for its higher flexibility,
ower complexity and cheaper cost in installation and maintenance [4,5] . Due to such supe-
iorities of the NCSs, the popularity for investigations in NCSs continues and lots of fruitful
esults have been achieved. For example, in [6] , the authors investigate the output feedback
ontrol problem for NCSs by considering signal quantization and data packet dropouts. The
uthors in [7] address the issue about the reliable control design for NCSs under the event-
riggered scheme. In [8] , the authors concentrate on the design of adaptive event-triggered
cheme for nonlinear networked interconnected control systems via T-S fuzzy models. In [9] ,
he event-triggered output feedback controller is designed for nonlinear NCSs in the frame-
ork of interval type-2 fuzzy systems. 
However, the investigations of the NCSs pose some challenges in the aspects of the theories

nd applications [10] . As stated in [11] , the problems of network-induced delay, package
ropouts and external perturbations are unavoidable in NCSs. Time-triggered scheme inserted
n NCSs is the first proposed transmission method in communication network. In order to
lleviate the burden of the networked transmission more effectively, event-triggered scheme
s proposed by lots of researchers to overcome the drawback of the time-triggered scheme.
 novel event-triggered communication mechanism is proposed in [12] to determine whether

he current sampled data is delivered to network or not. Motivated by the work in [12] ,
mproved event-triggered schemes are widely applied in controller and filter design problems
13] . For instances, the authors in [14] deal with the problem of an adaptive event-triggered
ommunication scheme design for a class of T-S fuzzy control systems. In [15] , the leader-
ollowing consensus problem of high-order multi-agent systems via event-triggered control is
iscussed. By considering the measured output quantization, the authors in [16] investigate
he problem of H ∞ 

output feedback control for event-triggered Markovian jump systems. In
17] , the authors solve the problem of event-triggered H ∞ 

filtering for networked systems by
onsidering communication delay. Motivated by the aforementioned researches, this paper is
oncerned with the distributed event-triggered controller design for NCSs. 

Recently, cyber security has become increasingly important with the development of the
etwork and modern technology. When referring to system security, cyber-attacks may be
egarded as one of the top offenders which aim to degrade the stability of the networked
ystems and deteriorate the system performance [18] . As described in [19] , cyber-attacks
re divided into three major categories including denial of service (DoS), replay attacks and
eception attacks. Due to the considerable influence of the cyber-attacks, more and more
cholars are interested in the investigations of cyber-attacks and achieve lots of outstanding
esults. In [20] , the problem of fault-tolerant control for nonlinear chaotic is investigated by
aking DoS attacks into consideration. The authors in [21] study the detection and isolation
f replay attacks on sensor measurements for a multiplicative watermarking system. In [22] ,
y taking the effect of deception attacks into consideration, the authors address the issue of
istributed recursive filtering for a class of discrete time-delay systems. In [23] , the authors
nvestigate the problem of hybrid triggered H ∞ 

filter design for neural networks with deception
ttacks. 

This paper is concerned with distributed event-triggered control for NCSs subject to two
ifferent kinds of cyber-attacks. In order to save the limited networked resources, event-
riggered scheme is employed to determine whether the current sampled data is transmitted
hrough the network. In this paper, large numbers of sensors are distributed in the cyber or
hysical space to sample data, and each sensor is equipped with an event-triggered scheme
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Fig. 1. The structure of distributed event-triggered networked control systems under cyber-attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to make its own decision on the delivered data independently. Moreover, the influence of
the cyber-attacks is also taken into consideration which is supposed as deception attacks. It
should be pointed out that two different types of nonlinear functions are taken into account
to describe the features of cyber-attacks. To the best of our knowledge, there is no research
investigating the problem of distributed event-triggered control for NCSs with two kinds of 
cyber-attacks. 

The rest of this paper is organized as follows. In Section 2 , the problem of distributed
event-triggered NCSs is described. In Section 3 , sufficient conditions for the stability of the
discussed system are derived by using Lyapunov stability theory, and the desired controller 
design method is obtained in terms of solutions to the linear matrix inequalities (LMIs).
Finally, a numerical example is given to demonstrate the usefulness of the designed approach. 

Notation: R 

n and R 

n×m denote the n-dimensional Euclidean space, and the set of n ×m real
matrices, respectively; the superscript T stands for matrix transposition; I is the identity matrix
of appropriate dimension; the notation X > 0, for X ∈ R 

n×n means that the matrix X is real
symmetric positive definite; Prob{ X } denotes probability of event X to occur; E denotes the

expectation operator; for a matrix B and two symmetric matrices A and C , 

[
A ∗
B C 

]
denotes

a symmetric matrix, where ∗ denotes the entries implied by symmetry. 

