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Abstract 

This paper focuses on the design of H ∞ 

filter for a class of discrete-time networked systems. Given 
that the network communication resources are becoming limited with the ever-increasing network traffic, 
an adaptive event-triggered mechanism (AETM) is adopted for the systems to mitigate the pressure of 
network bandwidth. The considered discrete-time networked systems are envisioned to suffer from both 
Deception attacks and denial-of-service (DoS) attacks, thereby a novel hybrid cyber attacks model 
is firstly constructed to integrate the two kinds of attacks. Then, a filtering error system model is 
established for the discrete-time networked systems under AETM and hybrid cyber attacks. Based 
on the constructed model, the sufficient conditions that guaranteeing the asymptotic stability and H ∞ 

performance of the concerned filtering error system are analyzed based on Lyapunov–Krasovskii stability 
theory. Furthermore, the corresponding parameters of the designed filter are derived by solving a set 
of linear matrix inequalities (LMIs). The effectiveness of the designed filter is finally demonstrated by 
conducting a numerical example. 
© 2021 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Over the past few decades, the filtering issue plays an important role in networked control
eld and thus attracts persistent research attentions. Up to now, fruitful results on the issue
ave been presented in literatures [1–7] . To specifically mention a few, the authors in Gu
t al. [1] solved the filtering problem over a class of interconnected systems; focusing on T-S
uzzy systems, the robust filter design problem was tackled in Shi et al. [3] ; by taking input
onstraints and network anomaly into considerations, the authors in Liu et al. [4] proposed an
ffective filtering method for networked control systems. The aforementioned works were all
onducted based on continuous-time model. However, given that continuous-time systems tend
o be digitally implemented in practice [8] , the filtering problem on discrete-time networked
ystems is gaining rapid research concerns (see [2,9–12] ). For instance, a Kalman filtering
pproach was proposed in Zhong and Liu [9] to realize intermittent observations for wireless
ensor networks. Nevertheless, Kalman filtering always assumes that the spectral densities
f external noise are known in advance to minimize the estimation error, which is hardly
o be achieved [11] . Accordingly, many new filtering schemes, such as H 2 filtering and H ∞
ltering, are exploited to deal with system uncertainties. Comparing with H 2 filtering, H ∞
ltering is more applicable since that it is not necessary to predetermine the attenuation level
f the envisioned filter but which is needed for H 2 filtering. Therefore, this paper will focus
n designing H ∞ 

filter for discrete-time networked systems. 
While designing an effective filter, the mismatch between the ever-increasing volume of

ystem data and the limited bandwidth capacity of communication network brings significant
hallenges. In view of this, many triggered mechanisms have been investigated to reduce
he transmission of sampling signals, and guarantee the system performance [13–18] . Among
hich, time-triggered schemes where the sampled data is periodically transmitted are com-
only used in the early stage. However, when the system is stable, which means that the

urrent sampling data is almost same with the latest transmitted data, time-triggered meth-
ds will result in a lot of redundant traffic. Thus, event-triggered schemes are consequently
roposed with the aim to avoid unnecessary signal transportation [19–25] . Among these liter-
tures, the event-triggered mechanism presented in Yue et al. [23] attracts wide attentions, in
hich whether the current sampling data is released was determined by a predefined thresh-
ld. Based on [23] , many kinds of event-triggered methods are designed for various systems
nd applications. For instance, to handle the synchronization problem of neural networks, the
uthors in Yan et al. [21] employed an event-triggered scheme with a constant parameter to
ontrol the rate of data transmission; for state-dependent uncertain systems, a fixed-parameter-
ased event-triggered method was used to reduce the bandwidth pressure on communication
etwork in Liu et al. [22] . But it is hard to give an appropriate constant triggering threshold
onsidering the fluctuation of system status. Therefore, adaptive event-triggered mechanisms
AETMs) where the triggering threshold is dynamically adjusted during the system operations
re consequently proposed [26–32] . For example, the authors in Gu et al. [26] designed a
ovel AETM for nonlinear networked interconnected control systems; in Peng et al. [28] ,
nother AETM was presented to save network bandwidth for network-based power systems.
iven the good adaptability of AETMs to the changes of system states, this paper will in-

roduce an AETM into the design of filter for discrete-time networked systems to respond to
he limited network bandwidth. 

In networked systems, besides of the limited network resources, the system performance
s also affected by various of cyber attacks given the openness of communication networks.
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t  
he randomly occurring attacks can interrupt the data transmission, destroy the stability or
ven availability of networked systems. Such security issue inevitably increases the complex-
ty of handling filtering problem. In the existed studies, a lot of concerns are concentrated
n two typical attacks, i.e., denial-of-service (DoS) attacks [33–35] and Deception attacks
36–39] . DoS attacks suspend the regular signal transmission by exhausting network resources.
aking DoS attacks into considerations, the distributed resilient filtering problem for a class
f power systems was addressed in Chen et al. [33] . For nonlinear stochastic systems with
oS attacks, the distributed filtering problem based on probabilistic constraints was investi-
ated in Tian et al. [34] . Deception attacks degrade the system performance by injecting fake
nformation into the network. With Deception attacks, the filtering problem over stochastic
onlinear time-varying complex networks was studied in Shen et al. [36] . The authors in Xiao
t al. [37] designed a distributed finite-time filter for discrete-time networked systems with
eception attacks. In practice, DoS attacks and Deception attacks may be launched simul-

aneously, which will result in more severe damage of networked systems. Thus, the hybrid
oS and Deception attacks are considered in this paper. 
On the basis of the above investigations, this paper dedicates to design an effective H ∞ 

filter
or discrete-time networked systems with AETM and hybrid cyber attacks. To the best of our
nowledge, none of the existed researches studies the H ∞ 

filtering problem over discrete-time
etworked systems under the limited bandwidth and hybrid cyber attacks scenario. Meanwhile,
he main contributions of this paper are listed as below: 

