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a b s t r a c t

This paper ismainly concernedwith hybrid-drivenH∞ filtering for a class of Takagi–Sugeno
(T–S) fuzzy systems with quantization. To reduce the redundancy of transmission data
and save the network bandwidth, a hybrid-driven scheme and a logarithmic quantizer
are introduced in this paper. Firstly, by taking the effect of hybrid-driven scheme and
quantization into consideration, a mathematical H∞ filter model for T–S fuzzy systems
is constructed. Secondly, by applying Lyapunov stability theory, sufficient conditions for
asymptotical stabilization of desired system are obtained. Moreover, an explicit algorithm
forH∞ filter design is presented with the help of linear matrix inequality (LMI) techniques.
Finally, numerical and physical simulations show the usefulness of the proposed filter
design approach.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays,more andmore researchers pay attention to the further study of T–S fuzzy systems because of the convenience
and accuracy in modeling for complex nonlinear systems [1–3]. As is well known, T–S fuzzy model is a powerful tool which
can convert control design problems of nonlinear system into linear system with a systematic framework [4–6]. In recent
years, an ever increasing interest in the filter or controller design for T–S fuzzy systems has been witnessed. For example,
in [7], an adaptive fuzzy output feedback tracking control problem for nonstrict-feedback switched nonlinear systems is
investigated. The authors in [8] propose a novel delay partitioning method for the stability analysis of T–S fuzzy systems
with interval time-varying delays and nonlinear perturbations. In [9], the authors investigate an adaptive event-triggered
communication scheme for a class of networked T–S fuzzy control systems. In [10], the problem of ℓ2 − ℓ∞ filter design for
T–S fuzzy systems with multiple time-varying delays is investigated.

During the last decades, the time-triggered scheme (periodic sampling) plays an important role in NCSs. With this trigger
method, even in the condition of theworst network environment such as external disturbances, limited capacity and channel
bandwidth, the desired performance can be guaranteed by fixing the appropriate sampling interval [11]. It is acceptable
to sample with a periodic interval from the perspective of system analysis and design, however, with the development
of network, the drawback of the time-triggered method exposes gradually, which does not consider the effective use of
limited network resources [12]. In order to solve these problems such as packet dropouts, transmission delays resulting
from the limited capacity of the network, event-triggered scheme and quantization method have been proposed. First of
all, lots of scholars have put forward different kinds of event-triggered schemes to alleviate the networked burden. One of
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the novel event-triggered schemes is proposed by the authors in [13] for system analysis and controller design, in which
the system states are sampled in discrete instants. Due to the efficiency in alleviating the networked burden, there are
lots of researches focusing on the investigations of NCSs [14–16] based on the novel event-triggered scheme raised in [13].
For instances, reference [17] is concerned with the problem of event-triggered output feedback control of Markovian jump
systemswith quantization. In [18], thematter ofH∞ filter design for neural networked systemswith event-triggered scheme
and quantization is investigated. The authors in [19] address the issue of a decentralized event-triggering scheme for large
scale systems. In [20], an event-triggered H∞ controller is designed for discrete-time nonlinear systems with unreliable
communication links. In addition, the introduction of quantizer can also save the energy of network transmission. As an
indispensable step in the process of information transfer, quantization can convert the discrete signals into digital signals
which is characteristic for its high anti-interference performance and compression ratios during the transmission [21].
Therefore, quantization is becoming a heat topic in the investigations of NCSs. By means of quantized output feedback, the
authors in [22] concentrate on the issue of stabilizing a nonlinear system. In [23], the problem of event-triggered controller
design for NCSs with both state and control input quantization is dealt with. In [24], an H∞ filter is designed for a class
of discrete time systems with quantization based on the fuzzy models. In [25], the authors consider the output feedback
stabilization in linear systems by taking the event-triggered sampling method and dynamic quantization into account.

Motivated by the event-triggered scheme proposed in [13], the authors in [26] firstly propose a novel hybrid-driven
scheme which consists of time-triggered scheme and event-triggered scheme to analyze the stability of NCSs. Based on the
hybrid-driven schemementioned above, the authors in [27] concentrate on the study of H∞ filtering with cyber attacks. The
problem of hybrid-driven-based filter design for neural networks subject to deception attacks is investigated in [28]. In [29],
the issue of reliable controller design for hybrid-driven T–S fuzzy systems with probabilistic actuator faults and nonlinear
perturbations is addressed. Inspired by the theories mentioned above, this paper is concerned with hybrid-driven H∞ filter
design for a class of T–S fuzzy systemswith quantization. In order to reduce the redundancy of transmitted data effectively, a
hybrid-driven scheme,which is governed by a Bernoulli randomvariable, is adopted in this paper. To optimize the networked
systems, a logarithmic quantizer is appliedwhich canmake the transmitted signals account for less bandwidth. To the best of
our knowledge, no relevant results have been reported for hybrid-driven filter design of T–S fuzzy systemswith quantization,
which motivates the current work.

The remainder of this paper is organized as follows. In Section 2, amathematical model of filter error systemwith hybrid-
driven scheme and quantization is formulated. In Section 3, sufficient conditions to guarantee the asymptotical stabilization
of filter error systemare obtained and the design algorithm for desired filter parameters is presented. Numerical and physical
examples are given in Section 4 to demonstrate the feasibility of designed filter with the help of MATLAB.

Notation: Rn and Rn×m denote the n-dimensional Euclidean space, and the set of n × m real matrices; the superscript T
stands for matrix transposition; I is the identity matrix of appropriate dimension; sym{X} denotes the sum of matrix X and
its transposed matrix XT ; S denotes a set of positive integers; E{X} represents the mathematical expectation of X; X > 0,
for X ∈ Rn×n means that the matrix X is real symmetric positive definite. For a matrix B and two symmetric matrices A and

C,
[
A ∗

B C

]
denotes a symmetric matrix, where ∗ denotes the entries implied by symmetry.

2. Problem statement and preliminaries

Consider the nonlinear system represented by the following T–S fuzzy system with ith rule:
IF θ1(t) isW i

1 and · · · and θg (t) isW i
g , THEN{ ẋ(t) = Aix(t) + Adix(t − τ (t)) + Aωiω(t)

y(t) = Cix(t)
z(t) = Lix(t)

(1)

where (i = 1, 2, . . . , r), r ∈ S is the number of IF-THEN rules. x(t) ∈ Rn, y(t) ∈ Rm and z(t) ∈ Rs are the state vector,
output vector and the signal to be estimated, respectively. θ (t) denotes the vector of fuzzy premise variables, θ (t) =

[θ1(t), θ2(t), . . . , θg (t)], W i
p (p = 1, 2, . . . , g) are fuzzy sets. Ai, Adi, Aωi, Ci, Li are parameter matrices with appropriate

dimensions, ω(t) ∈ L2 [0, ∞) denotes the exogenous disturbance signal, τ (t) is a time-varying delay taking values on the
interval [τm, τM ], where τm and τM are positive real numbers.

By using center-average defuzzifier, product interference and singleton fuzzifier, the fuzzy system (1) can be obtained as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

r∑
i=1

hi(θ (t)){Aix(t) + Adix(t − τ (t)) + Aωiω(t)}

y(t) =

r∑
i=1

hi(θ (t))Cix(t)

z(t) =

r∑
i=1

hi(θ (t))Lix(t)

(2)
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Fig. 1. The structure of hybrid-driven H∞ filtering with quantization.

where hi(θ (t)) =
µi(θ (t))∑r
i=1 µi(θ (t))

, µi(θ (t)) =
∏g

p=1 W
i
p(θp(t)), W

i
p(θp(t)) is the grade membership value of θp(t). hi(θ (t)) denotes

the normalized membership function satisfying hi(θ (t)) ≥ 0,
∑r

i=1 hi(θ (t)) = 1.
As shown in Fig. 1, a hybrid-driven scheme, which consists of time-triggered scheme and event-triggered scheme, is

introduced to save the networked resources. When the system (2) is under the networked environments with quality-of-
service constraints, the time-triggered scheme is chosen for data transmission which can sample data periodically. In order
to save the network resources and improve the system performance, the event-triggered scheme is applied between the
sensor and the quantizer, which can decide whether the newly sampled data should be transmitted or not. Once y(skh) is
transmitted, the next transmission instant via event-triggered scheme can be described as following equality [30].

sk+1h = skh + min
l⩾1

{lh|eTk (skh)Ωek(skh) > σyT (skh + lh)Ωy(skh + lh)} (3)

where ek(skh) = y(skh) − y(skh + lh) denotes threshold error, h represents the sampling period, {skh|sk ∈ S} represents the
set of transmitted instants, {skh + lh|l = 1, 2, . . .} denotes the current sampling instants, Ω > 0 and σ ∈ [0, 1) denote the
trigger parameters.

