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Abstract
This article is concerned with the quantized control problem for neural networks
with adaptive event-triggered scheme (AETS) and complex cyber-attacks. By
fully considering the characteristics of cyber-attacks, a mathematical model of
complex cyber-attacks, which consists of replay attacks, deception attacks, and
denial-of-service (DoS) attacks, is firstly built for neural networks. For the sake
of relieving the pressure under limited communication resources, an AETS and
a quantization mechanism are employed in this article. By utilizing Lyapunov
stability theory, adequate conditions ensuring the stability of neural networks
are obtained. Moreover, the controller gain is derived by solving a set of linear
matrix inequalities. At last, the usefulness of the proposed method is verified by
a numerical example.
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1 INTRODUCTION

Due to the satisfactory nonlinear approximation and learning abilities, neural networks have been extensively applied
in modeling of nonlinear networked systems1-5 to solve the synthetic control problems, such as the robust stability,6
controller design,7 and so on. For example, the authors of Reference 8 studied the exponential stability analysis problem
for generalized neural networks with time delays. In Reference 9, the robust stabilization problem was addressed for
continuous-time delayed neural networks via dissipativity-learning approach. The authors of Reference 10 investigated
H∞ filtering problem for stochastic neural networks with a mixed of time-varying interval delays, time-varying distributed
delays, and leakage delays. The authors of Reference 11 concentrated on solving the adaptive neural network control issue
for bilateral teleoperation system with dynamic uncertainties.

With the rapid development of network communication technologies, the network plays a more and more important
role in the networked systems. Since the network resources is limited, how to deal with network resource constraints
are a fundamental research topic for studying networked systems. In the past few years, the time-triggered schemes
and the event-triggered schemes (ETSs) are two widely used data transmission strategies. Under the time-triggered
schemes, the signals are periodically delivered in a fixed time period. Nevertheless, when there is little fluctuation of
the delivered data, transmitting the almost identical data through communication network may cause the waste of
communication resources. To deal with the above problem, numerous scholars have proposed multifarious ETS.12-18
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Specially, the adaptive ETS (AETS) has an advantage over traditional ETSs in relieving the network bandwidth load owing
to the adjusted threshold, thus it has captured great attention.19-22 For instance, the authors of Reference 23 applied AETS
to economize limited transmission resources for uncertain active suspension systems. H∞ filtering problem was addressed
for a class of networked nonlinear interconnected systems with AETS in Reference 24. In addition to ETS, quantization
is considered as another effective tool to save the limited bandwidth. By using quantization mechanism, the continuous
signal are converted into a set of discrete signal to reduce redundant data. The applications of quantization mechanism
for various systems can be found in considerable literature.25-29 For instance, the authors of Reference 30 investigated the
feedback control issue for networked systems with quantization. In Reference 31, H∞ filtering problem was addressed
for switched systems with quantization. The consensus control problem was studied for multi-agent systems with quan-
tization in Reference 32. By applying quantization mechanism to uncertain linear systems, the authors of Reference 33
investigated the fault tolerant compensation control issue.

Owing to the insertion of network, it brings many advantages to networked systems, such as timeliness, convenience
and high efficiency. Nevertheless, due to the openness of networked communication channels, networked systems are
vulnerable to malicious cyber-attacks. In view of this, great efforts has been made to deal with the cyber security prob-
lems for networked systems. Some control and estimation problems for networked systems have been carefully studied
with common attacks including replay attacks,34 deception attacks,35 and denial-of-service (DoS) attacks,36,37 and so
on. When replay attacks occur, the attackers record a series of sampled data and replay the ones afterwards. Different
from the replay attacks, attackers launch deception attacks by replacing the normal data with malicious data. Stabi-
lization control problem was studied for networked systems subjected to deception attacks in Reference 35. As another
common attacks, DoS attacks try to jam the data transmission channels to prevent the measurement and sampled data
from reaching their destinations. Taking the impact of DoS attacks into account, the problem of robust stabilization
was studied for uncertain networked control systems in Reference 36. However, most of the existing achievements are
only concerned with one kind of cyber-attacks, which is not realistic. In fact, the systems may suffer from various
cyber-attacks at the same time. In order to reflect the actual situation, three common cyber-attacks are considered includ-
ing replay attacks, deception attacks, and DoS attacks in this article. To the best of our knowledge, there are no relevant
results about the quantized control for neural networks with AETS and complex cyber-attacks, which motivates this
current work.

In this article, by applying an AETS, the problem of quantized control for neural networks under complex
cyber-attacks will be investigated. An AETS is adopted to save the limited communication resources. A quantization
mechanism is introduced to further save the limited resources. Complex cyber-attacks will be taken into consideration
which consist of replay attacks, deception attacks and DoS attacks.

The remaining part of this article is organized as follows. Section 2 presents the model of quantized control for neural
networks with AETS and complex cyber-attacks. Sufficient conditions, which ensure the stability of neural networks, are
obtained in Section 3. Besides, the desired controller gain is acquired. In Section 4, a simulation example is given to verify
the effectiveness of the designed controller. At last, a conclusion is given in Section 5.