• In order to save limited network resources, an AETM is applied into the considered
discrete-time networked systems to adaptively reduce redundant data transmission. 
• Based on the employed AETM, a filtering error system model is established under the

hybrid cyber attacks scenario. 
• By recurring to Lyapunov stability theory and linear matrix inequalities (LMIs) technology,

a H ∞ 

filter with guaranteed stability is designed for the formulated filtering error system.

The remaining parts of this paper are organized as follows. The mathematical model of
ltering error system under the AETM and hybrid cyber attacks scenario is established in
ection 2 . The sufficient conditions that guaranteeing the asymptotic stability of the filtering
rror system are derived and the algorithm designing parameters of the filter is obtained in
ection 3 . In Section 4 , the effectiveness of the work is verified via a simulated example. 

Notation: In this paper, R 

m , R 

n , R 

p , R 

q and R 

l are used to denote the Euclidean space
ith appropriate dimensions, and N is the set of all non-negative integers. 0 represents matrix
f compatible dimensions zero. The symbol ‖ . ‖ means the Euclidean norm. The superscript T 
epresents matrix transposition and the asterisk ∗ in a matrix stands for the term induced by
ummery. I refers to the identity matrix with appropriate dimensions. L 2 [0, ∞ ) is the space
f square summable vector-valued functions. Matrices, if not specified explicitly, are assumed
o have compatible dimensions. P r{ . } represents the probability. 

. System model and problem formulation 

Given that the H ∞ 

filtering problem over discrete-time networked systems is exploited in
his paper, the considered networked linear system model with discrete-time is firstly given
9327 
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Fig. 1. The framework of discrete-time networked systems with AETM and hybrid cyber attacks. 
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x(k + 1) = Ax(k) + Bw(k) , 

y(k) = Cx(k) + Dv(k) , 

z(k) = L x (k) . 

(1)

In Eq. (1) , x(k) ∈ R 

m , y(k) ∈ R 

n and z(k) ∈ R 

p are the system state, measured output
nd estimated signal, respectively; w(k) ∈ R 

l and v(k) ∈ R 

q are the disturbance input and
easurable outside noise, and both of them belong to L 2 [0, ∞ ) . A , B, C, D, L are known

onstant matrices with appropriate dimensions. 
Based on the above system model, the framework of the envisioned discrete-time net-

orked systems with AETM and hybrid cyber attacks is then presented in Fig. 1 . As shown,
hether the signal sent out by the sensor, i.e., y(k) , is released is determined by the AETM.
onsidering that the released data is transferred through the communication network, which

s assumed to suffer from Deception attacks, DoS attacks and the zero-order-holder (ZOH),
he ˆ y (k) is used to indicate the signal that finally arrived at the filter, the specific constitution
f which will be introduced shortly. 

According to the framework, the filter to be designed in this paper can be given as: 

x f (k + 1) = A f x f (k) + B f ˆ y (k) , 

z f (k) = C f x f (k) , 
(2)

here, x f (k) ∈ R 

m and z f (k) ∈ R 

p are the state and output of the filter; A f , B f , C f are the
ltering parameters which will be designed later. 

.1. Adaptive event-triggered mechanism 

In the progress of designing an effective filter, an AETM is adopted to relieve data trans-
ission pressure of communication network. Let k 0 ≤ k 1 ≤ . . . ≤ k s ≤ . . . be the sequence of

he triggered instants, then the next trigging instant can be depicted as: 

 s+1 = k s + min 

i∈ N 

{
i | 1 

θ
q(k) + σy T (k s + i) y(k s + i) − φT (k) φ(k) ≤ 0 

}
. (3)
9328 
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In Eq. (3) , θ and σ are the given positive scalars; φ(k) = y(k s ) − y(k s + i) , y(k s ) and
(k s + i) are the measurable outputs at the latest triggered instant k s and the current sampling
nstant k s + i, respectively; q(k) is the triggering threshold, which satisfies adaptive control
aw as follows: 

(k + 1) = λq(k) + σy T (k s + i) y(k s + i) − φT (k ) φ(k ) . (4)

here λ ∈ (0, 1) is a given constant and q(0) ≥ 0 denotes the initial condition. 

emark 1. Inspired by Li et al. [40] , an AETM is adopted into the design of filter for discrete-
ime networked linear systems in this paper. Noting that the threshold q(k) of AETM Eq. (3) is
 dynamic parameter, which is adaptively adjusted according to the adaptive control law
q. (4) . Meanwhile, the AETM Eq. (3) , in which the triggering condition changes depending
n the states of system, shows the advantage on adaptively reducing the transmission of
edundant data. 