Remark 1. According to the event-triggered judgment algorithm (3), the set of releasing instants is {s1h, s2h, . . .} ⊆

{h, 2h, . . .}, initial value is s0h = 0. Moreover, the next triggered instant sk+1h is determined by trigger parameters and
the threshold error ek(skh).

In this paper, by borrowing the quantized theory from references [31,32], the logarithmic quantizer q(·) is applied to
quantize the measurements y(t). Define q(y) =

[
q1(y1) q2(y2) . . . qm(ym)

]T , for each qs(ys) s = 1, 2, . . . ,m, the set of
quantized levels can be described by

Us = {±u(s)
v : u(s)

v = ρv
s u

(s)
0 , v = ±1, ±2, . . .} ∪ {±u(s)

0 } ∪ {0}, 0 < ρs < 1, u(s)
0 > 0 (4)

The logarithmic quantizer qs(ys) is given by

qs(ys) =

⎧⎪⎨⎪⎩
u(s)

v ,
u(s)v

1+δ
< ys ≤

u(s)v

1−δ
, ys > 0

0, ys = 0
−q(−ys), ys < 0

(5)

where δ =
1−ρ

1+ρ
, ρ is quantization density.

Since qs(·) is symmetrical, qs(−ys) = −qs(ys). Then, logarithmic quantizer qs(ys) can be described as

qs(ys) =
[
I + ∆qs (ys)

]
ys (6)

where |∆qs (ys)| ≤ δs. For the sake of simplicity, ∆qs (ys) is used to represent ∆qs .
Then, the following equality can be obtained

q(y) = (I + ∆q)y (7)

where ∆q = diag{∆q1 , ∆q2 , . . . , ∆qm}.
Based on the definition (5) and equality (7), the newly sampled measurements via quantizer can be expressed by the

following equation

yq(t) = (I + ∆q)y(t) (8)

As shown in Fig. 1, on account of communication network between the quantizer and the filter, the network-induced
delays should be taken into consideration. Therefore, the quantized output measurements yq(t) should be replaced by ŷ(t),
which is the actual data available in the filter. In the following discussion, ŷ(t) will be described in detail.
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When the system (2) is under the ‘‘time-triggered scheme’’, define η(t) = t − skh for t ∈ [skh+ τsk , sk+1h+ τsk+1 ), where
τsk (∀k ∈ S) is used to represent the network-induced delay. Similar to [13,23], η(t) is supposed to be bounded satisfying
0 ≤ τsk ≤ η(t) ≤ sk+1h − skh + τsk+1 ≜ ηM . Then, the data y1(t) through time-triggered scheme and quantization can be
written as

y1(t) = (I + ∆q)y(t − η(t)), t ∈ [skh + τsk , sk+1h + τsk+1 ) (9)

where η(t) ∈ [0, ηM ].
When the system (2) is under the ‘‘event-triggered scheme’’, similar to [33], a zero-order-hold (ZOH) is introduced to

store the latest transmitted data. The holding interval of ZOH is defined as [skh + τsk , sk+1h + τsk+1 ) =
⋃d

j=0
⋀

j, where⋀
j = [skh + jh + τsk+j, skh + jh + h + τsk+j+1), j = 0, 1, . . . , d and d = sk+1 − sk − 1. Let d(t) = t − skh − jh,

0 ≤ τsk+j ≤ d(t) ≤ τsk+j+1 + h ≜ dM , then, the data y2(t) via event-triggered scheme (3) and quantization can be described
by

y2(t) = (I + ∆q) [y(t − d(t)) + ek(t)] , t ∈ [skh + τsk , sk+1h + τsk+1 ) (10)

where d(t) ∈ [0, dM ].
Based on Eqs. (9) and (10), the actual input ŷ(t) available in the filter can be written as

ŷ(t) = α(t)y1(t) + (1 − α(t))y2(t)

= α(t)(I + ∆q)y(t − η(t)) + (1 − α(t))(I + ∆q) [y(t − d(t)) + ek(t)] (11)

where α(t) is a random variable satisfying Bernoulli distribution, and its mathematical expectation can be written as
E{α(t)} = ᾱ. µ2 is utilized to represent the mathematical variance of α(t).

Remark 2. Different from traditional event-triggered scheme or time-triggered scheme, the hybrid-driven scheme is
determined by a variable α(t) satisfying Bernoulli distribution. When ‘‘α(t) = 1’’, Eq. (11) can be written as ‘‘ŷ(t) =

(I +∆q)y(t −η(t))’’ which means that the ‘‘time-triggered scheme’’ is selected for data transmission. Otherwise, the ‘‘event-
triggered scheme’’ is activated and Eq. (11) can be written as ‘‘ŷ(t) = (I + ∆q) [y(t − d(t)) + ek(t)]’’.

This paper aims to design a hybrid-drivenH∞ filter for a class of T–S fuzzy systemwith quantization. The premise variable
of system (2) is θ (t). Due to the presence of network-induced delay, it is reasonable to use the latest lagged premise variable
θ (skh) in the filter design. jth rule is expressed in the following IF-THEN rule:

IF θ1(skh) isM
j
1 and · · · and θg (skh) isM

j
d, THEN{

ẋf (t) = Afj(t)xf (t) + Bfj(t)ŷ(t)
zf (t) = Cfj(t)xf (t)

(12)

where xf (t) ∈ Rn, zf (t) ∈ Rs are the state and output of the filter, respectively. ŷ(t) is the real input of the filter. Afj ∈ Rn×n, Bfj
∈ Rn×m, Cfj ∈ Rp×n are the filter parameters to be determined.

The defuzzified output of (12) is referred by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋf (t) =

r∑
j=1

hj(θ (skh)){Afjxf (t) + Bfjŷ(t)}

zf (t) =

r∑
j=1

hj(θ (skh))Cfjxf (t)
(13)

where r ∈ S, hj(θ (skh)) = oj(θ (skh))∑r
j=1 oj(θ (skh))

, oj(θ (skh)) =
∏d

q=1 M
j
q(θq(skh)), M

j
q(θq(skh)) is the grade membership value of

θq(skh). hj(θ (skh)) denotes the normalized membership function satisfying hj(θ (skh)) ≥ 0,
∑r

j=1 hj(θ (skh)) = 1, ŷ(t) =∑r
i=1 hi(θ (t))

[
α(t)(I + ∆q)Cix(t − η(t)) + (1 − α(t))(I + ∆q)(Cix(t − d(t)) + ek(t))

]
.

Remark 3. According to equality (13), the premise variable θ (t) adopted in system (2) cannot synchronously arrive at the
filter, which implies θ (skh) ̸= θ (t). However, notice that there exists network before the filter in Fig. 1. On account of the
effect of network-induced delay, the premise variable θ (skh) in (13) is assumed to have relationshipwith the premise variable
θ (t) of system (2).