Notation: Rn denotes the n-demonsional Euclidean space; Rn×m denotes the set of n×m real matrices. || ⋅ || represents
the Euclidean vector norm or the induced matrix 2-norm as appropriate. The superscript T denotes the matrix trans-
position. I is the identity matrix with appropriate dimension. sym{X} represents the sum of matrix X and its transposed
matrix XT .

2 PROBLEM FORMULATION

2.1 System description

Consider the following n-neuron delayed neural network{
ẋ(t) = Ax(t) + Bu(t) + Eg(x(t − 𝜂(t)))
z(t) = Cx(t)

(1)

where x(t) = [x1(t) … xn(t)]T ∈ Rn is the state vector of neural networks; u(t) ∈ Rn denotes the control input; z(t) ∈
Rn represents the measurement output; g(x(t)) =

[
g1(x1(t)) … gn(xn(t))

]T represents the neuron activation function



LIU et al. 4707

F I G U R E 1 The structure of quantized control for neural
networks with AETS and complex cyber-attacks [Colour figure can
be viewed at wileyonlinelibrary.com]

with g(0)= 0; 𝜂(t) denotes the time delay which satisfies the thresholds 0 ≤ 𝜂(t) ≤ 𝜂M , and 𝜂M is a constant; the diagonal
matrix A= diag{a1, a2, … , an}< 0; B, C, and E are given matrices with appropriate dimensions.

Assumption 1 (9). The activation function g(x(t)) satisfies the following condition with bounded property:

𝛾−g ≤ g(𝜉1) − g(𝜉2)
𝜉1 − 𝜉2

≤ 𝛾+g
where 𝛾−g and 𝛾+g are known constants, for all 𝜉1, 𝜉2 ∈ R, 𝜉1 ≠ 𝜉2.

The main purpose of this article is to design a quantized controller for neural networks with AETS and complex
cyber-attacks. The structure of feedback control for neural networks is shown in Figure 1. A quantization mechanism
and an AETS are employed to mitigate the network bandwidth load. A zero-order-holder (ZOH) is introduced between
the network and the controller. The quantized data is delivered to the controller via network subjected to complex
cyber-attacks.

In this article, the designed controller is given as follows

u(t) = Kx(t) (2)

where K ∈ Rn×m denotes the controller gain to be designed.

2.2 Adaptive event-triggered scheme

As shown in Figure 1, an AETS is adopted to relieve the network bandwidth load in this article. Let {t0h, t1h, t2h, … }
represent the transmitted instants. The instant t0h represents the first triggering time. tkh is the latest transmission instant,
then the next transmission instant tk+ 1h can be expressed as follows:

tk+1h = tkh + min{qh|eT
k (tkh)Ωek(tkh) > 𝜋(t)xT(tkh + qh)Ωx(tkh + qh)} (3)

where Ω > 0, ek(tkh)= x(tkh)− x(tkh+ qh), ek(tkh) denotes the error state between the latest data and current sampling
data; x(tkh) denotes the latest transmitted data, x(tkh+ qh) denotes the current sampling data, 𝜋(t) is a function satisfying
the following adaptive law

𝜋̇(t) = 1
𝜋(t)

(
1
𝜋(t)

− 𝜎
)

eT
k (t)Ωek(t) (4)

where 0 < 𝜋(0) ≤ 1, 𝜎 > 0.

Remark 1. From (3), one can get that the threshold of AETS is a varying parameter, which is regulated by the adaptive
law in (4). The AETS, in which the triggering condition can be dynamically adjusted depending on the error state, shows
flexibility in transmitting the sampled data. Inspired by [38], an AETS is applied to controller design for neural networks
in this article.

http://wileyonlinelibrary.com
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F I G U R E 2 An example of time sequence for an AETS

Remark 2. In (4), when the parameter 𝜎 = 1
𝜋(0)

, one can get the adaptive event-triggered law 𝜋̇(t) ≡ 0. It means that the
proposed AETS reduces to general time-triggered scheme. If the system gradually reaches stable, the adaptive law 𝜋̇(t) →
0, it denotes that the threshold of AETS does not need to be regulated.

The interval [tkh + 𝜏k, tk+1h + 𝜏tk+1) can be divided into several parts as Tq
tk
= [tkh + qh − h + 𝜏q−1

tk
, tkh + qh + 𝜏q

tk
) for

q = 1, 2, … , q̂, where q̂ represents the number of subintervals. 𝜏q
tk

is a positive constant. 𝜏q
tk

takes the value of 𝜏tk and
𝜏tk+1 for q ≤ q̂ − 1 and q = q̂, respectively. In brief, Ttk = ∪q̂

q=1Tq
tk

. As shown in Figure 2, ▴ denotes the releasing instant,
◼ represents the arriving instant, and h is sampling period. The data are sampled periodically at instants 0h, 1h, … ,. In
particular, the data are discarded at instants 1h, 2h, 3h, 5h, 7h, … on account of not reaching the triggering condition.
The data at instants 0h, 4h, 6h, … satisfying the condition are delivered by network. 𝜏1

0 is a transmitted delay of sampled
data at instant 1h; the releasing interval T0 contains a set of sampling-like subsets T1

0 , T2
0 , T3

0 , T4
0 .