emark 2. During data transmission, if the triggering condition Eq. (3) is satisfied, the new
easurable signal y(k s + i) will be released into the communication network by the sensor,

nd vice versa. It is also would like to note that if θ → + ∞ , the AETM will reduce to a
tatic event-triggered mechanism, i.e., 

 s+1 = k s + min 

i∈ N 
{
i | σy T (k s + i) y(k s + i) − φT (k) φ(k) ≤ 0 

}
. (5)

.2. Hybrid cyber attacks modeling 

Before modeling the hybrid cyber attacks occurred in the communication network, the
etwork-induced delay is firstly investigated. Similar to Yue et al. [23] , the time interval
 k s + τk s , k s+1 + τk s+1 ) can be divided into n + 1 ( n = k s+1 − k s − 1 ) subintervals: 

 k s + τk s , k s+1 + τk s+1 ) = ∪ 

n 
m=0 W 

k s 
m 

. (6)

here τk s ∈ [ 0, τM 

] is the network-induced delay of y(k s ) and W 

k s 
m 

= [ k s + m + τk s + m 

, k s +
 + 1 + τk s + m+1 ) . 
Defining d(k) = k − k s − m ( k ∈ W 

k s 
m 

), then it can be obtained: 

 ≤ d(k) ≤ τM 

+ 1 = d M 

. (7)

By introducing d(k) , the transmitted signal under network-induced delay can be denoted
s: 

˜  (k) = y(k − d(k)) + φ(k) . (8)

Based on Eq. (8) , we then try to model the considered hybrid cyber attacks, where the
eception attacks are always assumed to be launched before the DoS attacks. Under the
eception attacks, the real measurement signal, denoted by y̌ (k) , can be defined as: 

ˇ (k) = (1 − ρk ) ̃  y (k) + ρk h( ̃  y (k)) . (9)

here, ρk is a Bernoulli distributed white sequence used to represent the probability of the
eception attacks occurrence, it takes values on { 0, 1 } , i.e., ρk = 1 indicates that the Deception

ttacks occur in the network and vice versa. The probability distribution of ρk satisfies P r{ ρk =
 } = ρ̄ and P r{ ρk = 0} = 1 − ρ̄ (0 ≤ ρ̄ ≤ 1) ; h( ̃  y (k)) is the false data while the Deception
ttacks appear and it follows: 

 

T ( ̃  y (k)) h( ̃  y (k)) ≤ ˜ y T (k) G 

T G ̃  y (k) , (10)
9329 
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n which G is a given constant matrix with appropriate dimension. 
By further considering the DoS attacks and ZOH, the signal arrived at the filter, i.e., ˆ y (k) ,

an be given as: 

ˆ  (k) = (1 − r k ) ̌y (k) = (1 − r k ) 
[
(1 − ρk ) ̃  y (k) + ρk h( ̃  y (k)) 

]
. (11)

Similar to ρk in the Deception attacks Eq. (9) , r k in Eq. (11) is a random variable satisfying
ernoulli distribution, which is used to denote the probability of the DoS attacks occurrence.

t takes values in the set { 0, 1 } , i.e., r k = 1 indicates that the DoS attacks occur in the
etwork and vice versa. Besides, the probability distribution of r k satisfies P r{ r k = 1 } = r̄
nd P r{ r k = 0} = 1 − r̄ (0 ≤ r̄ ≤ 1) . 

Specially, in practical systems, the attacks may be launched by different adversaries, and
ne attacker generally does not know the existence of the other attackers. In view of this, we
o not consider the influence of one type of attacks on the other type of attacks in this study.

emark 3. Comparing with the single type of attacks, i.e., DoS attacks or Deception attacks,
he considered hybrid cyber attacks will inevitably complicate the control of the envisioned
ystem given that the system may be affected by different types of attacks at different instants.
hen, the filtering methods focused on the single type of attacks will become inefficient, which

mpels the research of filtering strategy under the hybrid cyber attacks. 

emark 4. Deception attacks are a type of integrity attacks that can pass detectors. Thus,
any researches have been presented to design effective detectors so as to identify or defense

arious forms of Deception attacks [41,42] . Although the Deception attacks are also considered
n this study, but we follow a different research route that to design effective control strategy
o as to guarantee the stability of the envisioned system compromised by the Deception
ttacks. 

emark 5. In practical systems, the specific order of cyber attacks occurrence is unknown
n advance. In this paper, it is assumed that the hybrid cyber attacks occur in the following
rder: the Deception attacks → the DoS attacks. By simply extending the above proposed
odeling approach, the hybrid cyber attacks model can also be designed for the circumstance

hat the DoS attacks occur before the Deception attacks. 

emark 6. In Eq. (11) , the hybrid cyber attacks are depicted by two random variables, i.e.,
k and r k , ρk = 1 and r k = 1 indicate that both of the Deception attacks and DoS attacks are

aunched by hackers relatively, ρk = 0 and r k = 0 represent that the communication network
s secure without danger of attacks, ρk = 1 and r k = 0 (ρk = 0 and r k = 1) denote that only
he Deception attacks (the DoS attacks) occur in the network. 