2. Problem formulation 

In this paper, the distributed event-triggered controller is designed for NCSs whose structure 
is shown in Fig. 1 . An event-triggered generator is employed in each sensor side to save the
limited network resources. The data released by the event generators is sent to the controller
via an unreliable communication network subject to cyber-attacks. Considering the effect of 
distributed event-triggered scheme (ETS) and cyber-attacks, the stability of the distributed 

NCSs will be investigated. 
The physical plant is described by following continuous-time linear time-invariant system: 

˙ x (t ) = Ax(t ) + Bu(t ) (1) 
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here x(t ) ∈ R 

n is the state vector, u(t ) ∈ R 

m is the control input vector. A and B are known
atrices with appropriate dimensions. 
Throughout this paper, the following assumptions are needed to facilitate the descriptions:

ssumption 1. The sensors and the controller are assumed to be connected over a communi-
ation network. The control output can be directly transmitted to the actuator through a ZOH.
he communication network is facing the threats of randomly occurring cyber-attacks. 

ssumption 2. The holding interval of zero-order-holder (ZOH) is �l = [ t l k h + τ l 
t k , t 

l 
k+1 h +

l 
t k+1 

) . h is the constant sampling period of each sensor, t l k h denote the latest released instants
f the event generator l . τ l 

t k is the network-induced communication delay at the released
nstants t l k h, τM 

= max l∈{ 1 , 2, ... ,n} { τ l 
t k } . 

Similar to the work in [24] , the controller is designed as 

(t ) = K x(t k h) (2)

here x(t k h) = 

[
x T (t 1 k h) x T (t 2 k h) · · · x T (t n k h) 

]T 
, K = diag{ K 1 , K 2 , . . . , K n } is the con-

roller gain to be determined. 
In this paper, suppose that the transmitted data over communication network is vulnerable

o be attacked. The adversaries aim to attack the controller by modifying the control input
nd degrade the system performance. When the cyber-attacks are implemented, the controller
an be expressed as 

(t ) = K x(t k h) + β(t ) K [ α(t ) g(x(t − d(t )) + (1 − α(t )) h(t − η(t )) − x(t k h)] (3)

here d ( t ) ∈ [0, d M 

] and η( t ) ∈ [0, ηM 

] represent the time delay of cyber-attacks, d M

 0 and ηM 

> 0 denotes the maximum time delay. β( t ) and α( t ) take values on {0, 1}
ith prob { β(t ) = 1 } = β̄ and prob { α(t ) = 1 } = ᾱ. β(t ) = 1 means the cyber-attacks occur,
(t ) = 1 means the cyber-attack function is g(x(t − d(t ))) . g ( x ( t )) and h ( x ( t )) represent the
ifferent characteristics of the cyber-attacks. 

emark 1. In this paper, the cyber-attacks launched by a hacker are in the form α(t ) g(x(t −
(t )) + (1 − α(t )) h(t − η(t )) , which occur randomly and are governed by a Bernoulli dis-

ributed variable β( t ). It is possible for any hacker to modify the transmitted data in this
ay against the NCSs. This poses great challenge to the conventional control method. It is
ecessary to handle such cyber-attacks. 

emark 2. The attackers may send cyber-attacks against the communication channel for their
wn benefits. Due to the limited access to the system information and data authentication,
he control system may be attacked randomly. β( t ) is adopted to describe the occurrence of
he cyber-attacks. β(t ) = 1 represents that the cyber-attacks are implemented successfully.
therwise, β(t ) = 0 means that the data is transmitted normally. 

A distributed ETS is applied to reduce the communication burden of the network and the
pdate frequency of the controller. For sensor l , when the latest released state is x l (t l k h) , the
equence of the released time instants is determined by the following triggering condition
24] : 

 

l 
k+1 h = t l k h + min 

m 

l ≥0 
{ m 

l h | (e l k (t )) T �l e 
l 
k (t ) > σ 2 

l (x 
l (t l k h + m 

l h)) T �l x 
l (t l k h + m 

l h) } (4)

n which e l k (t ) = x l (t l k h) − x l (t l k h + m 

l h) , m 

l = 0, 1 , . . . , M 

l , M 

l = t l k+1 h − t l k h − 1 , �l is a
ymmetric positive definite matrix, σ l ∈ [0, 1). 
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Remark 3. The sensors are supposed to be deployed geographically. Distributed event 
generators are provided to save the limited network-bandwidth. Whether the measurement 
of each sensor is transmitted or not depends on the local different triggering conditions. 
How frequently the sampled signals are released is determined by triggering parameter σ l 

(l = 1 , . . . , n) . 