Define

e(t) =

[
x(t)
xf (t)

]
, z̃(t) = z(t) − zf (t)
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Based on Eqs. (2) and (13), the filter error system can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ė(t) =

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (skh))
{
Āe(t) + ĀdHe(t − τ (t)) + α(t)B̄1He(t − η(t))

+(1 − α(t))[B̄1He(t − d(t)) + B̄2ek(t)] + Āωω(t)
}

z̃(t) =

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (skh))L̄e(t)

(14)

Ā =

[
Ai 0
0 Afj

]
, Ād =

[
Adi
0

]
, B̄1 =

[
0

Bfj(I + ∆q)Ci

]
, B̄2 =

[
0

Bfj(I + ∆q)

]
Āω =

[
Aωi
0

]
, L̄ =

[
Li −Cfj

]
,H =

[
I 0

]
In the following, an assumption and three lemmas are introduced which are important in deriving the main results.

Assumption 1 ([34,35]). Suppose that the asynchronous errors of premise variables satisfy the following inequality

|hj(θ (t)) − hj(θ (skh))| ≤ ϖl, j, l = 1, 2, . . . , r (15)

where ϖl > 0 denotes the additive bounds.

Lemma 1 ([36]). For any vectors x, y ∈ Rn, and positive definite matrix Q ∈ Rn×n, the following inequality holds

2xTy ≤ xTQx + yTQ−1y (16)

Lemma 2 ([37]). Suppose τ (t) ∈ [τm, τM ], d(t) ∈ [0, dM ], η(t) ∈ [0, ηM ], Ξ1, Ξ2, Ξ3, Ξ4, Ξ5, Ξ6 and Ω are matrices with
appropriate dimensions, then

(τ (t) − τm)Ξ1 + (τM − τ (t))Ξ2 + d(t)Ξ3 + (dM − d(t))Ξ4 + η(t)Ξ5 + (ηM − η(t))Ξ6 + Ω < 0 (17)

if and only if⎧⎪⎪⎨⎪⎪⎩
(τM − τm)Ξ1 + dMΞ3 + ηMΞ5 + Ω < 0, (τM − τm)Ξ2 + dMΞ3 + ηMΞ5 + Ω < 0,
(τM − τm)Ξ1 + dMΞ4 + ηMΞ5 + Ω < 0, (τM − τm)Ξ2 + dMΞ4 + ηMΞ5 + Ω < 0,
(τM − τm)Ξ1 + dMΞ3 + ηMΞ6 + Ω < 0, (τM − τm)Ξ2 + dMΞ3 + ηMΞ6 + Ω < 0,
(τM − τm)Ξ1 + dMΞ4 + ηMΞ6 + Ω < 0, (τM − τm)Ξ2 + dMΞ4 + ηMΞ6 + Ω < 0.

(18)

Lemma 3 ([38]). Given matrices U, G and W of appropriate dimensions and U is symmetrical, then

U + GF (t)W + W T F T (t)GT < 0 (19)

for any F (t) satisfying F T (t)F (t) ≤ I , if and only if there exists a parameter ϵ > 0 such that

U + ϵ−1GGT
+ ϵW TW < 0 (20)

3. Main results

In this section, sufficient conditions ensuring the stability of systems (14) and design algorithm for H∞ filtering will be
obtained by using Lyapunov stability theory and LMI techniques.

Theorem 1. For given time delays τm, τM , dM , ηM , trigger parameter σ , value ϖl (l = 1, . . . , r) and ᾱ, system (14) is
asymptotically stable with an H∞ disturbance attenuation level γ , if there exist matrices P > 0, Qk > 0, Rk > 0 (k = 1, 2, 3, 4),
Ω > 0, Π , Mij, Nij, Tij, Sij, Wij and Vij with appropriate dimensions satisfying

Φ ii < 0, i = 1, 2, . . . , r (21)

Φ ij
+ Φ ji < 0, i, j = 1, 2, . . . , r, (i < j) (22)

Ξ ij
+ Π > 0, i, j = 1, 2, . . . , r (23)

where

Ξ ij
=

⎡⎢⎢⎢⎣
Ω

ij
11 ∗ ∗ ∗

Ω
ij
21 Ω

ij
22 ∗ ∗

Ω
ij
31 0 Ω

ij
33 ∗

Ω
ij
41(s) 0 0 Ω

ij
44

⎤⎥⎥⎥⎦ , (s = 1, . . . , 8)
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Ω
ij
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γij1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

R2 Γij2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

HT Ād
T
P Mij3 − MT

ij2 Γij3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 Nij4 − NT
ij3 Γij4 ∗ ∗ ∗ ∗ ∗ ∗

Γij9 0 0 0 Γij5 ∗ ∗ ∗ ∗ ∗

0 0 0 0 Vij6 − V T
ij5 Γij6 ∗ ∗ ∗ ∗

Γij0 0 0 0 0 0 Γij7 ∗ ∗ ∗

0 0 0 0 0 0 Sij8 − STij7 Γij8 ∗ ∗

ᾱ1B̄2
T
P 0 0 0 0 0 0 0 −Ω ∗

ĀT
ωP 0 0 0 0 0 0 0 0 −γ 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Γij1 = PĀ + ĀTP + Q1 + Q2 + Q3 + Q4 − R2 + Tij1 + T T

ij1 + Wij1 + W T
ij1

Γij2 = −Q1 − R2 + Mij2 + MT
ij2, Γij3 = −Mij3 − MT

ij3 + Nij3 + NT
ij3

Γij4 = −Q2 − Nij4 − NT
ij4, Γij5 = −Wij5 − W T

ij5 + Vij5 + V T
ij5

Γij6 = −Q4 − Vij6 − V T
ij6, Γij7 = σHTCT

i ΩCiH − Tij7 − T T
ij7 + Sij7 + STij7

Γij8 = −Q3 − Sij8 − STij8, Γij9 = ᾱHT B̄1
T
P + Wij5 − W T

ij1

Γij0 = ᾱ1HT B̄1
T
P + Tij7 − Tij1, Φ ij

= Ξ ij
+

r∑
l=1

ϖl(Ξ il
+ Π )