.3. Formulation of the filtering error system 

Let ξ (k) = 

[
x T (k) x T f (k) 

]T 
, e (k) = z(k) − z f (k) , then the filtering error system resulting

rom Eqs. (1) , (2), (3), (8) and (11) can be formulated as: 

ξ (k + 1) = Ā ξ (k) + B̄ ξ (k − d(k)) + C̄ ˆ w (k) + D̄ 1 φ(k) + D̄ 2 h(k) , 

e (k) = Ē ξ (k) , 
(12)

here, 

Ā = 

[
A 0 

0 A f 

]
, B̄ = 

[
0 0 

(1 − r k )(1 − ρk ) B f C 0 

]
, C̄ = 

[
B 0 

0 (1 − r k )(1 − ρk ) B f D 

]
, 
9330 
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ˆ  (k) = 

[
w(k) 

v(k − d(k)) 

]
, D̄ 1 = 

[
0 

(1 − r k )(1 − ρk ) B f 

]
, D̄ 2 = 

[
0 

ρk (1 − r k ) B f 

]
, 

Ē = 

[
L −C f 

]
, h(k) = h(y(k − d(k)) + φ(k)) . 

For easy description, define y(k − d(k)) = F̄ 1 ξ (k − d(k)) + F̄ 2 ˆ w (t ) , where F̄ 1 = 

[
C 0 

]
nd F̄ 2 = 

[
0 D 

]
. 

Before giving the main results derived in this study, the following definition and lemmas
hould be firstly introduced. 

efinition 1 [43] . Let γ > 0 be a given attenuation level, then for all nonzero ˆ w (k) ∈
 2 [0, ∞ ) , the filtering error system Eq. (12) is asymptotic stable and the H ∞ 

performance is
uaranteed only when e (k) and ˆ w (k) satisfy: 

+ ∞ 

 

k=0 

E 

{‖ e (k) ‖ 2 } ≤ γ 2 
+ ∞ ∑ 

k=0 

E 

{‖ ̂  w (k) ‖ 2 }. (13)

emma 1 [44] . For any scalars x, y ∈ R 

n and positive definite matrix Z ∈ R 

n×n , it can be
btained that: 

x T y ≤ x T Z x + y T Z 

−1 y. (14)

emma 2 [43] . For given matrices 
, 
1 , 
2 with appropriate dimensions and τ (k) ∈
 τ1 , τ2 ] , (τ (k) − τ1 )
1 + (τ2 − τ (k))
2 + 
 < 0 holds only while: 

(τ2 − τ1 )
1 + 
 < 0, 

(τ2 − τ1 )
2 + 
 < 0. 
(15)

. Main results 

The main results of this paper are presented in form of two theorems in this section with
heir corresponding proofs. By using Lyapunov–Krasovskii stability theory and LMI tech-
iques, the sufficient conditions guaranteeing the asymptotic stability of the filtering error
ystem Eq. (12) and the algorithm designing parameters of filter will be obtained in Theo-
ems 1 and 2 , respectively. 

.1. Stability and H ∞ 

performance analysis 

heorem 1. For given scalars θ , σ , λ, r̄ , ρ̄, d M 

, γ and matrices A f , B f , C f , if there exist pos-
tive definite matrices P , Q, R and free weighting matrices M, N with appropriate dimensions
uch that the following matrices inequalities: 
 

 

 

 

 

 

 

 

 

 

�11 (∗) (∗) (∗) (∗) (∗) (∗) 

�21 (s) −R (∗) (∗) (∗) (∗) (∗) 

�31 0 −P (∗) (∗) (∗) (∗) 

�41 0 0 −R (∗) (∗) (∗) 

�51 0 0 0 −bI (∗) (∗) 

�61 0 0 0 0 −I (∗) 

�71 0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0, s = 1 , 2, (16)
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w

d

N

hold, in which, 

 = 1 + 

1 

θ
− λ, b = 

1 

(1 + 

1 
θ

− λ) σ
, c = 

√ 

d M 

+ 1 , 

11 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−P + Q + N 1 + N 

T 
1 (∗) (∗) (∗) (∗) (∗) 

N 2 − N 

T 
1 + M 

T 
1 −N 2 − N 

T 
2 + M 2 + M 

T 
2 (∗) (∗) (∗) (∗) 

N 3 − M 

T 
1 −N 3 + M 3 − M 

T 
2 −Q − M 3 − M 

T 
3 (∗) (∗) (∗) 

0 0 0 −γ 2 I (∗) (∗) 

0 0 0 0 −aI (∗) 

0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

21 (1) = 

[√ 

d M 

N 

T 
1 

√ 

d M 

N 

T 
2 

√ 

d M 

N 

T 
2 0 0 0 

]
, 

21 (2) = 

[√ 

d M 

M 

T 
1 

√ 

d M 

M 

T 
2 

√ 

d M 

M 

T 
3 0 0 0 

]
, 

41 = 

[
c(R ̄A − R) cR ̄B 0 cR ̄C cR ̄D 1 cR ̄D 2 

]
, 

31 = 

[
P Ā P B̄ 0 P C̄ P D̄ 1 P D̄ 2 

]
, 

51 = 

[
0 F̄ 1 0 F̄ 2 0 0 

]
, �61 = 

[
0 G ̄F 1 0 G ̄F 2 G 0 

]
, 

71 = 

[
Ē 0 0 0 0 0 

]
, 

hen the augmented filtering error system Eq. (12) is asymptotic stable and satisfies the H ∞
erformance under zero initial condition. 

roof. Constructing the following Lyapunov function: 

 (k) = 

4 ∑ 

i=1 

V i (k) , (17)

ith 

 

 

 

 