It should be remarked that each data satisfying the event-triggered condition will be time-
stamped and released into the network. In order to make the proposed distributed ETS ap-
plicable, a buffer before each actuator is inserted to store a series of the control signal. Only
the latest available store control signals with the same time-stamped can have access to the
corresponding actuators [24] . 

Similar to [12] , the holding interval �l of ZOH can be reconstructed as 
�l = 

⋃ M 

l 

m 

l =0 �m 

l , �m 

l = [ t l k h + m 

l h + τt k + m 

l , t l k h + m 

l h + h + τt k + m 

l +1 ) . Define τ l (t ) =
 − t l k h − m 

l h, 0 ≤ τ l ( t ) ≤ τM 

. 
Then from Eq. (4) and the definition of τ l ( t ), the following event triggering condition is

derived: 

e T k (t )�l e k (t ) > σ 2 x T (t − τ (t ))�x(t − τ (t )) (5) 

where e k (t ) = 

[
e 1 k (t )) 

T e 2 k (t )) 
T · · · e n k (t )) 

T 
]T 

, σ = diag { σ1 , σ2 , . . . , σn } , � = 

diag { �1 , �2 , . . . , �n } . x(t − τ (t )) = 

[
x T (t − τ 1 (t )) x T (t − τ 2 (t )) · · · x T (t − τ n (t )) 

]T 
. 

From the definitions of e k ( t ) and τ l ( t ), the controller in Eq. (2) can be rewritten as 

u(t ) = (1 − β(t )) K [ x(t − τ (t )) + e k (t )] + β(t ) K 

[
α(t ) g(x(t − d(t ))) 

+ (1 − α(t )) h(t − η(t )) ] (6) 

Substituting Eq. (6) into Eq. (1) yields the following model: 

˙ x (t ) = 	0 + β̄(α(t ) − ᾱ)	2 + (β(t ) − β̄ )(α(t ) − ᾱ)	2 

+ (β(t ) − β̄ )	1 + ( ̄β − β(t )) BK [ x(t − τ (t )) + e k (t )] (7) 

where 

	0 = Ax(t ) + (1 − β̄ ) BK [ x(t − τ (t )) + e k (t )] + β̄	1 

	1 = ᾱBK g(x(t − d(t )) + (1 − ᾱ) BK h(t − η(t )) 

	2 = BK g(x(t − d(t )) − BK h(t − η(t )) 

Assumption 3. [25] The randomly occurring cyber-attacks g ( x ( t )) and h ( x ( t )) are assumed to
be nonlinear functions satisfying 

|| g(x(t )) || 2 ≤ || Gx(t ) || 2 (8) 

|| h(x(t )) || 2 ≤ || H x(t ) || 2 (9) 

where G and H are known constant matrices representing the upper bounds of the
nonlinearities. 

Lemma 1. [26] For any matrices R ∈ R 

n×n and U ∈ R 

n×n satisfying 

[
R ∗
U R 

]
> 0, τ ( t ) ∈ [0,

τM 

], τM 

is a positive scalar, and vector function ˙ x : [ −τM 

, 0] → R 

n , the following inequality
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τM 

∫ t 

t−τM 

˙ x T (s) R ̇  x (s) ds ≤ −
 

T (t )�
(t ) (10)

here 

(t ) = 

⎡ 

⎣ 

x(t ) 
x(t − τ (t )) 
x(t − τM 

) 

⎤ 

⎦ , � = 

⎡ 

⎣ 

−R ∗ ∗
R − U −2R + U + U 

T ∗
U R − U −R 

⎤ 

⎦ 

. Main results 

In this section, we are in a position to present sufficient conditions to ensure the stability of
he distributed event-triggered NCSs with cyber-attacks. Then the controller design problem
s solved and the controller gain is derived. 

heorem 1. Let the Bernoulli parameters ᾱ, β̄, trigger parameter σ , time delays d M 

, ηM 

, τM

nd matrix K , the networked closed-loop system (7) under distributed ETS and cyber-attacks
s asymptotically stable if there exist matrices P > 0, Q s > 0, R s > 0, U s (s = 1 , 2, 3) and �> 0
ith appropriate dimensions such that 
 

 

 