Ω
ij
21 =

⎡⎢⎢⎢⎢⎣
L̄ 0 0 0 0 0 0 0 0 0

√
τ21PĀ 0

√
τ21PĀdH 0 ᾱ

√
τ21PB̄1H 0 ᾱ1

√
τ21PB̄1H 0 ᾱ1

√
τ21PB̄2

√
τ21PĀω

τmPĀ 0 τmPĀdH 0 ᾱτmPB̄1H 0 ᾱ1τmPB̄1H 0 ᾱ1τmPB̄2 τmPĀω√
dMPĀ 0

√
dMPĀdH 0 ᾱ

√
dMPB̄1H 0 ᾱ1

√
dMPB̄1H 0 ᾱ1

√
dMPB̄2

√
dMPĀω

√
ηMPĀ 0

√
ηMPĀdH 0 ᾱ

√
ηMPB̄1H 0 ᾱ1

√
ηMPB̄1H 0 ᾱ1

√
ηMPB̄2

√
ηMPĀω

⎤⎥⎥⎥⎥⎦

Ω
ij
31 =

⎡⎢⎢⎣
0 0 0 0 µ

√
τ21PB̄1H 0 µ

√
τ21PB̄1H 0 µ

√
τ21PB̄2 0

0 0 0 0 µτmPB̄1H 0 µτmPB̄1H 0 µτmPB̄2 0
0 0 0 0 µ

√
dMPB̄1H 0 µ

√
dMPB̄1H 0 µ

√
dMPB̄2 0

0 0 0 0 µ
√

ηMPB̄1H 0 µ
√

ηMPB̄1H 0 µ
√

ηMPB̄2 0

⎤⎥⎥⎦

Ω
ij
41(1) =

⎡⎢⎣
√

τ21MT
ij√

dMT T
ij

√
ηMW T

ij

⎤⎥⎦ , Ω
ij
41(2) =

⎡⎢⎢⎣
√

τ21MT
ij

√
dMT T

ij
√
(ηM )V T

ij

⎤⎥⎥⎦ , Ω
ij
41(3) =

⎡⎢⎢⎢⎣
√

τ21MT
ij

√
dMSTij

√
ηMW T

ij

⎤⎥⎥⎥⎦ , Ω
ij
41(4) =

⎡⎢⎢⎢⎢⎣
√

τ21MT
ij

√
dMSTij

√
ηMV T

ij

⎤⎥⎥⎥⎥⎦

Ω
ij
41(5) =

⎡⎢⎣
√

τ21NT
ij√

dMT T
ij

√
ηMW T

ij

⎤⎥⎦ , Ω
ij
41(6) =

⎡⎢⎢⎣
√

τ21NT
ij

√
dMT T

ij
√

ηMV T
ij

⎤⎥⎥⎦ , Ω
ij
41(7) =

⎡⎢⎢⎢⎣
√

τ21NT
ij

√
dMSTij

√
ηMW T

ij

⎤⎥⎥⎥⎦ , Ω
ij
41(8) =

⎡⎢⎢⎢⎢⎣
√

τ21NT
ij

√
dMT T

ij

√
ηMV T

ij

⎤⎥⎥⎥⎥⎦
√

τ21 =
√

τM − τm, ᾱ1 = 1 − ᾱ, Ω
ij
22 = diag{−I, −PR−1

1 P, −PR−1
2 P, −PR−1

3 P, −PR−1
4 P}

Ω
ij
33 = diag{−PR−1

1 P, −PR−1
2 P, −PR−1

3 P, −PR−1
4 P}, Ω

ij
44 = diag{−R1, −R3, −R4}, L̄ =

[
Li −Cfj

]
MT

ij =
[
0 MT

ij2 MT
ij3 0 0 0 0 0 0 0

]
,NT

ij =
[
0 0 NT

ij3 NT
ij4 0 0 0 0 0 0

]
T T
ij =

[
T T
ij1 0 0 0 0 0 T T

ij7 0 0 0
]
, STij =

[
0 0 0 0 0 0 STij7 STij8 0 0

]
W T

ij =
[
W T

ij1 0 0 0 W T
ij5 0 0 0 0 0

]
, V T

ij =
[
0 0 0 0 V T

ij5 V T
ij6 0 0 0 0

]
Proof. By referring to Lyapunov functional construction in references [39–41], a Lyapunov function can be built as follows

V (t) = V1(t) + V2(t) + V3(t) (24)

where

V1(t) = eT (t)Pe(t)

V2(t) =

∫ t

t−τm

eT (s)Q1e(s)ds +

∫ t

t−τM

eT (s)Q2e(s)ds +

∫ t

t−dM

eT (s)Q3e(s)ds +

∫ t

t−ηM

eT (s)Q4e(s)ds
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V3(t) =

∫ t−τm

t−τM

∫ t

s
ėT (v)R1ė(v)dvds + τm

∫ t

t−τm

∫ t

s
ėT (v)R2ė(v)dvds +

∫ t

t−dM

∫ t

s
ėT (v)R3ė(v)dvds

+

∫ t

t−ηM

∫ t

s
ėT (v)R4ė(v)dvds

and P>0, Qk>0, Rk>0 (k = 1, 2, 3, 4).
By taking the derivative and expectation on V (t), the following results can be obtained

E{V̇1(t)} =

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (skh))2eT (t)PA (25)

E{V̇2(t)} = eT (t)(Q1 + Q2 + Q3 + Q4)e(t) − eT (t − τm)Q1e(t − τm) − eT (t − τM )Q2e(t − τM )

− eT (t − dM )Q3e(t − dM ) − eT (t − ηM )Q4e(t − ηM ) (26)

E{V̇3(t)} =

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (skh))AT R̃A + µ2BT R̃B −

∫ t−τm

t−τM

ėT (s)R1ė(s)ds

− τm

∫ t

t−τm

ėT (s)R2ė(s)ds −

∫ t

t−dM

ėT (s)R3ė(s)ds −

∫ t

t−ηM

ėT (s)R4ė(s)ds (27)

where A = Āe(t) + ĀdHe(t − τ (t)) + ᾱB̄1He(t − η(t)) + (1 − ᾱ)[B̄1He(t − d(t)) + B̄2ek(t)] + Āωω(t), B = B̄1He(t − η(t)) −

B̄1He(t − d(t)) − B̄2ek(t), R̃ = (τM − τm)R1 + τ 2
mR2 + dMR3 + ηMR4, P > 0, Qk > 0, Rk > 0 (k = 1, 2, 3, 4).

Notice that

− τm

∫ t

t−τm

ėT (s)R2ė(s)ds ≤

[
e(t)

e(t − τm)

]T [
−R2 R2
R2 −R2

][
e(t)

e(t − τm)

]
(28)

Apply the free-weighting matrices method [42,43], it can be obtained that

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Mij

[
e(t − τm) − e(t − τ (t)) −

∫ t−τm

t−τ (t)
ė(s)ds

]
= 0 (29)

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Nij

[
e(t − τ (t)) − e(t − τM ) −

∫ t−τ (t)

t−τM

ė(s)ds

]
= 0 (30)

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Tij

[
e(t) − e(t − d(t)) −

∫ t

t−d(t)
ė(s)ds

]
= 0 (31)

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Sij

[
e(t − d(t)) − e(t − dM ) −

∫ t−d(t)

t−dM

ė(s)ds

]
= 0 (32)

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Wij

[
e(t) − e(t − η(t)) −

∫ t

t−η(t)
ė(s)ds

]
= 0 (33)

2
r∑

i=1

r∑
j=1

hi(θ (t))hj(θ (skh))ξ T (t)Vij

[
e(t − η(t)) − e(t − ηM ) −

∫ t−η(t)

t−ηM

ė(s)ds

]
= 0 (34)

where Nij,Mij, Tij, Sij,Wij, Vij are matrices with appropriate dimensions, and

ξ T (t) =
[
ξ T
1 (t) ξ T

2 (t)
]

ξ T
1 (t) =

[
eT (t) eT (t − τm) eT (t − τ (t)) eT (t − τM ) eT (t − η(t))

]
ξ T
2 (t) =

[
eT (t − ηM ) eT (t − d(t)) eT (t − dM ) eTk (t) ωT (t)

]
By Lemma 1, the following inequalities can be derived

− 2ξ T (t)Mij

∫ t−τm

t−τ (t)
ė(s)ds ≤ (τ (t) − τm)ξ T (t)MijR−1

1 MT
ij ξ (t) +

∫ t−τm

t−τ (t)
ėT (s)R1ė(s)ds (35)

− 2ξ T (t)Nij

∫ t−τ (t)

t−τM

ė(s)ds ≤ (τM − τ (t))ξ T (t)NijR−1
1 NT

ij ξ (t) +

∫ t−τ (t)

t−τM

ėT (s)R1ė(s)ds (36)

− 2ξ T (t)Tij

∫ t

t−d(t)
ė(s)ds ≤ d(t)ξ T (t)TijR−1

3 T T
ij ξ (t) +

∫ t

t−d(t)
ėT (s)R3ė(s)ds (37)
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− 2ξ T (t)Sij

∫ t−d(t)

t−dM

ė(s)ds ≤ (dM − d(t))ξ T (t)SijR−1
3 STij ξ (t) +

∫ t−d(t)

t−dM

ėT (s)R3ė(s)ds (38)

− 2ξ T (t)Wij

∫ t

t−η(t)
ė(s)ds ≤ η(t)ξ T (t)WijR−1

4 W T
ij ξ (t) +

∫ t

t−η(t)
ėT (s)R4ė(s)ds (39)

− 2ξ T (t)Vij

∫ t−η(t)

t−ηM

ė(s)ds ≤ (ηM − η(t))ξ T (t)SijR−1
4 V T

ij ξ (t) +

∫ t−η(t)

t−ηM

ėT (s)R4ė(s)ds (40)