Set Σ ≜ {q|eT
k (t)Ωek(t) − 𝜋(t)xT(tkh + qh)Ωx(tkh + qh) ≤ 0}, then q̂ can be defined by

q̂ =

{
1, Σ = ∅
1 + max{q|q ∈ Σ}, others

(5)

The triggering condition of AETS can be expressed as follows

eT
k (t)Ωek(t) − 𝜋(t)xT(tkh + qh)Ωx(tkh + qh) < 0 (6)

Define the equivalent delay 𝜏(t) = t − (tkh + qh), then the sampled data via AETS can be acquired as follows:

x̂(t) = x(t − 𝜏(t)) + ek(t) (7)

where 𝜏(t) is time-varying delay satisfying 0 ≤ 𝜏(t) ≤ 𝜏M , 𝜏M is a positive constant.

Assumption 2. In this article, we assume that the actuator is event-triggered, while the sensor is time-triggered. A ZOH
is adopted to keep the current control input in case that the latest input is not transmitted to the controller. The data in
communication network is delivered with a single packet.

2.3 Quantization mechanism

In order to further save the limited bandwidth, a logarithmic quantizer shown in Figure 3 is employed to decrease
the redundant data with linear quantization levels. Suppose that the set of quantization levels is described by
H = {± lv : lv = 𝜗vl0, v=±1,± 2, … }∪ {± l0}∪ {0}, l0 > 0.

The logarithmic quantizer can be defined as follows:

r(xv) =
⎧⎪⎨⎪⎩

lv, xv > 0, lv
1+b
< xv <

lv
1−b

0, xv = 0
−r(−xv), xv < 0

(8)
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F I G U R E 3 The logarithmic quantizer

where b = 1−𝜗
1+𝜗

; 0<𝜗< 1; 𝜗 is regarded as quantization density of r(⋅). If x = [x1, x2, … , xm]T ∈ Rm is an m-dimensional
vector signal, then one can denote r(x)= diag{r1(x1), r2(x2), … , rm(xm)}. For the symmetrical matrix rv(⋅), v ∈ Rm, the
equality rv(− xv)=−rv(xv) holds. The logarithmic quantizer rv(⋅) can be expressed as

rv(xv) = (I + Δrv(xv))xv (9)

where |Δrv(xv))| ≤ bv. For simplicity, Δr is utilized to represent Δrv(xv)). One can get the following equality

r(x) = (I + Δr)x (10)

where Δr = diag{Δr1 ,Δr2 , … ,Δrm}.
By combining equalities (7) and (10), the delivered data through the quantizer can be obtained

x̃(t) = (I + Δr)x̂(t) (11)

Remark 3. There exist two types of common quantizers including static quantizers and dynamic quantizers. As one of
the most representative static quantizers, the logarithmic quantizer is widely used in overcoming the constraint of the
network bandwidth. Compared with the dynamic quantizer, the logarithmic quantizer is more efficient due to its simpler
implementation. Therefore, a logarithmic quantizer is introduced to save the limited bandwidth in this article.

2.4 Complex cyber-attacks model

In this subsection, a complex cyber-attacks model, where replay attacks, deception attacks and DoS attacks are taken into
account, will be constructed for neural networks. In the following, the replay attacks, deception attacks and DoS attacks
are discussed in turn as shown in Figure 1.

First, replay attacks are considered, in which attackers can record a series of sensor data and replay the sequence
afterwards. A random variable 𝜀(t) obeying Bernoulli distribution is utilized to describe whether the replay attacks occur
or not. The delivered signal under replay attacks can be acquired

x̃1(t) = 𝜀(t)xr(t) + (1 − 𝜀(t))x̃(t) (12)

where xr(t) = x̃(tr), x̃(tr) represents the transmitted data at the past-time moment. For 𝜀(t)∈ {0, 1}, the expectation
of 𝜀(t) can be expressed as E{𝜀(t)} = 𝜀; the mathematical variance of 𝜀(t) can be expressed as E{(𝜀(t) − 𝜀)2} = 𝛿2

1 .
𝜀(t)= 0 represents that the replay attacks are not occurring; 𝜀(t)= 1 denotes that the network suffers from replay
attacks.

In addition, deception attacks are considered, which aim to replace legally sampled data with malicious data. With
the same method in modeling replay attacks, a Bernoulli variable 𝜚(t) is adopted to describe whether deception attacks
occur or not. The following equality denotes the transmitted data with deception attacks.

x̃2(t) = 𝜚(t)f (x(t − d(t))) + (1 − 𝜚(t))x̃1(t) (13)
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where f (x(t)) =
[
f1(x1(t)) … fn(xn(t))

]T ∈ Rn denotes the function of deception attacks. d(t) is time-varying delay satis-
fying 0≤ d(t)≤ dM , where dM is a positive constant. The Bernoulli variable 𝜚(t)∈ {0, 1} is with given statistical properties:
expectation E{𝜚(t)} = 𝜚 and variance E{𝜚(t) − 𝜚} = 𝛿2

2 . 𝜚(t)= 0 means that the deception attacks fail to change the normal
transmission data. 𝜚(t)= 1 denotes that deception attacks have replaced normal data with false data.

Remark 4. When 𝜀(t)= 0 and 𝜚(t)= 0, replay attacks and deception attacks are not occurring; when 𝜀(t)= 1 and
𝜚(t)= 0, only the replay attacks are active; when 𝜀(t)= 0 and 𝜚(t)= 1 represent the network only suffers from deception
attacks.