 

 

 

 

 

 

 

�11 ∗ ∗ ∗ ∗ ∗ ∗
�21 P ∗ ∗ ∗ ∗ ∗
�31 0 P ∗ ∗ ∗ ∗
�41 0 0 P ∗ ∗ ∗
�51 0 0 0 P ∗ ∗
�61 0 0 0 0 −I ∗
�71 0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (11)

R s ∗
U s R s 

]
> 0(s = 1 , 2, 3) (12)

here 

�11 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

11 ∗ ∗ ∗ ∗
21 22 ∗ ∗ ∗
31 0 33 ∗ ∗

ᾱβ̄K 

T B 

T P 0 0 −I ∗
(1 − ᾱ) ̄βK 

T B 

T P 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

11 = PA + A 

T P + Q 1 + Q 2 + Q 3 − R 1 − R 2 − R 3 

21 = 

⎡ 

⎣ 

(1 − β̄ ) K 

T B 

T P + R 1 − U 1 

U 1 

(1 − β̄ ) K 

T B 

T P 

⎤ 

⎦ , 22 = 

⎡ 

⎣ 

−2R 1 + U 1 + U 

T 
1 + σ 2 � ∗ ∗

R 1 − U 1 −Q 1 − R 1 ∗
0 0 −�

⎤ 

⎦ 

31 = 

⎡ 

⎢ ⎢ ⎣ 

R 2 − U 2 

U 2 

R 3 − U 3 

U 3 

⎤ 

⎥ ⎥ ⎦ 

, 33 = 

⎡ 

⎢ ⎢ ⎣ 

−2R 2 + U 2 + U 

T 
2 ∗ ∗ ∗

R 2 − U 2 −Q 2 − R 2 ∗ ∗
0 0 −2R 3 + U 3 + U 

T 
3 ∗

0 0 R 3 − U 3 −Q 3 − R 3 

⎤
⎥⎥⎦
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V

V

V

V

�21 = 

⎡ 

⎣ 

τM 

F 1 

d M 

F 1 

ηM 

F 1 

⎤ 

⎦ , �31 = 

⎡ 

⎣ 

τM 

F 2 

d M 

F 2 

ηM 

F 2 

⎤ 

⎦ , �41 = 

⎡ 

⎣ 

τM 

F 3 

d M 

F 3 

ηM 

F 3 

⎤ 

⎦ , �51 = 

⎡ 

⎣ 

τM 

F 4 

d M 

F 4 

ηM 

F 4 

⎤ 

⎦ 

F 1 = 

[
PA (1 − β̄ ) P BK 0 (1 − β̄ ) P BK 0 1 ×4 ᾱβ̄P BK (1 − ᾱ) ̄βP BK 

]
F 2 = 

√ 

δ2 
α( ̄β2 + δ2 

β ) 
[
0 1 ×8 P BK −P BK 

]
F 3 = δβ

[
0 1 ×8 ᾱP BK (1 − ᾱ) P BK 

]
F 4 = δβ

[
0 P BK 0 P BK 0 0 0 0 0 0 

]
P = diag {−P R 

−1 
1 P, −P R 

−1 
2 P, −P R 

−1 
3 P } 

�61 = 

[
0 1 ×4 G 0 1 ×5 

]
, �71 = 

[
0 1 ×6 H 0 1 ×3 

]
Proof: Choose the following Lyapunov function: 

 (t ) = V 1 (t ) + V 2 (t ) + V 3 (t ) (13) 

 1 (t ) = x T (t ) P x(t ) 

 2 (t ) = 

∫ t 

t−τM 

x T (s) Q 1 x(s) ds + 

∫ t 

t−d M 

x T (s) Q 2 x(s) ds + 

∫ t 

t−ηM 

x T (s) Q 3 x(s) ds 

 3 (t ) = τM 

∫ t 

t−τM 

∫ t 

s 
x T (v) Q 1 x(v) d vd s + d M 

∫ t 

t−d M 

∫ t 

s 
x T (v) Q 2 x(v) d vd s 

+ ηM 

∫ t 

t−ηM 

∫ t 

s 
x T (v) Q 3 x(v) d vd s 

By taking the time derivative of V ( t ) in Eq. (13) along the trajectory of Eq. (7) , it yields 

E { ̇  V 1 (t ) } = 2x T (t ) P 	0 (14) 

E { ̇  V 2 (t ) } = x T (t )(Q 1 + Q 2 + Q 3 ) x(t ) − x T (t − τM 

) Q 1 x(t − τM 

) − x T (t − d M 

) Q 2 x(t − d M 

) 