 

 

 

V 1 (k) = ξT (k ) P ξ (k ) , 
V 2 (k) = 

∑ k−1 
s= k−d M 

ξT (s) Qξ (s) , 
V 3 (k) = 

∑ −1 
s= −d M 

∑ k−1 
l= k+ s δ

T (l ) Rδ(l ) , 
V 4 (k) = 

1 
θ
q(k) , 

(18)

here δ(l ) = ξ (l + 1) − ξ (l ) . Then, taking derivative of V i (k) , it can be gotten: 
 

 

 

 

 

 

 

� V 1 (k) = ξT (k + 1) P ξ (k + 1) − ξT (k ) P ξ (k ) , 
� V 2 (k) = ξT (k ) Qξ (k ) − ξT (k − d M 

) Qξ (k − d M 

) , 

� V 3 (k) = (d M 

+ 1) δT (k ) Rδ(k ) − ∑ k 
l= k−d M 

δT (l ) Rδ(l ) , 
� V 4 (k) = 

1 
θ
(q(k + 1) − q(k)) . 

(19)

For � V 3 (k) , adopting the free weighting matrix method [45,46] , it is clear that: 

� V 3 (k) = (d M 

+ 1) δT (k) Rδ(k) − ∑ k 
l= k−d M 

δT (l ) Rδ(l ) + ϒ1 + ϒ2 , (20)

here ϒ1 = 2ηT (k) N 

[ 
ξ (k) − ξ (k − d(k)) − ∑ k 

j= k −d(k ) δ( j) 
] 

= 0, ϒ2 = 2ηT (k) M 

[ 
ξ (k −

(k)) − ξ (k − d M 

) − ∑ k −d(k ) 
k−d M 

δ( j) 
] 

= 0, ηT (k) = 

[ 
ξ (k) ξ (k − d(k)) ξ (k − d M 

) 
] 

T , 

 = 

[ 
N 1 N 2 N 3 

] 
, M = 

[ 
M 1 M 2 M 3 

] 
. 
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According to Lemma 1 , it can be obtained that: 
 

−2ηT (k) N 

∑ k 
j= k −d(k ) δ( j) ≤ d( k) ηT ( k) N R 

−1 N 

T η(k) + 

∑ k 
j= k −d(k ) δ

T ( j) Rδ( j) , 

−2ηT (k) M 

∑ k −d(k ) 
j= k−d M 

δ( j) ≤ ( d M 

− d( k)) ηT ( k) M R 

−1 M 

T η(k) + 

∑ k −d(k ) 
j= k−d M 

δT ( j) Rδ( j) . 

(21)

Thus, combining Eqs. (20) and (21) , it is obvious that: 

 V 3 (k) ≤(d M 

+ 1) δT (k) Rδ(k) + 2ηT (k) N [ ξ (k) − ξ (k − d(k)) ] 

+ 2ηT (k) M [ ξ (k − d(k)) − ξ (k − d M 

) ] 

+ d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) . (22)

For � V 4 (k) , based on the introduced AETM Eq. (5) and adaptive control law Eq. (4) , we
ave: 

 V 4 (k) = 

1 

θ
(λq(k) + σy T (k − d(k)) y(k − d(k)) − φT (k ) φ(k ) − q(k)) 

= 

1 

θ
(λ − 1) q(k) + 

1 

θ
(σy T (k − d(k)) y(k − d(k)) − φT (k ) φ(k )) 

≤(λ − 1)(φT (k ) φ(k ) − σy T (k − d(k)) y(k − d(k))) 

+ 

1 

θ
(σy T (k − d(k)) y(k − d(k)) − φT (k) φ(k)) 

≤(λ − 1 − 1 

θ
) φT (k ) φ(k ) − (λ − 1 − 1 

θ
) σy T (k − d(k)) y(k − d(k)) . (23)

Based on Eqs. (17) , (19), (22), (23) and (10) , it is obtained: 

 {� V (k) } = 

4 ∑ 

i=1 

E {� V i (k) } 

≤E { ξT (k + 1) P ξ (k + 1) − ξT (k) P ξ (k) + ξT (k) Qξ (k) + (d M 

+ 1) δT (k ) Rδ(k ) 

− ξT (k − d M 

) Qξ (k − d M 

) + 2ηT (k ) N [ ξ (k ) − ξ (k − d(k)) ] 

+ 2ηT (k) M [ ξ (k − d(k)) − ξ (k − d M 

) ] + d(k) ηT (k) N R 

−1 N 

T η(k) 

+ (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) + (λ − 1 − 1 

θ
) φT (k ) φ(k ) 

− (λ − 1 − 1 

θ
) σy T (k − d(k)) y(k − d(k)) 

− h 

T (y(k − d(k)) + φ(k)) h(y(k − d(k)) + φ(k)) 

+ 

[
y(k − d(k)) + φ(k) 

]T 
G 

T G 

[
y(k − d(k)) + φ(k) 

]} 
= E { ζ T (k)�1 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) } , 
(24)

here ζ T (k) = 

[
ξ (k) ξ (k − d(k)) ξ (k − d M 

) ˆ w (k) φ(k) h(k) 
]T 

, 

1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

�11 (∗) (∗) (∗) (∗) 

�31 −P (∗) (∗) (∗) 

�41 0 −R (∗) (∗) 

�51 0 0 −bI (∗) 