Assumption 3. In this article, we consider that the transmitted data may be subject to deception attacks and replay
attacks randomly. We assume that the Bernoulli distributed variable 𝜀(t)∈ {0, 1} is used to describe the randomness of the
replay attacks, and the Bernoulli variable 𝜚(t)∈ {0, 1} is adopted to describe whether deception attacks occur or not.

Assumption 4. For a constant matrix G, the deception attacks signal f (x(t)) satisfies the following constraint.

||f (x(t))||2 ≤ ||Gx(t)||2 (14)

where G is a given matrix with appropriate dimension representing the upper bound of deception attacks.

At last, nonperiodic DoS attacks are considered which attempt to prevent the normal data transmission by occupying
communication resources. In general, the DoS attacks are irregular and random. The nonperiodic DoS attacks signal with
variable 𝜈(t) can be expressed as follows

𝜈(t) =

{
0, t ∈ [wn,wn + 𝜖n)
1, t ∈ [wn + 𝜖n,wn+1)

(15)

where 𝜈(t) = 0 means that the systems are under safe condition and the data transmission is normal; 𝜈(t) = 1 denotes
that DoS attacks are active. n ∈ N, wn denotes the starting instant of nth DoS sleeping intervals. wn + 𝜖n represents the
ending instant of nth DoS sleeping intervals; wn+1 − wn − 𝜖n denotes the length of (n+ 1)th DoS active intervals. The DoS
attacks intervals can be expressed as n = [wn,wn + 𝜖n) and n = [wn + 𝜖n,wn+1). wn+ 1 and wn + 𝜖n should satisfy the
condition wn+1 > wn + 𝜖n.

By considering the impact of complex cyber-attacks, the real control input is given

x̃3(t) = (1 − 𝜈(t))x̃2(t) (16)

The limitation of the attack duration and attack frequency is given in the following assumptions.

Assumption 5 (39). Assume that there exists a uniform lower bound 𝜖min on the lengths of the DoS sleeping periods 𝜖n
of the attacker, that is,

0 < 𝜖min ≤ inf
n∈N

{𝜖n}. (17)

Similarly, assume that there exists a uniform upper bound cmax on the lengths of the DoS sleeping periods
wn+1 − wn − 𝜖n of the attacker, that is,

0 < sup
n∈N

{wn+1 − wn − 𝜖n} ≤ cmax < ∞. (18)

where 𝜖min and cmax are positive constants.

Assumption 6 (40). For any m∈ [0, t1], the frequency of DoS attacks  (⋅) over [m, t1) satisfies

 (⋅) ≤ 0 +
t1 − m

m
(19)

where 0 > 0 and m > 0,  (⋅) represents the number of DoS off/on transitions over [m, t1),  (⋅) = card{n ∈ N|wn + 𝜖n ∈
[m, t1)}, card represents the number of elements in the set.
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Remark 5. In this article, a complex cyber-attacks model is established by considering replay attacks, deception attacks
and DoS attacks in order. It needs to declare that other sequences of complex cyber-attacks also can be modeled with the
same method.

2.5 Controller design

In this article, we assume that the whole time of nonperiodic DoS attacks can be divided into two set, namely, n and
n. n denotes DoS attacks sleeping intervals; and n represents DoS attacks active intervals. Considering the impact
of DoS attacks, we improve the ETS and the triggering instants are described as

tk,nh = {tk,nh satisfying (3)|tk,nh ∈ n−1} ∪ {wn}

where n ∈ N, k represents the number of event triggering times during the nth jammer action period, and k ∈
{0, 1, … , k(n)} ≜ 𝜙(n). k(n) = sup

{
wn + 𝜖n ≥ tk,n+1h

}
.

Define k,n ≜ [tk,nh, tk+1,nh), 𝜁k,n ≜ sup{tk+1,nh > tk,nh + qh, q = 1, 2, … , q̂}.
The time interval k,n can be divided as

k,n = ∪𝜁k,n
q=1q

k,n (20)

where ⎧⎪⎨⎪⎩
q

k,n = [tk,nh + (q − 1)h, tk,nh + qh),
q ∈ {1, … , 𝜁k,n}
𝜁k,n+1

k,n = [tk,nh + 𝜁k,nh, tk+1,nh)

(21)

Note that

n = ∪k(n)
k=1{k,n ∩n} ⊆ ∪k(n)

k=1k,n (22)

On the basis of (20)–(22), the time interval can be expressed as

n = ∪k(n)
k=1 ∪

𝜁k,n
q=1 {q

k,n ∩n} (23)