Combining (25)–(40), it can be obtained that

E{V̇ (t) − γ 2wT (t)w(t) + z̃T (t)z̃(t)}

≤

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (skh))
{
ξ T (t)Ω ij

11ξ (t) + AT R̃A + µ2BT R̃B + eT (t)L̄T L̄e(t) + (τ (t) − τm)ξ T (t)MijR−1
1 MT

ij ξ (t)

+ (τM − τ (t))ξ T (t)NijR−1
1 NT

ij ξ (t) + d(t)ξ T (t)TijR−1
3 T T

ij ξ (t) + (dM − d(t))ξ T (t)SijR−1
3 STij ξ (t)

+ η(t)ξ T (t)WijR−1
4 W T

ij ξ (t) + (ηM − η(t))ξ T (t)VijR−1
4 V T

ij ξ (t)
}

By usingwell-known Schur complement theory and Lemma 2, one can easily see thatE{V̇ (t)−γ 2wT (t)w(t)+z̃T (t)z̃(t)} <

0 can be ensured by

r∑
i=1

r∑
j=1

hi (θ (t)) hj (θ (skh)) Ξ ij < 0 (41)

The slack matrix Π is introduced to relax the design results

r∑
i=1

r∑
j=1

hi (θ (t))
(
hj(θ (skh)) − hj(θ (t))

)
Π = 0 (42)

Since Ξ ij
+ Π > 0 in (23), then, by substituting (42) into (41) and applying Assumption 1, one can get that

r∑
i=1

r∑
j=1

hi(θ (t))
[
hj(θ (t))Ξ ij

+ (hj(θ (skh)) − hj(θ (t)))(Ξ ij
+ Π )

]
≤

r∑
i=1

r∑
j=1

hi(θ (t))hj(θ (t))

[
Ξ ij

+

r∑
l=1

ϖl(Ξ il
+ Π )

]

=

r∑
i=1

r∑
j=1

h2
i (θ (t)) Φ ii

+

r∑
i=1

∑
i<j≤S

hi (θ (t)) hj(θ (t))
(
Φ ij

+ Φ ji) (43)

where Φ ij
= Ξ ij

+
∑r

l=1 ϖl(Ξ il
+ Π ).

According to (21)–(23), it is easily obtained that the inequality (41) holds, which can deduce that E{V̇ (t)−γ 2wT (t)w(t)+
z̃T (t)z̃(t)} < 0. This completes the proof.

Through Theorem 1, sufficient conditions have been obtained which can guarantee the stability of system (14). The main
difficulty is how to deal with the nonlinear terms of HTBT

fj(I + ∆q)TP and BT
fj(I + ∆q)TP in (21)–(23) and Theorem 2 will be

introduced to solve this problem.

Theorem 2. For given time delays τm, τM , dM , ηM , trigger parameter σ , quantized parameter δ, scalars γ , ᾱ, εk (k = 1, 2, 3, 4)
and ϖl (l = 1, . . . , r), system (14) is asymptotically stable if there exist variables m1 > 0, n1 > 0 and matrices P1 > 0, P̄3 > 0,
Q̄k > 0, R̄k > 0, Ω > 0, Π̄ , Āfj, B̄fj, C̄fj, M̄ij, N̄ij, T̄ij, S̄ij, W̄ij, V̄ij with appropriate dimensions, such that the following LMIs hold.

Φ̄ ii < 0, i = 1, 2, . . . , r (44)

Φ̄ ij
+ Φ̄ ji < 0, i, j = 1, 2, . . . , r, (i < j) (45)

Ξ̄ ij
+ Π̄ > 0, i, j = 1, 2, . . . , r (46)

P1 − P̄3 > 0 (47)
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where

Ξ̄ ij
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ
ij
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Φ
ij
21 Φ

ij
22 ∗ ∗ ∗ ∗ ∗ ∗

Φ
ij
31 0 Φ

ij
33 ∗ ∗ ∗ ∗ ∗

Φ
ij
41(s) 0 0 Φ

ij
44 ∗ ∗ ∗ ∗

Φ
ij
51 Φ

ij
52 Φ

ij
53 0 −m2I ∗ ∗ ∗

Φ
ij
61 0 0 0 0 −m1I ∗ ∗

Φ
ij
71 Φ

ij
72 Φ

ij
73 0 0 0 −n2I ∗

Φ
ij
81 0 0 0 0 0 0 −n1I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (s = 1, . . . , 8)

Φ
ij
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̄ij1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

R̄2 Γ̄ij2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Υij2 M̄ij3 − M̄T
ij2 Γ̄ij3 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 N̄ij4 − N̄T
ij3 Γ̄ij4 ∗ ∗ ∗ ∗ ∗ ∗

Γ̄ij9 0 0 0 Γ̄ij5 ∗ ∗ ∗ ∗ ∗

0 0 0 0 V̄ij6 − V̄ T
ij5 Γ̄ij6 ∗ ∗ ∗ ∗

Γ̄ij0 0 0 0 0 0 Γ̄ij7 ∗ ∗ ∗

0 0 0 0 0 0 S̄ij8 − S̄Tij7 Γ̄ij8 ∗ ∗

ᾱ1Υij4 0 0 0 0 0 0 0 −Ω ∗

Υij5 0 0 0 0 0 0 0 0 −γ 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Γ̄ij1 = Υij1 + Υ T

ij1 + Q̄1 + Q̄2 + Q̄3 + Q̄4 + −R̄2 + T̄ij1 + T̄ T
ij1 + W̄ij1 + W̄ T

ij1, Υij1 =

[
P1Ai Āfj

P̄3Ai Āfj

]
Γ̄ij2 = −Q̄1 − R̄2 + M̄ij2 + M̄T

ij2, Γ̄ij3 = −M̄ij3 − M̄T
ij3 + N̄ij3 + N̄T

ij3, Γ̄ij4 = −Q̄2 − N̄ij4 − N̄T
ij4

Γ̄ij5 = −W̄ij5 − W̄ T
ij5 + V̄ij5 + V̄ T

ij5, Γ̄ij6 = −Q̄4 − V̄ij6 − V̄ T
ij6, Φ̄ ij

= Ξ̄ ij
+

r∑
l=1

ϖl(Ξ̄ il
+ Π̄ )

Γ̄ij7 = Υij8 − T̄ij7 − T̄ T
ij7 + S̄ij7 + S̄Tij7, Υij4 =

[
B̄fj B̄fj

]
, Υij5 =

[
AT

wiP1 AT
wiP̄3

]
Γ̄ij8 = −Q̄3 − S̄ij8 − S̄Tij8, Γ̄ij9 = ᾱΥij3 + W̄ij5 − W̄ T

ij1, Γ̄ij0 = ᾱ1Υij4 + T̄ij7 − T̄ij1, Υij6 =
[
Li −C̄fj

]
Υij2 =

[
AT
diP1 AT

diP̄3
0 0

]
, Υij3 =

[
CT
i B̄fj CT

i B̄fj
0 0

]
, Υij7 =

[
σCT

i ΩCi 0
0 0

]
, P̄ =

[
P1 p̄3
P̄3 p̄3

]

Φ
ij
21 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Υij6 0 0 0 0 0 0 0 0 0
√