�61 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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i

T

E

 

w

�

S

 

w

≤

 

≤

n which, 

�11 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−P + Q + N 1 + N 

T 
1 (∗) (∗) (∗) (∗) (∗) 

N 2 − N 

T 
1 + M 

T 
1 −N 2 − N 

T 
2 + M 2 + M 

T 
2 (∗) (∗) (∗) (∗) 

N 3 − M 

T 
1 −N 3 + M 3 − M 

T 
2 −Q − M 3 − M 

T 
3 (∗) (∗) (∗) 

0 0 0 0 (∗) (∗) 

0 0 0 0 −aI (∗) 

0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

hen the E {� V (k) } can be rewritten as: 

 {� V (k) } = E 

{� V (k) + e T (k ) e (k ) − γ 2 ˆ w 

T (k ) ̂  w (k ) 
} − E 

{
e T (k) e (k) − γ 2 ˆ w 

T (k) ̂  w (k) 
}

≤ E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}

− E 

{
e T (k) e (k) − γ 2 ˆ w 

T (k) ̂  w (k) 
}
, (25)

here, 

2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�11 (∗) (∗) (∗) (∗) (∗) 

�31 −P (∗) (∗) (∗) (∗) 

�41 0 −R (∗) (∗) (∗) 

�51 0 0 −bI (∗) (∗) 

�61 0 0 0 −I (∗) 

�71 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. 

o, for k ∈ [0, T ] , it can be obtained that: 
T ∑ 

k=0 

E 

{ � V (k) } 

≤
T ∑ 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}

−
T ∑ 

k=0 

E { e T (k) e (k) } + 

T ∑ 

k=0 

E { γ 2 ˆ w 

T (k) ̂  w (k) } , (26)

hich means that: 

E 

{ 

T ∑ 

k=0 

‖ e (k) ‖ 2 
} 

− γ 2 E 

{ 

T ∑ 

k=0 

‖ ̂  w (k) ‖ 2 
} 

T ∑ 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}

− E { V (k + 1) } + E { V (0) } . (27)

Given the zero initial condition, i.e., V (0) = 0, then it is clear that: 

E 

{ 

T ∑ 

k=0 

‖ e (k) ‖ 2 
} 

− γ 2 E 

{ 

T ∑ 

k=0 

‖ ̂  w (k) ‖ 2 
} 

T ∑ 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}
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≤  

≤  

 

s

∑
 

{
 

 

t  

s

 

p  

t

3

T  

Q  

a⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

 

− E { V (k + 1) } 
T ∑ 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}
. (28)

Let T → + ∞ , it can be further gotten: 

+ ∞ ∑ 

k=0 

E 

{‖ e (k) ‖ 2 } − γ 2 
+ ∞ ∑ 

k=0 

E 

{‖ ̂  w (k) ‖ 2 } 

+ ∞ ∑ 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
}
. (29)

Based on Eq. (29) and Definition 1 , the filtering error system is asymptotic stable and
atisfies H ∞ 

performance only while: 

+ ∞ 

 

k=0 

E 

{
ζ T (k)�2 ζ (k) + d(k) ηT (k) N R 

−1 N 

T η(k) + (d M 

− d(k )) ηT (k ) M R 

−1 M 

T η(k) 
} ≤ 0. 

(30)

According to Lemma 2 , inequality Eq. (30) holds only if: 

ζ T (k)�2 ζ (k) + d M 

ηT (k) N R 

−1 N 

T η(k) ≤ 0, 

ζ T (k)�2 ζ (k) + d M 

ηT (k) M R 

−1 M 

T η(k) ≤ 0. 
(31)

By using Schur implement theory, noting that if inequalities in Eq. (16) are satisfied, then
he Eq. (31) hold, that is to say, the filtering error system Eq. (12) is asymptotic stable and
atisfies H ∞ 

performance. So far, the theorem is proved. �

In Theorem 1 , the sufficient conditions that guaranteeing the asymptotic stability and H ∞
erformance of the considered filtering error system Eq. (12) are derived. In the next subsec-
ion, the algorithm to design A f , B f , C f based on the deductions above will be proposed. 

.2. H ∞ 

filter design 

heorem 2. For given scalars θ , σ , λ, r̄ , ̄ρ, d M 

and γ , if there exist matrices P 1 > 0, P 2 > 0,
 1 > 0, Q 2 > 0, R 1 > 0, R 2 > 0, P 3 , Q 3 , R 3 , M i , N i (i ∈ { 1 , 2, 3 } ) , ˆ Y j , Ȳ j ( j ∈ { 1 , 2, 3 , 4} )
nd Y c with appropriate dimensions, such that the following LMIs: 
 

 

 

 

 

 

 

 

 

 

�11 (∗) (∗) (∗) (∗) (∗) (∗) 

�21 (s) −R (∗) (∗) (∗) (∗) (∗) 

�31 0 −P (∗) (∗) (∗) (∗) 

�41 0 0 −R (∗) (∗) (∗) 

�51 0 0 0 −bI (∗) (∗) 

�61 0 0 0 0 −I (∗) 

�71 0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0, s = 1 , 2, (32)
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a

�

P

�

�

�

�  

�

�

�

�

�

�

t
 

p⎧⎨
⎩  

P⎧⎪⎪⎨
⎪⎪⎩  

b  

L  

B

R  

i  

b  
re satisfied, where, 

11 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−P + Q + N 1 + N 

T 
1 (∗) (∗) (∗) (∗) (∗) 