Let Gq
k,n = {q

k,n ∩n}, and then one can getn = ∪k(n)
k=1 ∪

𝜁k,n
q=1 Gq

k,n. Thus, for n∈N, k ∈ 𝜙(n), two piecewise functions
can be derived as follows

𝜏k,n(t) =

⎧⎪⎪⎨⎪⎪⎩

t − tk,nh, t ∈ G1
k,n

t − tk,nh − h, t ∈ G2
k,n

⋮

t − tk,nh − (𝜁k,n − 1)h, t ∈ G𝜁k,n

k,n

and

ek,n(t) =

⎧⎪⎪⎨⎪⎪⎩

0, t ∈ G1
k,n

x(tk,nh) − x(tk,nh + h), t ∈ G2
k,n

⋮

x(tk,nh) − x(tk,nh − 𝜁k,nh, t ∈ G𝜁k,n

k,n

Based on the above two functions, it can be acquired that 𝜏k,n(t) ∈ [0, 𝜏M), t ∈ k,n ∩n.
The signal delivered into the communication network can be described as

x(tk,nh) = x(t − 𝜏k,n(t)) + ek,n(t) (24)
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Combining the equalities (2), (7), (11), (12), (13), and (16), one can derive the real input of controller

u(t) =
⎧⎪⎨⎪⎩

K {𝜚(t)f (x(t − d(t))) + (1 − 𝜚(t))[(1 − 𝜀(t))(I + Δr)(x(t − 𝜏(t)) + ek(t))
+𝜀(t)xr(t)]} , t ∈ k,n ∩n

0, t ∈ n

(25)

By substituting (25) into (1), we can obtain the following:

ẋ(t) =

⎧⎪⎪⎨⎪⎪⎩

Ax(t) + BK𝜚(t)f (x(t − d(t))) + Eg(x(t − 𝜂(t))) + BK(1 − 𝜚(t))[𝜀(t)xr(t)
+(1 − 𝜀(t))(I + Δr)(x(t − 𝜏(t)) + ek(t))], t ∈ k,n ∩n

Ax(t) + Eg(x(t − 𝜂(t))), t ∈ n

𝜆(t), t ∈ [−h, 0)

(26)

Before giving main results, some lemmas are introduced as follows.

Lemma 1 (38). For all of constant matrices W ∈ Rn×n and V ∈ Rn×n satisfying
[

W ∗
V W

]
≥ 0, the following inequality

holds:

−𝜏 ∫
t

t−𝜏
ẋT(s)Wẋ(s)ds ≤

⎡⎢⎢⎢⎣
x(t)

x(t − 𝜏(t))
x(t − 𝜏)

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

−W ∗ ∗
W − V −2W + V + V T ∗
V W − V −W

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x(t)
x(t − 𝜏(t))
x(t − 𝜏)

⎤⎥⎥⎥⎦
where 𝜏(t) satisfies 0 ≤ 𝜏(t) ≤ 𝜏.

Lemma 2 (41). For given appropriately dimensioned matrices H1, H2 and a symmetric matrix A, the inequality A +
sym{H1ΔH2} < 0 holds for all Δ satisfying ΔTΔ ≤ I if and only if there exist a positive scalar d1 > 0 such that A + d1HT

1 H1 +
d−1

1 HT
2 H2 < 0.

Lemma 3 (42). For x(t) and g(x(t)), there exists a semi-definite diagonal matrix M satisfying the following inequality.[
x(t)

g(x(t))

]T [
−MΓ−

g MΓ+
g

Γ+
g M −M

][
x(t)

g(x(t))

]
≥ 0 (27)

where Γ−
g = diag{𝛾−g1𝛾

+
g1, 𝛾

−
g2𝛾

+
g2, … , 𝛾−gn𝛾

+
gn} and Γ+

g = diag
{
𝛾−g1+𝛾

+
g1

2
,
𝛾−g2+𝛾

+
g2

2
, … ,

𝛾−gn+𝛾
+
gn

2

}
.

3 MAIN RESULTS

Theorem 1. For given positive scalars 𝜌i, ai(i= 1, 2), 𝜀, 𝜚, dM, 𝜂M, 𝜏M, sampling period h, quantized parameter r, trigger
parameter 𝜎, DoS parameters cmax, 𝜖min, m, 0, the matrices K and F, the system is exponentially mean-square stable if
there exist matrices Hi > 0, Ji > 0, Ri > 0, Zi > 0, Si > 0, Pi > 0, Qi > 0, Ui, W i, Mi, Ni, V i(i= 1, 2) and Ω > 0 with compatible
dimensions satisfying the following inequalities.

Ψi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υi
11 ∗ ∗ ∗ ∗

Υi
21 Υi

22 ∗ ∗ ∗
Υi

31 Υi
32 Υi

33 ∗ ∗
Υi

41 Υi
42 0 Υi

44 ∗
Υi

51 Υi
52 0 0 Υi

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (28)

P1 ≤ a2P2,P2 ≤ a1e2(𝜌1+𝜌2)hP1 (29)
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⎧⎪⎨⎪⎩
Q1 ≤ a2Q2,Q2 ≤ a1Q1

R1 ≤ a2R2,R2 ≤ a1R1

Z1 ≤ a2Z2,Z2 ≤ a1Z1

(30)

s = 2𝜌1(𝜖min − h) − 2𝜌2(h + cmax) − ln(a1a2)
m

> 0 (31)

where the elements of matrix Ψi are given in Appendix A.

Proof. See Appendix B. ▪

Sufficient conditions, which can ensure the exponential mean-square stability of the system, are acquired in
Theorem 1. Based on the results in Theorem 1, the algorithm of controller design is given for neural networks in
Theorem 2.