− x T (t − ηM 

) Q 3 x(t − ηM 

) (15) 

E { ̇  V 3 (t ) } = ˙ x T (t ) R ̇  x (t ) − τM 

∫ t 

t−τM 

˙ x T (s) R 1 ̇  x (s) ds − d M 

∫ t 

t−d M 

˙ x T (s) R 2 ̇  x (s) ds 

− ηM 

∫ t 

t−ηM 

˙ x T (s) R 3 ̇  x (s) ds (16) 

in which R = τ 2 
M 

R 1 + d 

2 
M 

R 2 + η2 
M 

R 3 . 
By Lemma 1 , for matrices U s (s = 1 , 2, 3) satisfying Eq. (12) , we can obtain 

− τM 

∫ t 

t−τM 

˙ x T (s) R 1 ̇  x (s) ds ≤ ζ T 
1 (t )ϒ1 ζ1 (t ) (17) 

− d M 

∫ t 

t−d M 

˙ x T (s) R 2 ̇  x (s) ds ≤ ζ T 
2 (t )ϒ2 ζ2 (t ) (18) 
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− ηM 

∫ t 

t−ηM 

˙ x T (s) R 3 ̇  x (s) ds ≤ ζ T 
3 (t )ϒ3 ζ3 (t ) (19)

here 

1 (t ) = 

⎡ 

⎣ 

x(t ) 
x(t − τ (t )) 
x(t − τM 

) 

⎤ 

⎦ , ζ2 (t ) = 

⎡ 

⎣ 

x(t ) 
x(t − d(t )) 
x(t − d M 

) 

⎤ 

⎦ , ζ3 (t ) = 

⎡ 

⎣ 

x(t ) 
x(t − η(t )) 
x(t − ηM 

) 

⎤ 

⎦ 

s = 

⎡ 

⎣ 

−R s ∗ ∗
R s − U s −2R s + U s + U 

T 
s ∗

U s R s − U s −R s 

⎤ 

⎦ (s = 1 , 2, 3) 

otice that 

 { ̇  x T (t ) R ̇  x (t ) } = 	T 
0 R 	0 + (δ2 

αβ̄2 + δ2 
αδ2 

β )	T 
2 R 	2 + δ2 

β	T 
1 R 	1 

+ δ2 
β (x T (t − τ (t )) + e T k (t )) K 

T B 

T R BK (x(t − τ (t )) + e k (t )) (20)

y combining Eqs. (14) –(20) , it is clear that 

 { ̇  V (t ) } ≤ 2x T (t ) P 	0 + x T (t )(Q 1 + Q 2 + Q 3 ) x(t ) − x T (t − τM 

) Q 1 x(t − τM 

) 

− x T (t − d M 

) Q 2 x(t − d M 

) − x T (t − ηM 

) Q 3 x(t − ηM 

) 

+ 	T 
0 R 	0 + (δ2 

αβ̄2 + δ2 
αδ2 

β )	T 
2 R 	2 + δ2 

β	T 
1 R 	1 

+ δ2 
β (x T (t − τ (t )) + e T k (t )) K 

T B 

T R BK (x(t − τ (t )) + e k (t )) 

+ ζ T 
1 (t )ϒ1 ζ1 (t ) + ζ T 

2 (t )ϒ2 ζ2 (t ) + ζ T 
3 (t )ϒ3 ζ3 (t ) (21)

rom Assumption 3 , we have 

 

T (t − d(t )) G 

T Gx(t − d(t )) − g 

T (x(t − d(t )) g(x(t − d(t )) > 0 (22)

 

T (t − η(t )) H 

T H x(t − η(t )) − h 

T (x(t − η(t ))) h(x(t − η(t )) > 0 (23)

ue to Eq. (5) and Eqs. (21) –(23) , it follows that: 

 { ̇  V (t ) } ≤ ξT (t )�11 ξ (t ) + 	T 
0 R 	0 + (δ2 

αβ̄2 + δ2 
αδ2 

β )	T 
2 R 	2 + δ2 

β	T 
1 R 	1 

+ δ2 
β (x T (t − τ (t )) + e T k (t )) K 

T B 

T R BK (x(t − τ (t )) + e k (t )) 

+ x T (t − d(t )) G 

T Gx(t − d(t )) + x T (t − η(t )) H 

T H x(t − η(t )) (24)

here 

(t ) = 

[
ζ T 

1 (t ) e T k (t ) x T (t − d(t )) x T (t − d M 

) x T (t − η(t )) x T (t − ηM 

) ξT 
gh (t ) 