N 2 − N 

T 
1 + M 

T 
1 −N 2 − N 

T 
2 + M 2 + M 

T 
2 (∗) (∗) (∗) (∗) 

N 3 − M 

T 
1 −N 3 + M 3 − M 

T 
2 −Q − M 3 − M 

T 
3 (∗) (∗) (∗) 

0 0 0 −γ 2 I (∗) (∗) 

0 0 0 0 −aI (∗) 

0 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 = 

[
P 1 (∗) 

P 3 P 2 

]
, Q = 

[
Q 1 (∗) 

Q 3 Q 2 

]
, R = 

[
R 1 (∗) 

R 3 R 2 

]
, 

21 (1) = 

[√ 

d M 

N 

T 
1 

√ 

d M 

N 

T 
2 

√ 

d M 

N 

T 
3 0 0 0 

]
, 

21 (2) = 

[√ 

d M 

M 

T 
1 

√ 

d M 

M 

T 
2 

√ 

d M 

M 

T 
3 0 0 0 

]
, 

31 = 

[
�311 �312 �313 

]
, 

311 = 

[
P 1 A 

ˆ Y 2 (1 − r̄ )(1 − ρ̄ ) ̄Y 2 C 0 

P 3 A 

ˆ Y 1 (1 − r̄ )(1 − ρ̄ ) ̄Y 1 C 0 

]
, �312 = 

[
0 0 P 1 B (1 − r̄ )(1 − ρ̄ ) ̄Y 2 D 

0 0 P 3 B (1 − r̄ )(1 − ρ̄ ) ̄Y 1 D 

]
,

313 = 

[
(1 − r̄ )(1 − ρ̄ ) ̄Y 2 ρ̄(1 − r̄ ) ̄Y 2 

(1 − r̄ )(1 − ρ̄ ) ̄Y 1 ρ̄(1 − r̄ ) ̄Y 1 

]
, �41 = 

[
�1 �2 0 �3 �4 

]
, 

1 = 

[
c(R 1 A − R 1 ) c( ̂  Y 4 − R 

T 
3 ) 

c(R 3 A − R 3 ) c( ̂  Y 3 − R 2 ) 

]
, �2 = 

[
c(1 − r̄ )(1 − ρ̄ ) ̄Y 4 C 0 

c(1 − r̄ )(1 − ρ̄ ) ̄Y 3 C 0 

]
, 

3 = 

[
cR 1 B c(1 − r̄ )(1 − ρ̄ ) ̄Y 4 D 

cR 3 B c(1 − r̄ )(1 − ρ̄ ) ̄Y 3 D 

]
, �4 = 

[
c(1 − r̄ )(1 − ρ̄ ) ̄Y 4 c ̄ρ(1 − r̄ ) ̄Y 4 

c(1 − r̄ )(1 − ρ̄ ) ̄Y 3 c ̄ρ(1 − r̄ ) ̄Y 3 

]
, 

51 = 

[
0 0 C 0 0 0 0 D 0 0 

]
, 

61 = 

[
0 0 GC 0 0 0 0 GD G 0 

]
, 

71 = 

[
L −Y c 0 0 0 0 0 0 0 0 

]
, 

hen the augmented filtering error system Eq. (12) is asymptotic stable and satisfies H ∞
erformance under zero initial condition, and the parameters of the designed filter are: 
 

 

 

A f = P 

−1 
2 

ˆ Y 1 , 

B f = P 

−1 
2 Ȳ 1 , 

C f = Y c , 

(33)

roof. Based on Theorem 1 , defining the following matrices: 
 

 

 

 

 

 

 

P 2 A f = 

ˆ Y 1 , 

P 

T 
3 A f = 

ˆ Y 2 , 

R 2 A f = 

ˆ Y 3 , 

R 

T 
3 A f = 

ˆ Y 4 , 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

P 2 B f = Ȳ 1 , 

P 

T 
3 B f = Ȳ 2 , 

R 2 B f = Ȳ 3 , 

R 

T 
3 B f = Ȳ 4 , 

C f = Y c , (34)

y using the above definitions, the matrices inequalities in Eq. (16) can be transformed into
MIs in Eq. (32) and the parameters of the designed filter can be expressed as: A f = P 

−1 
2 

ˆ Y 1 ,
 f = P 

−1 
2 Ȳ 1 and C f = Y c . Thus, the theorem can be obtained. �

emark 7. The H ∞ 

filtering problem has been widely exploited in literatures [47–50] . For
nstance, under the limited network resources scenario, H ∞ 

filters were designed for switch-
ased filtering networks and nonlinear networked systems in Zhang et al. [47] and Zhao
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w

h

 

b  

t  

s  

l  

q  

a
 

w  
t al. [48] , respectively; while considering the existence of cyber-attacks, the authors in Gong
t al. [49] designed an asynchronous distributed H ∞ 

filter for sensor networks with hidden
arkovian switching policy, and the authors in Cheng et al. [50] proposed a hierarchical

tructure approach to design H ∞ 

filter for fuzzy Markov switching systems. However, differing
rom these existed works, our study takes both limited network resources and hybrid cyber
ttacks, i.e., Deception attacks and DoS attacks, into accounts, and then designs an efficient
 ∞ 

filter for discrete-time networked systems. Under such complicated network environment
nd specific research objective, different system model, analysis and validation processes are
urther presented in the paper. 