Theorem 2. For given positive scalars 𝜌i, ai, ei1, ei2, ei3(i= 1, 2), 𝜀, 𝜚, dM, 𝜂M, 𝜏M, sampling period h, quantized parameter
r, trigger parameter 𝜎, DoS parameters cmax, 𝜖min, m, 0, the matrices F, the system is exponentially mean-square stable if
there exist matrices Q̂i > 0, Ĥi > 0, Ĵi > 0, R̂i > 0, Ẑi > 0, Ŝi > 0, Xi > 0, Ω̂ > 0, Ûi, Ŵi, M̂i, N̂i, V̂ i(i = 1, 2), Y with compatible
dimensions, such that for i= 1, 2 the following linear matrix inequalities and condition (31) hold:

Ψ̂
i
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ̂i
11 ∗ ∗ ∗ ∗

Υ̂i
21 Υ̂i

22 ∗ ∗ ∗
Υ̂i

31 Υ̂i
32 Υ̂i

33 ∗ ∗
Υ̂i

41 Υ̂i
42 0 Υ̂i

44 ∗
Υ̂i

51 Υ̂i
52 0 0 Υ̂i

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (32)

[
−a2X2 ∗

X2 −X1

]
≤ 0 (33)[

−a1e2(𝜌1+𝜌2)hX2 ∗
X1 −X2

]
≤ 0 (34)[

−a3−iQ̂3−i ∗
X3−i e2

i1Q̂i − 2ei1Xi

]
≤ 0 (35)[

−a3−iR̂3−i ∗
X3−i e2

i2R̂i − 2ei2Xi

]
≤ 0 (36)[

−a3−iẐ3−i ∗
X3−i e2

i3Ẑi − 2ei3Xi

]
≤ 0 (37)

where the elements of matrix Ψ̂
i

are given in Appendix C.
In addition, the desired controller gain is derived as follows

K = YX−1
1 (38)

Proof. See Appendix D. ▪

4 NUMERICAL EXAMPLE

In this section, a numerical example is presented to demonstrate the effectiveness of proposed method.
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1 F I G U R E 4 The state response of the system in
case 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

Considering the system (1) with following parameters:

A =

[
−0.6 0

0 −0.5

]
,B =

[
0.1 0.1
0.2 0.1

]
,E =

[
0.1 −0.2

0.05 −0.92

]
,C =

[
0.1 0.1
0.1 0.1

]

The neuron activation function is defined as g(x(t))= [tanh(0.04x1(t)) tanh(0.04x2(t))]T , and one can
obtain Γ−

g = diag{0, 0}, Γ+
g = diag{0.02, 0.02}. The deception attack function is chosen as f (x(t))= [tanh(0.25x1(t))

tanh(0.15x2(t))]T , which can satisfy the inequality (14) in Assumption 4 with F = diag{0.15, 0.25}. And it can be acquired
Γ−

f = diag{0, 0}, Γ+
f = diag{0.125, 0.075}.

In the following, two cases are discussed to testify the feasibility of desired controller. In Case 1, the complex
cyber-attacks are not considered. Case 2 shows the performance of the quantized controller under complex
cyber-attacks.

Case 1:
Setting 𝜀 = 0, 𝜚 = 0, it means that the complex cyber-attacks do not occur. Set dM = 0.01, 𝜂M = 0.12, 𝜏M = 0.04, h= 0.1s,

𝜎 = 0.2, e1 = e2 = 1, the quantizer parameter r = 0.818. By solving Theorem 2 with MATLAB, the following matrices can
be acquired

X1 =

[
0.0422 0.0004
0.0004 0.0261

]
,Y =

[
0.0122 −0.0103
−0.0103 0.0185

]
,Ω =

[
75.2960 −0.0417
−0.0417 75.4735

]

According to the equality (38) in Theorem 2, one can get the controller gain

K =

[
0.2929 −0.2503
−0.3984 0.7125

]

Set the initial system condition as x =
[
−1 1

]T . The simulation results are shown in Figures 4 to 6. The state trajectory
of neural networks without cyber-attacks is exhibited in Figure 4. In Figure 5, the red line denotes the normal signal
without quantization, and the blue line represents the quantized signal. The triggering instants and the releasing intervals
of AETS are given in Figure 6. According to above graphs, Case 1 shows the usefulness of the desired controller for neural
networks without complex cyber-attacks.

http://wileyonlinelibrary.com
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F I G U R E 5 The signals before and after
quantization in case 1 [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 6 Release instants and intervals of AETS
in case 1 [Colour figure can be viewed at
wileyonlinelibrary.com]
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Case 2:
Setting 𝜀 = 0.3, 𝜚 = 0.4, 𝜖min = 1.78, cmax = 0.2, it denotes that the complex cyber-attacks are considered. Set dM = 0.01,

𝜂M = 0.12, 𝜏M = 0.04, h= 0.1s, 𝜎 = 0.2, e1 = e2 = 1, a1 = a2 = 1.05, 𝜌1 = 0.1, 𝜌2 = 0.15, 0 = 1, m = 4, the quantizer param-
eter r = 0.818, and Table 1 shows the DoS-related parameters. With the above parameters, the following matrices are
obtained by solving Theorem 2 through MATLAB.