]T 

T 
gh (t ) = 

[
g 

T (x(t − d(t ))) h 

T (x(t − η(t ))) 
]

y using Schur complements, one can know that Eq. (11) guarantees E { ̇  V (t ) } < 0. Thus the
roof is completed. 

heorem 2. Giving the positive parameters ᾱ, β̄, εr (r = 0, 1 , 2, 3) , trigger parameter σ
nd time delays d M 

, ηM 

, τM 

, the networked closed-loop system (7) under distributed ETS and
yber-attacks is asymptotically stable with controller gain K = Y X 

−1 , if there exist matrices
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X > 0, Q̄ s > 0, R̄ s > 0, Ū s (s = 1 , 2, 3) , Y and �̄ > 0 with appropriate dimensions, such that
the LMIs hold: ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�̄11 ∗ ∗ ∗ ∗ ∗ ∗
�̄21 P̄ ∗ ∗ ∗ ∗ ∗
�̄31 0 P̄ ∗ ∗ ∗ ∗
�̄41 0 0 P̄ ∗ ∗ ∗
�̄51 0 0 0 P̄ ∗ ∗
�̄61 0 0 0 0 −I ∗
�̄71 0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (25) 

[
R̄ s ∗
Ū s R̄ s 

]
> 0(s = 1 , 2, 3) (26) 

where 

�̄11 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

̄11 ∗ ∗ ∗ ∗
̄21 ̄22 ∗ ∗ ∗
̄31 0 ̄33 ∗ ∗

ᾱβ̄Y 

T B 

T 0 0 −I ∗
(1 − ᾱ) ̄βY 

T B 

T 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

̄11 = AX + X A 

T + Q̄ 1 + Q̄ 2 + Q̄ 3 − R̄ 1 − R̄ 2 − R̄ 3 

̄21 = 

⎡ 

⎣ 

(1 − β̄ ) Y 

T B 

T + R̄ 1 − Ū 1 

Ū 1 

(1 − β̄ ) Y 

T B 

T 

⎤ 

⎦ , ̄22 = 

⎡ 

⎣ 

−2 ̄R 1 + Ū 1 + Ū 

T 
1 + σ 2 �̄ ∗ ∗

R̄ 1 − Ū 1 −Q̄ 1 − R̄ 1 ∗
0 0 −�̄

⎤ 

⎦ 

̄31 = 

⎡ 

⎢ ⎢ ⎣ 

R̄ 2 − Ū 2 

Ū 2 

R̄ 3 − Ū 3 

Ū 3 

⎤ 

⎥ ⎥ ⎦ 

, ̄33 = 

⎡ 

⎢ ⎢ ⎣ 

−2 ̄R 2 + Ū 2 + Ū 

T 
2 ∗ ∗ ∗

R̄ 2 − Ū 2 −Q̄ 2 − R̄ 2 ∗ ∗
0 0 −2 ̄R 3 + Ū 3 + Ū 

T 
3 ∗

0 0 R̄ 3 − Ū 3 −Q̄ 3 − R̄ 3 

⎤
⎥⎥⎦

�̄21 = 

⎡ 

⎣ 

τM 

F̄ 1 

d M 

F̄ 1 

ηM 

F̄ 1 

⎤ 

⎦ , �̄31 = 

⎡ 

⎣ 

τM 

F̄ 2 

d M 

F 2 

ηM 

F̄ 2 

⎤ 

⎦ , �̄41 = 

⎡ 

⎣ 

τM 

F̄ 3 

d M 

F̄ 3 

ηM 

F̄ 3 

⎤ 

⎦ , �̄51 = 

⎡ 

⎣ 

τM 

F̄ 4 

d M 

F̄ 4 

ηM 

F̄ 4 

⎤ 

⎦ 

F̄ 1 = 

[
AX (1 − β̄ ) BY 0 (1 − β̄ ) BY 0 1 ×4 ᾱβ̄BY (1 − ᾱ) ̄βBY 

]
F̄ 2 = 

√ 

δ2 
α( ̄β2 + δ2 

β ) 
[
0 1 ×8 BY −BY 

]
F̄ 3 = δβ

[
0 1 ×8 ᾱBY (1 − ᾱ) BY 

]
F̄ 4 = δβ

[
0 BY 0 BY 0 0 0 0 0 0 

]
P = diag {−2ε 1 X + ε 2 1 R 1 , −2ε 2 X + ε 2 2 R 2 , −2ε 3 X + ε 2 3 R 3 } 

�61 = 

[
0 1 ×4 GX 0 1 ×5 

]
, �71 = 

[
0 1 ×6 H X 0 1 ×3 

]
Proof: For any positive scalars ε s , due to (R s − ε −1 

s P ) R 

−1 
s (R s − ε −1 

s P ) ≥ 0, one can
obtain 

−P R 

−1 
s P ≤ −2ε s P + ε 2 s R s (27) 
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Fig. 2. The graph of cyber-attacks g ( x ( t )). 