τ21Υij1 0
√

τ21Υ
T
ij2 0 ᾱ

√
τ21Υ

T
ij3 0 ᾱ1

√
τ21Υ

T
ij3 0 ᾱ1

√
τ21Υ

T
ij4

√
τ21Υ

T
ij5

τmΥij1 0 τmΥ T
ij2 0 ᾱτmΥ T

ij3 0 ᾱ1τmΥ T
ij3 0 ᾱ1τmΥ T

ij4 τmΥ T
ij5

√
dMΥij1 0

√
dMΥ T

ij2 0 ᾱ
√
dMΥ T

ij3 0 ᾱ1
√
dMΥ T

ij3 0 ᾱ1
√
dMΥ T

ij4

√
dMΥ T

ij5
√

ηMΥij1 0
√

ηMΥ T
ij2 0 ᾱ

√
ηMΥ T

ij3 0 ᾱ1
√

ηMΥ T
ij3 0 ᾱ1

√
ηMΥ T

ij4
√

ηMΥ T
ij5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ
ij
31 =

⎡⎢⎢⎢⎣
0 0 0 0 µ

√
τ21Υ

T
ij3 0 µ

√
τ21Υ

T
ij3 0 µ

√
τ21Υ

T
ij4 0

0 0 0 0 µτmΥ T
ij3 0 µτmΥ T

ij3 0 µτmΥ T
ij4 0

0 0 0 0 µ
√
dMΥ T

ij3 0 µ
√
dMΥ T

ij3 0 µ
√
dMΥ T

ij4 0
0 0 0 0 µ

√
ηMΥ T

ij3 0 µ
√

ηMΥ T
ij3 0 µ

√
ηMΥ T

ij4 0

⎤⎥⎥⎥⎦
Φ

ij
22 = diag{−I, −2ε1P̄ + ε2

1 R̄1, −2ε2P̄ + ε2
2 R̄2, −2ε3P̄ + ε2

3 R̄3, −2ε4P̄ + ε2
4 R̄4}

Φ
ij
33 = diag{−2ε1P̄ + ε2

1 R̄1, −2ε2P̄ + ε2
2 R̄2, −2ε3P̄ + ε2

3 R̄3, −2ε4P̄ + ε2
4 R̄4}
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Φ
ij
41(1) =

⎡⎢⎣
√

τ21M̄T
ij√

dM T̄ T
ij

√
ηMW̄ T

ij

⎤⎥⎦ , Φ
ij
41(2) =

⎡⎢⎢⎣
√

τ21M̄T
ij

√
dM T̄ T

ij
√
(ηM )V̄ T

ij

⎤⎥⎥⎦ , Φ
ij
41(3) =

⎡⎢⎢⎢⎣
√

τ21M̄T
ij

√
dM S̄Tij

√
ηMW̄ T

ij

⎤⎥⎥⎥⎦ , Φ
ij
41(4) =

⎡⎢⎢⎢⎢⎣
√

τ21M̄T
ij

√
dM S̄Tij

√
ηM V̄ T

ij

⎤⎥⎥⎥⎥⎦

Φ
ij
41(5) =

⎡⎢⎢⎣
√

τ21N̄T
ij

√
dM T̄ T

ij
√

ηMW̄ T
ij

⎤⎥⎥⎦ , Φ
ij
41(6) =

⎡⎢⎢⎣
√

τ21N̄T
ij

√
dM T̄ T

ij
√

ηM V̄ T
ij

⎤⎥⎥⎦ , Φ
ij
41(7) =

⎡⎢⎢⎣
√

τ21N̄T
ij

√
dM S̄Tij

√
ηMW̄ T

ij

⎤⎥⎥⎦ , Φ
ij
41(8) =

⎡⎢⎢⎣
√

τ21N̄T
ij

√
dM T̄ T

ij
√

ηM V̄ T
ij

⎤⎥⎥⎦
M̄T

ij =
[
0 M̄T

ij2 M̄T
ij3 0 0 0 0 0 0 0

]
, N̄T

ij =
[
0 0 N̄T

ij3 N̄T
ij4 0 0 0 0 0 0

]
T̄ T
ij =

[
T̄ T
ij1 0 0 0 0 0 T̄ T

ij7 0 0 0
]
, S̄Tij =

[
0 0 0 0 0 0 S̄Tij7 S̄Tij8 0 0

]
W̄ T

ij =
[
W̄ T

ij1 0 0 0 W̄ T
ij5 0 0 0 0 0

]
, V̄ T

ij =
[
0 0 0 0 V̄ T

ij5 V̄ T
ij6 0 0 0 0

]
Φ

ij
44 = diag{−R̄1, −R̄3, −R̄4}, Φ

ij
51 =

[
ᾱΨ 0 0 0 0 0 0 0 0 0

]
Φ

ij
52 =

[
0 ᾱ

√
τ21Ψ ᾱτmΨ ᾱ

√
dMΨ ᾱ

√
ηMΨ

]
,m2 =

1
m1

Φ
ij
53 =

[
µ

√
τ21Ψ µτmΨ µ

√
dMΨ µ

√
ηMΨ

]
, n2 =

1
n1

Φ
ij
61 =

[
0 0 0 0 Ψ1 0 0 0 0 0

]
, Φ

ij
71 =

[
ᾱ1Ψ 0 0 0 0 0 0 0 0 0

]
Φ

ij
72 =

[
0 ᾱ1

√
τ21Ψ ᾱ1τmΨ ᾱ1

√
dMΨ ᾱ1

√
ηMΨ

]
Φ

ij
73 =

[
µ

√
τ21Ψ µτmΨ µ

√
dMΨ µ

√
ηMΨ

]
Φ

ij
81 =

[
0 0 0 0 0 0 Ψ1 0 H 0

]
, Ψ1 =

[
Ci 0

]
, Ψ =

[
δB̄T

fj δB̄T
fj

]
Moreover, if the conditions above are feasible, the parameter matrices of the filter are given by⎧⎨⎩

Afj = ĀfjP̄−1
3

Bfj = B̄fj

Cfj = C̄fjP̄−1
3 ,

j = 1, 2, . . . , r. (48)

Proof. First of all, there exists an equation as following

Ξ ij
= Σ ij

+ sym{HT
B ∆qHK } + sym{HT

C ∆qHJ} (49)

where

Σ ij
=

⎡⎢⎢⎢⎣
Ω

ij
11 ∗ ∗

Ω
ij
21 Ω

ij
22 ∗

Ω
ij
31 0 Ω

ij
33

Ω
ij
41(s) 0 0 Ω

ij
44

⎤⎥⎥⎥⎦ , C̆ =

[
Ci 0

]
, B̆ =

[
BfjP2
BfjP3

]

HB =
[
HB1 HB2 HB3 0 0

]
,HK =

[
HK1 HK2 0 0

]
HC =

[
HC1 HC2 HC3 0 0

]
,HJ =

[
HJ1 HJ2 0 0

]
HB1 =

[
δᾱB̆T 0 0 0 0 0 0 0 0 0

]
HB2 =

[
0 ᾱδ

√
τ21B̆T ᾱδτmB̆T ᾱδ

√
dM B̆T ᾱδ

√
ηM B̆T

]
HB3 =

[
µδ

√
τ21B̆T µδτmB̆T µδ

√
dM B̆T µδ

√
ηM B̆T 0

]
HK1 =

[
0 0 0 0 C̆ 0 0 0 0 0

]
,HK2 =

[
01×10

]
HC1 =

[
δᾱ1B̆T 0 0 0 0 0 0 0 0 0

]
HC2 =

[
0 ᾱ1δ

√
τ21B̆T ᾱ1δτmB̆T ᾱ1δ

√
dM B̆T ᾱ1δ

√
ηM B̆T

]
HC3 =

[
µδ

√
τ21B̆T µδτmB̆T µδ

√
dM B̆T µδ

√
ηM B̆T 0

]
HJ1 =

[
0 0 0 0 0 0 C̆ 0 I 0

]
,HJ2 =

[
01×10

]
By using Lemma 3, the following inequality can be acquired.

Σ ij
+ m1HT

B ∆2
qHB + m−1

1 HT
KHK + n1HT

C ∆2
qHC + n−1

1 HT
J HJ < 0 (50)
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that is

Σ ij
+ m1δ

2HT
BHB + m−1

1 HT
KHK + n1δ

2HT
CHC + n−1

1 HT
J HJ < 0 (51)

Due to (Rk − ε−1
k P)R−1

k (Rk − ε−1
k P) ≥ 0, (k = 1, 2, 3, 4), it can be obtained that −PR−1

k P ≤ −2εkP + ε2
kRk.

Apply Schur complement on inequality (51) and substitute −PR−1
k P with −2εkP + ε2

kRk into (21), then, Σ̄ ij
+ Σ̄ ji < 0 can

be derived.