X1 =

[
0.0196 0.0001
0.0001 0.0141

]
,Y =

[
0.0071 −0.0185
−0.0185 0.0172

]
,Ω =

[
35.0782 −0.0053
−0.0053 35.1422

]

Based on the equality (38) in Theorem 2, the controller gain can be acquired

K =

[
0.3641 −0.9405
−1.3085 1.2223

]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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0 n = 0 n =1 n=2 n=3 n=4 n=5

𝜖n 0 2.58 3.07 3.34 3.14 3.77

wn+1 − wn − 𝜖n 0 0.11 0.15 0.14 0.12 0.10

wn 0 2.69 5.91 9.39 12.65 16.52

T A B L E 1 DoS-related parameter in case 2

F I G U R E 7 The Bernoulli distribution variables of
ε(t) in case 2 [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 8 The Bernoulli distribution variables of
ϱ(t) in case 2 [Colour figure can be viewed at
wileyonlinelibrary.com]

Set the initial system condition as x =
[
−1 1

]T . The following graphs Figure 7 to 11 can be obtained
by MATLAB simulation. Figures 7 and 8 present the Bernoulli distribution variables for replay attacks and
deception attacks, respectively. Figure 9 shows nonperiodic DoS jamming signal. Figure 10 exhibits the signal
subjected to replay attacks and deception attacks. The state response of neural networks is exhibited in
Figure 11, which shows that the closed-loop system with complex cyber-attacks is stable. According to the
graphs above, it can be concluded that the proposed controller for neural networks with complex cyber-attacks
is feasible.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 9 The DoS attacks jamming signal intervals
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 10 The transmitted signal under replay
attacks and deception attacks [Colour figure can be viewed
at wileyonlinelibrary.com]
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F I G U R E 11 The state response of the system in case 2
[Colour figure can be viewed at wileyonlinelibrary.com]
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5 CONCLUSION

This article focuses on the quantized control for neural networks with AETS and complex cyber-attacks. A mathemat-
ical model of complex cyber-attacks is firstly built for neural networks. A quantization mechanism and an AETS are
employed to mitigate the burden of network transmission. Then the sufficient conditions, which can ensure the stability
of closed-loop system, are derived by utilizing Lyapunov stability theory. Moreover, the controller gain can be acquired by
solving a series of linear matrix inequalities. At last, a simulation example is presented to verify the feasibility of proposed
method. In the future, we will study the detection and isolation of the cyber-attacks for neural networks.
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APPENDIX A. THE ELEMENTS OF THEOREM 1

Ψ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ1
11 ∗ ∗ ∗ ∗

Υ1
21 Υ1

22 ∗ ∗ ∗
Υ1

31 Υ1
32 Υ1

33 ∗ ∗
Υ1

41 Υ1
42 0 Υ1

44 ∗
Υ1

51 Υ1
52 0 0 Υ1

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Υ1
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Θ1
21 Θ1

22 ∗ ∗ ∗ ∗ ∗ ∗
Θ1

31 Θ1
32 Θ1

33 ∗ ∗ ∗ ∗ ∗
Θ1

41 0 0 Θ1
44 ∗ ∗ ∗ ∗

Θ1
51 0 0 Θ1

54 Θ1
55 ∗ ∗ ∗

Θ1
61 0 0 0 0 Θ1

66 ∗ ∗
Θ1

71 0 0 0 0 Θ1
76 Θ1

77 ∗
Θ1

81 0 0 0 0 0 0 −Ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ1

11 = 2𝜌1P1 + P1A + ATP1 + Q1 + H1 + J1 − f1R1 − f2Z1 − f3S1, f1 = e−2𝜌1dM

Θ1
21 = f1(RT

1 − UT
1 ), f2 = e−2𝜌1𝜂M ,Θ1

22 = f1(−2R1 + UT
1 + U1) − N1Γ−

f + FTF

Θ1
31 = f1UT

1 ,Θ
1
32 = f1(RT

1 − UT
1 ),Θ

1
33 = f1(Q1 − R1), f3 = e−2𝜌1𝜏M

Θ1
41 = f2(ZT

1 − W T
1 ),Θ

1
44 = f2(−2Z1 + W1 + W T

1 ) − M1Γ−
g ,Θ1

51 = f2W1

Θ1
54 = f2(ZT

1 − W T
1 ),Θ

1
55 = f2(H1 − Z1),Θ1

66 = f3(−2S1 + L1 + LT
1 ), 𝜚1 = 1 − 𝜚

Θ1
61 = (I + Δr)𝜚1𝜀1KTBTP1 + f3S1 − f3L1,Θ1

71 = f3LT
1 ,Θ

1
76 = f3(ST

1 − LT
1 )

Θ1
77 = f3(J1 − S1),Θ1

81 = (I + Δr)𝜚1𝜀1KTBTP1, 𝛿1 =
√
𝜀𝜀1, 𝛿2 =

√
𝜚𝜚1, 𝜀1 = 1 − 𝜀

Υ1
21 =

⎡⎢⎢⎢⎢⎢⎣

𝜚𝜀1KTBTP1 0 0 0 01×4

𝜚𝜀1KTBTP1 0 0 0 01×4

ETP1 0 0 Γ+
g M1 01×4

𝜀KTBTP1 Γ+
f N1 0 0 01×4

⎤⎥⎥⎥⎥⎥⎦
Υ1

22 = diag{𝜎Ω,−Ω,−M1,−N1},Υ1
31 =

[
Λ1

31 Ξ1
31

]
,Υ1

32 =
[
Λ1

32 Ξ1
32

]