 

d

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 

 

d

 

i  

t

4

 

p

Replace −P R 

−1 
s P by −2ε s P + ε 2 s R s (s = 1 , 2, 3) in Eq. (11) , Eq. (28) is a sufficient con-

ition to ensure Eq. (11) holds. 

 

 

 

 

 

 

 

 

 

 

 

�11 ∗ ∗ ∗ ∗ ∗ ∗
�21 ˆ P ∗ ∗ ∗ ∗ ∗
�31 0 

ˆ P ∗ ∗ ∗ ∗
�41 0 0 

ˆ P ∗ ∗ ∗
�51 0 0 0 

ˆ P ∗ ∗
�61 0 0 0 0 −I ∗
�71 0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0 (28)

Define X = P 

−1 , X R s X = R̄ s , X U s X = Ū s (s = 1 , 2, 3) , Y = K X, X �X = �̄, J 1 =
iag { X, . . . , X ︸ ︷︷ ︸ 

22 

, I , I } , J 2 = diag { X, X } . 

Pre- and post-multiplying Eqs. (28) and (12) with J 1 and J 2 , respectively. From Eq. (27) ,
t follows that −X X ≤ −2ε 0 X + ε 2 0 I . Then substitute −2ε 0 X + ε 2 0 I for −X X, we can derive
hat Eqs. (25) and (26) can guarantee Eqs. (11) and (12) hold. The proof is completed. 

. Numerical examples 

In this section, a numerical example will be given to demonstrate the feasibility of the
roposed control approach for NCSs with stochastic cyber-attacks. 
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Fig. 3. The graph of cyber-attacks h ( x ( t )) . 

 

 

 

 

 

Consider system (7) with following parameters: 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−0. 72 0. 40 0 0 0 0 

0. 25 −0. 56 0 0 0 0 

0 0 −0. 72 0. 40 0 0 

0 0 0. 25 −0. 56 0 0 

0 0 0 0 −0. 72 0. 40 

0 0 0 0 0. 25 −0. 56 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0. 1 0 0 

0. 5 0 0 

0 0. 1 0 

0 0. 5 0 

0 0 0. 1 

0 0 0. 5 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Set τM 

= 0. 8 , d M 

= 0. 6 , ηM 

= 0. 3 , the parameters of event-triggered scheme σ 2 
1 = 0. 9 , σ 2 

2 =

0. 5 , σ 2 
3 = 0. 6 , the initial state x(0) = 

⎡ 

⎣ 

1 −1 0 0 0 0 

0 0 1 −1 0 0 

0 0 0 0 1 −1 

⎤ 

⎦ 

T 

, sampling period h = 0. 5 . 

The above given parameters are chosen the same in the following two cases. Our purpose
is to validate the usefulness of the obtained controller design method for system (7) . Case 1
is used to illustrate the designed controller is useful to stabilize the augmented system even
when the NCS is attacked. In case 2, the discussed system works without cyber-attacks. 

Case 1. We use nonlinear functions g ( x ( t )) and h ( x ( t )) to represent the two kinds of cyber-
attacks which shown in Figs. 2 and 3 . 

g(x(t )) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−tanh(0. 5 x 1 (t )) 0 0 

−tanh(0. 01 x 1 (t )) 0 0 

0 −tanh(0. 5 x 2 (t )) 0 

0 −tanh(0. 01 x 2 (t )) 0 

0 0 −tanh(0. 5 x 3 (t )) 
0 0 −tanh(0. 01 x 3 (t )) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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Fig. 4. Event-triggered instants and release intervals of sensor 1. 

Fig. 5. Event-triggered instants and release intervals of sensor 2. 

h
(x(t )) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−tanh(0. 1 x 1 (t )) 0 0 

−tanh(0. 3 x 1 (t )) 0 0 

0 −tanh(0. 1 x 2 (t )) 0 

0 −tanh(0. 3 x 2 (t )) 0 

0 0 −tanh(0. 1 x 3 (t )) 
0 0 −tanh(0. 3 x 3 (t )) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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Fig. 6. Event-triggered instants and release intervals of sensor 3. 