Σ̄ ij
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω̃
ij
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Ω̃
ij
21 Ω̄

ij
22 ∗ ∗ ∗ ∗ ∗ ∗

Ω̃
ij
31 0 Ω

ij
33 ∗ ∗ ∗ ∗ ∗

Ω
ij
41(s) 0 0 Ω

ij
44 ∗ ∗ ∗ ∗

Ω̃
ij
51 Ω̃

ij
52 Ω̃

ij
53 0 −m2I ∗ ∗ ∗

Ω̃
ij
61 0 0 0 0 −m1I ∗ ∗

Ω̃
ij
71 Ω̃

ij
72 Ω̃

ij
73 0 0 0 −n2I ∗

Ω̃
ij
81 0 0 0 0 0 0 −n1I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (s = 1, . . . , 8)

Ω̄
ij
22 = diag{−I, −2ε1P + ε2

1R1, −2ε2P + ε2
2R2, −2ε3P + ε2

3R3, −2ε4P + ε2
4R4}

Since P̄3 > 0, there exist P2 and P3 > 0 satisfying P̄3 = P2P−1
3 PT

2 .
Define

P =

[
P1 P2
PT
2 P3

]
, J =

[
I 0
0 P2P−1

3

]
,𭟋 = diag{J, . . . , J  

8

, I, I, I, J, . . . , J  
11

, I, I, I, I}

By Schur complement, P>0 is equivalent to P1−P̄3>0.Multiply (45) by𭟋 from the left side and its transpose from the right

side, and define P̄ = JPJT =

[
P1 P̄3
P̄3 P̄3

]
, Q̄k = JQkJT , R̄k = JRkJT (k = 1, 2, 3, 4), M̄ijv1 = JMijv1JT , N̄ijv2 = JNijv2JT , T̄ijv3 = JTijv3JT ,

S̄ijv4 = JSijv4JT , W̄ijv5 = JWijv4JT , V̄ijv4 = JVijv6JT , (v1 = 2, 3; v2 = 3, 4; v3 = 1, 7; v4 = 7, 8; v5 = 1, 5; v6 = 5, 6), then, the
inequalities (44)–(46) can be derived. Define variables⎧⎨⎩

Āfj = ÂfjP̄3, Âfj = PT
2 AfjP−T

2
B̄fj = PT

2 Bfj

C̄fj = ĈfjP̄3, Ĉfj = CfjP−T
2

(52)

Based on the descriptions above, the filter parameters (Afj, Bfj, Cfj) can be substituted by (P−T
2 ÂfjPT

2 , P
−T
2 B̄fj, ĈfjPT

2 ) in (12),
then, the filter model can be rewritten as{

ẋf (t) = P−T
2 ÂfjPT

2 xf (t) + P−T
2 B̄fjŷ(t)

zf (t) = ĈfjPT
2 xf (t)

(53)

Define x̂(t) = PT
2 xf (t), then, equality (53) can be rewritten as follows.{

˙̂x(t) = Âfjx̂(t) + B̄fjŷ(t)
zf (t) = Ĉfjx̂(t)

(54)

That is (Âfj, B̄fj, Ĉfj) can be chosen as the filter parameters.

Remark4. The increasing number of variables can lead to the larger size of LMIs, furthermore, the complexity of the approach
will be added with higher number of variables and larger size of LMIs. Specifically, in this paper, Theorem 2 presents the
explicit design algorithmby using LMIs techniques. The size of LMIs can be easily calculated as (39m+5n+s)×(39m+5n+s)
(m, n and s are positive integers). Obviously, with the increase of variablesm, n and s, the size of the LMIs is enlarged, which
results in the greater complexity of the approach. The feasible solutions to LMIs in Theorem 2 is recognized to be numerically
difficult to find especially for high dimensional systems.

Remark 5. The LMIs (44)–(47) of Theorem 2 are feasible for small enough delay bounds τM , ηM and dM , small enough
quantization error ∆q and small enough trigger parameter σ . Indeed, it is more difficult to have feasible solutions if the
values of τM , ηM and dM are larger. The smaller quantization error ∆q makes the feasible solutions of LMIs in Theorem 2
easier to be found. Whether the LMIs of Theorem 2 have feasible solutions is also dependent on the trigger parameter σ in
the hybrid-triggered scheme. The frequency of data transmission is determined by σ , the larger σ is, the less data is released,
then the feasible solutions of LMIs in Theorem 2 are harder to find.
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4. Simulation examples

In this section, a numerical simulation and a physical example are given to demonstrate the effectiveness of designed
filter.

Example 1. Consider the following T–S fuzzy system.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

2∑
i=1

hi(θ (t))Aix(t) +

2∑
i=1

hi(θ (t))Adix(t − τ (t)) +

2∑
i=1

hi(θ (t))Aωiω(t)

y(t) =

2∑
i=1

hi(θ (t))Cix(t)

z(t) =

2∑
i=1

hi(θ (t))Lix(t)

where

A1 =

[
−2.1 0.1
1 −2

]
, A2 =

[
−1.9 0
−0.2 −1.1

]
, Ad1 =

[
−1.1 0.1
−0.8 −0.9

]
, Ad2 =

[
−0.9 0
−1.1 −1.2

]
Aω1 =

[
1

−0.2

]
, Aω2 =

[
0.3
0.1

]
, C1 =

[
1 0

]
, C2 =

[
0.5 −0.6

]
, L1 =

[
1 −0.5

]
L2 =

[
−0.2 0.3

]
, h1(θ (t)) = sin2t, h2(θ (t)) = cos2t, ω(t) =

⎧⎨⎩
1, 5 ≤ t ≤ 10
−1, 15 ≤ t ≤ 20
0, else

Choose the initial condition x(0) =
[
1 −1

]T , xf (0) =
[
0.8 −0.8

]T , sampling period h = 0.1. In this section, three
cases are discussed to demonstrate the effectiveness of designed filter.

Case 1. When the system is under a non-ideal networked environment, the time-triggered scheme is adopted for data
transmission. Let ᾱ = 1, τm = 0.1, τM = 0.4, dM = 0.3, ηM = 0.2, γ = 1.2, δ = 0.818, ϖ1 = ϖ2 = 0.2. By using
LMI toolbox in MATLAB, then, the corresponding trigger matrix Ω = 16.8250 and the following matrices can be derived as
follows.

P1 =

[
1.0614 0.1913
0.1913 1.8360

]
, P̄3 =

[
0.6973 0.0552
0.0552 0.9435

]
, Āf 1 =

[
−0.8859 −0.0896
0.4625 −1.2873

]
, B̄f 1 =

[
0.0799

−0.2247

]
C̄f 1 =

[
−0.7631 0.2665

]
, Āf 2 =

[
−1.0673 −0.0159
−0.2394 −1.0438

]
, B̄f 2 =

[
−0.0573
0.1964

]
, C̄f 2 =

[
0.1882 −0.0751

]
With the application of the filter design method developed in Theorem 2, the filter parameters are obtained as

Af 1 =

[
−1.2689 0.0206
0.7750 −1.4097

]
, Bf 1 =

[
0.0799

−0.2247

]
, Cf 1 =

[
−1.1220 0.3481

]
Af 2 =

[
−1.5365 −0.0731
−0.2569 −1.0912

]
, Bf 2 =

[
0.0573
0.1964

]
, Cf 2 =

[
0.2688 −0.0953

]
From Figs. 2 and 3, one can see that system (14) with quantization can stay stable under the time-triggered scheme.

Case 2. Suppose that the event-triggered scheme is chosen for data transmission. Set ᾱ = 0 and trigger parameter σ = 0.9,
τm = 0.1, τM = 0.4, dM = 0.3, gM = 0.2, γ = 1.2, δ = 0.818, ϖ1 = ϖ2 = 0.2, we can get the corresponding trigger matrix
Ω = 0.1130 and the following matrices by using MATLAB.