. Numerical example 

In this section, an example is given to demonstrate the effectiveness and applicability of
he designed H ∞ 

filter. For this, given a discrete-time networked linear system Eq. (1) with
he following parameters: 

 = 

[−0. 5 −0. 4 

1 −0. 1 

]
, B = 

[
0. 1 

0. 4 

]
, C = 

[
1 −0. 2 

]
, D = 0. 6 , L = 

[−0. 1 0. 5 

]
. 

The employed AETM and constructed hybrid cyber attacks model are depicted by: θ = 1 . 5 ,
= 0. 8 , σ = 0. 9 , q(0) = 0, d M 

= 2, r̄ = 0. 4, ρ̄ = 0. 3 , the matrix G in Deception attacks is
iven as G = [0. 1 0. 1] T , and the H ∞ 

performance level γ is set to be 1.6733. 
Based on the above settings, by solving the LMIs Eq. (32) in Theorem 2 , it can be gotten

hat: 

 2 = 

[
78 . 8614 −0. 0876 

−0. 0876 78 . 8174 

]
, Ȳ 1 = 

[
0. 0822 

−0. 3907 

]
, ˆ Y 1 = 

[−1 . 7340 −2. 6489 

2. 1603 −0. 5855 

]
, 

 c = 

[
0. 0549 −0. 3271 

]
. 

According to Eq. (33) , then the parameters of H ∞ 

filter can be derived as follows: 

 f = 

[−0. 0220 −0. 0336 

0. 0274 −0. 0075 

]
, B f = 

[
0. 0010 

−0. 0050 

]
, C f = 

[
0. 0549 −0. 3271 

]
. 

Next, the initial conditions are assumed that: x(0) = 

[−0. 21 0. 3 

]T 
, x f (0) =

−0. 05 0. 15 

]T 
, and the disturbance input and measurable noise function are given as: 

(k) = 2 ∗ e −0. 1 ∗k , v(k) = −e −0. 2∗k . 

Meanwhile, the function of Deception attacks is assumed to be: 

(y(k − d(k)) + φ(k)) = 0. 1 ∗ sin (−k) ∗ (y(k − d(k)) + φ(k)) . 

The final simulation results are obtained by using MATLAB. From Figs. 2 and 3 , it can
e seen that the system tends to be stable and the filtering error changes to zero along the
ime, which represents the robust filtering performance on estimating the output of the origin
ystem, and thus validates the effectiveness of the study. Furthermore, the adaptive control
aw q(k) , data release instants and intervals are shown in Figs. 4 and 5 . It is clear that the
(k) changes to zero when the system achieves stability. Besides, the simulated DoS attacks
nd Deception attacks are presented in Figs. 6 and 7 , respectively. 

Figs. 8 and 9 are given to verify the statement presented in Remark 3 . In Figs. 8 and 9 ,
e show the filtered signals under a strategy focused on the DoS (Deception) attacks, denoted
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Fig. 2. State responses. 

Fig. 3. Filtering error e (k) . 
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Fig. 4. The adaptive control law q(k) . 

Fig. 5. Triggering instants and intervals. 
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Fig. 6. Instants of the DoS attacks occurrence. 

Fig. 7. Instants of the Deception attacks occurrence. 
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Fig. 8. Filtered signals under the strategy focused on the DoS attacks and the proposed strategy. 

Fig. 9. Filtered signals under the strategy focused on the Deception attacks and the proposed strategy. 
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y x ′ f 1 (t ) ( x ′′ f 1 (t ) ) and x ′ f 2 (t ) ( x ′′ f 2 (t ) ), and that under the proposed strategy focused on the
ybrid cyber attacks, i.e., x f 1 (t ) and x f 2 (t ) . The strategy focused on the DoS (Deception)
ttacks is constructed by ignoring the Deception (DoS) attacks in the proposed method. As
resented, the fluctuations of the filtered signals under the proposed strategy are much smaller
han that under the strategies focused on the single type of attacks at the transient process,
hich confirms the significance of studying the hybrid cyber attacks. 

. Conclusion 

In this paper, the H ∞ 

filtering problem is studied over discrete-time networked systems
hich lack sufficient network resources and suffer from various cyber attacks. To save the

imited network bandwidth, an AETM is firstly introduced to reduce the transmission of re-
undant signals. In the AETM, the triggering threshold can be adaptively adjusted to response
o the changes of system status. Then, a hybrid cyber attacks model is employed to depict the
eception attacks and DoS attacks occurred simultaneously. Based on the AETM and hybrid

yber attacks model, the considered filtering problem is formulated by establishing a filtering
rror system model. The sufficient conditions on the asymptotic stability and H ∞ 

performance
f the constructed filtering error system are obtained by using Lyapunov stability theory, and
he specific filtering parameters are also derived via LMI technique. Simulation results show
hat the robustness of the designed filter can be guaranteed under hybrid cyber attacks sce-
ario. Given that the hybrid cyber attacks model is constructed based on fixed probabilities
n this paper, a more realistic scenario is to construct a detector-based hybrid cyber attacks
odel, which will be the future work of us. Apparently, this work lays a good foundation for

he future study. 
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