 

 

 

 

 

 

It can be seen that g ( x ( t )) and h ( x ( t )) satisfy Assumption 3 with G =
diag { 0. 01 , 0. 5 , 0. 01 , 0. 5 , 0. 01 , 0. 5 } and H = diag{ 0. 3 , 0. 1 , 0. 3 , 0. 1 , 0. 3 , 0. 1 } . 

Let β̄ = 0. 5 , ᾱ = 0. 5 , it means that the distributed control systems are subject to random
cyber-attacks with the probability of 50%, and the switch probability between the two different
type cyber-attacks is 50%. By applying Theorem 2 , we can obtain that 

Y = 

⎡ 

⎣ 

−3 . 1949 −1 . 7352 0 0 0 0 

0 0 −5 . 1203 −3 . 7368 0 0 

0 0 0 0 −5 . 2481 −3 . 8115 

⎤ 

⎦ 

X = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

11 . 9727 0. 6827 0 0 0 0 

0. 6827 12. 4869 0 0 0 0 

0 0 11 . 9727 0. 6827 0 0 

0 0 0. 6827 12. 4869 0 0 

0 0 0 0 11 . 6132 0. 3355 

0 0 0 0 0. 3355 11 . 4062 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

According to accurate expression of controller gain K = Y X 

−1 in Theorem 2 , the dis-
tributed controller is presented as follows: 

K = 

⎡ 

⎣ 

−0. 2597 −0. 1248 0 0 0 0 

0 0 −0. 4335 −0. 3161 0 0 

0 0 0 0 −0. 4426 −0. 3211 

⎤ 

⎦ 

Figs. 4–6 present the event-triggered instants of three sensors, respectively. The diagram 

of the state response of the event-triggered NCSs with cyber-attacks is shown in Fig. 7 . The
graph of the switching rule between the two kinds of cyber-attacks is shown in Figs. 8 . The
figures above demonstrate that the designed event-triggered controller is feasible when the 
discussed system is under stochastic cyber-attacks. 
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Fig. 7. State response of x ( t ) in case 1. 

Fig. 8. The graph of switching rule α( t ) between the cyber-attacks. 

C  

c  

i

Y

ase 2. Set β̄ = 0, it means that distributed event-triggered NCSs work normally without
yber-attacks. Based on Theorem 2 and LMI toolbox in MATLAB, we can obtain the follow-
ng parameters: 

 = 

⎡ 

⎣ 

−3 . 6462 −2. 1763 0 0 0 0 

0 0 −3 . 9151 −2. 9008 0 0 

0 0 0 0 −3 . 8710 −2. 8378 

⎤ 

⎦ 
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Fig. 9. State response of x ( t ) in case 2. 

 

 

 

 

X = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

10. 7570 0. 6897 0 0 0 0 

0. 6897 13 . 0315 0 0 0 0 

0 0 9 . 7430 0. 0975 0 0 

0 0 0. 0975 9 . 4976 0 0 

0 0 0 0 9 . 7893 0. 0987 

0 0 0 0 0. 0987 9 . 5568 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

From K = Y X 

−1 in Theorem 2 , we can obtain the controller gain as follows: 

K = 

⎡ 

⎣ 

−0. 3294 −0. 1496 0 0 0 0 

0 0 −0. 3988 −0. 3013 0 0 

0 0 0 0 −0. 3925 −0. 2929 

⎤ 

⎦ 

Fig. 9 presents the state response of x ( t ), and it illustrates that event-triggered distributed
control design approach is useful to stabilize the NCSs without cyber-attacks. 

5. Conclusions 

In this paper, distributed event-triggered control problem is investigated for NCSs subject 
to stochastic cyber-attacks. An event generator is set at each sensor side to determine whether
the current sampled data is transmitted into the network or not. Based on the distributed
ETS, the data redundancies are largely reduced during the networked transmission. The inner 
variations of the random cyber-attacks are taken into account, which are modeled as two
switched nonlinear functions. By applying Lyapunov function and linear matrix inequality 

techniques, sufficient conditions for the stability of the discussed system are derived and 

the controller gain is presented by solving certain matrix inequalities. A numerical example 
is given in the simulation section to illustrate the usefulness of designed control scheme. 
Future research topics include distributed hybrid-triggered control for NCSs with stochastic 
cyber-attacks. 
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