P1 =

[
1.0301 0.1654
0.1654 1.7212

]
, P̄3 =

[
0.6831 0.0447
0.0447 0.8984

]
, Āf 1 =

[
−0.9023 −0.0718
0.4923 −1.2508

]
, B̄f 1 =

[
0.0189

−0.0653

]
C̄f 1 =

[
−0.7950 0.2612

]
, Āf 2 =

[
−1.0654 0.0110
−0.2479 −0.9920

]
, B̄f 2 =

[
0.0002
0.0238

]
, C̄f 2 =

[
0.1868 −0.0747

]
By applying equality (48) in Theorem 2, the filter parameters can be derived as follows.

Af 1 =

[
−1.3199 −0.0143
0.8143 −1.4328

]
, Bf 1 =

[
0.0189

−0.0653

]
, Cf 1 =

[
−1.1866 0.3498

]
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Fig. 2. Response of e(t) in Case 1.

Fig. 3. Response of z̃(t) in Case 1.

Fig. 4. Response of e(t) in Case 2.

Af 2 =

[
−1.5655 0.0900
−0.2916 −1.0897

]
, Bf 2 =

[
0.0002
0.0238

]
, Cf 2 =

[
0.2797 −0.0971

]
From Figs. 4–6, it is easy to get that the system (14) can stay stable under the event-triggered scheme and quantization.

Case 3. When the hybrid-driven scheme is applied, set ᾱ = 0.5 and trigger parameter σ = 0.9, τm = 0.1, τM = 0.4,
dM = 0.3, gM = 0.2, γ = 1.2, δ = 0.818, ϖ1 = ϖ2 = 0.2. By applying MATLAB, the related trigger matrix Ω = 0.0908 and
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Fig. 5. Response of z̃(t) in Case 2.

Fig. 6. Event-triggered release instants and intervals in Case 2.

the matrices can be obtained as follows.

P1 =

[
1.0316 0.1675
0.1675 1.7288

]
, P̄3 =

[
0.6869 0.0466
0.0466 0.9082

]
, Āf 1 =

[
−0.9111 −0.0751
0.5181 −1.2690

]
, B̄f 1 =

[
0.0316

−0.0846

]
C̄f 1 =

[
−0.7974 0.2592

]
, Āf 2 =

[
−1.0812 0.0133
−0.2510 −1.0082

]
, B̄f 2 =

[
0.0004
0.0330

]
, C̄f 2 =

[
0.1877 −0.0747

]
The filter parameters can be obtained by using the design algorithm (48) in Theorem 2.

Af 1 =

[
−1.3254 −0.0146
0.8521 −1.4411

]
, Bf 1 =

[
0.0316

−0.0846

]
, Cf 1 =

[
−1.1845 0.3463

]
Af 2 =

[
−1.5805 0.0959
−0.2911 −1.0951

]
, Bf 2 =

[
0.0004
0.0330

]
, Cf 2 =

[
0.2798 −0.0967

]
Based on Figs. 7 and 8, one can see that H∞ filter error system (14) can stay stable with the hybrid-driven scheme and

quantization.
According to Cases 1–3 illustrated above, Fig. 6 depicts the event-triggered release instants and intervals, and response

of z̃(t) under three different schemes are represented in Figs. 3, 5 and 8, respectively. The simulation results of discussed
T–S fuzzy systemwith hybrid-driven scheme and quantization are shown in Figs. 2, 4 and 7 which demonstrate the stability
of the filter error system (14). In other words, the burden of networked transmission can be effectively mitigated with the
hybrid-driven strategy and the feasibility of the designed filter is illustrated.

Example 2. Consider a tunnel diode circuit in [44], which can be shown as follows.⎧⎪⎨⎪⎩
C v̇c(t) = −0.002vc(t) − 0.01vc(t)3 + iL(t)

y(t) = vc(t)

Li̇L(t) = −vc(t) − RiL(t) + w(t)
(55)
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Fig. 7. Response of e(t) in Case 3.

Fig. 8. Response of z̃(t) in Case 3.

where vc(t) represents the voltage of the capacitor, iL(t) represents the current of the inductor, w(t) represents the
disturbance, y(t) represents the sampled-data measurement output. Set the parameters of the capacitor, inductor and
resistance C = 20 mF, L = 1000 mH and R = 10 �, respectively.

Suppose that vc(t) ∈ [−3, 3], the tunnel diode circuit can be represented in the T–S fuzzy system with x(t) =

[x1(t) x2(t)]T = [vc(t) iL(t)]T and z(t) = x1(t).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

2∑
i=1

hi(θ (t))(Aix(t) + Awi(t))

y(t) =

2∑
i=1

hi(θ (t))Cix(t)

z(t) =

2∑
i=1

hi(θ (t))Lix(t)

(56)

where

A1 =

[
−0.1 50
−1 −10

]
, A2 =

[
−4.6 50
−1 −10

]
, Ad1 = Ad2 =

[
0 0
0 0

]
, Aw1 = Aw2 =

[
0
1

]
C1 = C2 =

[
1 0

]
, L1 = L2 =

[
1 0

]
, h1(θ (t)) = sin2t, h2(θ (t)) = cos2t

ω(t) =

⎧⎨⎩
1, 5 ≤ t ≤ 10
−1, 15 ≤ t ≤ 20
0, else

Set ᾱ = 0.1 and triggered parameter σ = 0.9, the system (56) is under the environment with hybrid-driven scheme. Let
τm = 0.1, τM = 0.5, dM = 0.5, gM = 0.2, γ = 1.2, δ = 0.818, ϖ1 = ϖ2 = 0.2, then we can obtain the corresponding trigger
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Fig. 9. Response of e(t) in Example 2.

Fig. 10. Response of z̃(t) in Example 2.

matrix Ω = 0.0022 and the following matrices with the application of MATLAB.

P1 =

[
0.2594 0.7660
0.7660 9.3286

]
, P̄3 =

[
0.2147 0.6856
0.6856 8.5573

]
, Āf 1 =

[
−0.7017 3.9675
−7.1019 −49.0094

]
, B̄f 1 =

[
−0.0016
0.0046

]
C̄f 1 =

[
−0.9523 −0.4430

]
, Āf 2 =

[
−1.8638 3.3209
−10.3430 −48.8191

]
, B̄f 2 =

[
0.0003
0.0058

]
, C̄f 2 =

[
−0.8825 −0.1394

]
By using the filter design method developed in Theorem 2, the filter parameters for the tunnel diode circuit can be

obtained as

Af 1 =

[
−6.3805 0.9749
−19.8689 −4.1352

]
, Bf 1 =

[
−0.0016
0.0046

]
, Cf 1 =

[
−5.7372 0.4079

]
Af 2 =

[
−13.3286 1.4560
−40.2472 −2.4802

]
, Bf 2 =

[
0.0003
0.0058

]
, Cf 2 =

[
−5.4527 0.4206

]
When keeping all the other parameters at their default values, it can be obtained that the maximum value τM = 0.5211

and the minimum value of interference parameter γ = 1.2 by different trials. The simulation results for the tunnel diode
circuit which is approximate by T–S fuzzy model are shown in Figs. 9 and 10. According to Fig. 9, one can see that the
system can be stable under the hybrid-driven scheme and Fig. 10 shows the response of z̃(t). Therefore, the physical example
illustrates the validity of the desired filter.

5. Conclusion

This paper investigates the problem of filter design for T–S fuzzy systems with hybrid-driven scheme and quantization.
A mathematical model of filter error system is constructed by considering the influence of hybrid-driven scheme and
quantization, which can alleviate the burden of networked transmission and improve the efficiency of data communication.



J. Liu et al. / Nonlinear Analysis: Hybrid Systems 31 (2019) 135–152 151

By using Lyapunov functional approach and LMI techniques, sufficient conditions are derived to guarantee the stability of
system and explicit parameters of desired filter are obtained. Finally, illustrative examples are given to demonstrate the
usefulness of desired H∞ filter.
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