Λ1
31 =

⎡⎢⎢⎢⎢⎢⎣

dMP1A 01×4 dM𝜚1𝜀1P1BK
0 01×4 dM(I + Δr)𝛿1𝜀1P1BK
0 01×4 dM(I + Δr)𝛿2P1BK
0 01×4 −dM𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,Ξ1

31 =

⎡⎢⎢⎢⎢⎢⎣

0 dM𝜚1𝜀1P1BK
0 dM(I + Δr)𝛿1𝜀1P1BK
0 dM(I + Δr)𝛿2P1BK
0 −dM𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Ξ1

32 =

⎡⎢⎢⎢⎢⎢⎣

dMP1E dM𝜀P1BK
0 dMP1BK
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
,Λ1

32 =

⎡⎢⎢⎢⎢⎢⎣

dM𝜚𝜀1P1BK dM𝜚𝜀1P1BK
dM𝛿1𝜀1P1BK dM𝛿1𝜀1P1BK
−dM𝛿2P1BK −dM𝛿2P1BK
−dM𝛿1𝛿2P1BK −dM𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Υ1

33 = diag{−P1R−1
1 P1,−P1R−1

1 P1,−P1R−1
1 P1,−P1R−1

1 P1}

Υ1
41 =

[
Λ1

41 Ξ1
41

]
,Υ1

42 =
[
Λ1

42 Ξ1
42

]
,Υ51 =

[
Λ1

51 Ξ1
51

]
,Υ52 =

[
Λ1

52 Ξ1
52

]
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Λ1
41 =

⎡⎢⎢⎢⎢⎢⎣

𝜂MP1A 01×4 𝜂M𝜚1𝜀1P1BK
0 01×4 𝜂M(I + Δr)𝛿1𝜀1P1BK
0 01×4 𝜂M(I + Δr)𝛿2P1BK
0 01×4 −𝜂M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,Ξ1

41 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜂M𝜚1𝜀1P1BK
0 𝜂M(I + Δr)𝛿1𝜀1P1BK
0 𝜂M(I + Δr)𝛿2P1BK
0 −𝜂M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Λ1

42 =

⎡⎢⎢⎢⎢⎢⎣

𝜂M𝜚𝜀1P1BK 𝜂M𝜚𝜀1P1BK
𝜂M𝛿1𝜀1P1BK 𝜂M𝛿1𝜀1P1BK
−𝜂M𝛿2P1BK −𝜂M𝛿2P1BK
−𝜂M𝛿1𝛿2P1BK −𝜂M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,Ξ1

42 =

⎡⎢⎢⎢⎢⎢⎣

𝜂MP1E d1𝜀P1BK
0 𝜂MP1BK
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
Υ1

44 = diag{−P1Z−1
1 P1,−P1Z−1

1 P1,−P1Z−1
1 P1 − P1Z−1

1 P1}

Λ1
51 =

⎡⎢⎢⎢⎢⎢⎣

𝜏MP1A 01×4 𝜏M𝜚1𝜀1P1BK
0 01×4 𝜏M(I + Δr)𝛿1𝜀1P1BK
0 01×4 𝜏M(I + Δr)𝛿2P1BK
0 01×4 −𝜏M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,Ξ1

51 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜏M𝜚1𝜀1P1BK
0 𝜏M(I + Δr)𝛿1𝜀1P1BK
0 𝜏M(I + Δr)𝛿2P1BK
0 −𝜏M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Λ1

52 =

⎡⎢⎢⎢⎢⎢⎣

𝜏M𝜚𝜀1P1BK 𝜏M𝜚𝜀1P1BK
𝜏M𝛿1𝜀1P1BK 𝜏M𝛿1𝜀1P1BK
−𝜏M𝛿2P1BK −𝜏M𝛿2P1BK
−𝜏M𝛿1𝛿2P1BK −𝜏M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,Ξ1

52 =

⎡⎢⎢⎢⎢⎢⎣

𝜏MP1E 𝜏M𝜀P1BK
0 𝜏MP1BK
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
Υ1

55 = diag{−P1S−1
1 P1,−P1S−1

1 P1,−P1S−1
1 P1,−P1S−1

1 P1}

Ψ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ2
11 ∗ ∗ ∗ ∗

Υ2
21 Υ2

22 ∗ ∗ ∗
Υ2

31 Υ2
32 Υ2

33 ∗ ∗
Υ2

41 Γ+
g M2 0 −M2 ∗

Υ2
51 0 0 Υ2

54 Υ2
55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Υ2

11 = 2𝜌2P2 + P2A + ATP2 + H2 − f4Z2,Υ2
21 = f4(ZT

2 − W T
2 ),Υ

2
31 = f4W2

Υ2
22 = f4(−2Z2 + W2 + W T

2 ) − M2Γ−
g ,Υ2

32 = f4(ZT
2 − W T

2 ),Υ
2
33 = −f4Z2

Υ2
41 = ETP2,Υ2

51 = 𝜂MP2A,Υ2
54 = 𝜂MP2E,Υ2

55 = −P2S−1
2 P2, f4 = e−2𝜌2𝜂M

APPENDIX B. THE PROOF OF THEOREM 1

Proof. Choose the following Lyapunov functional candidate as

Vi(t) = V1i(t) + V2i(t) + V3i(t) + V4i(t) (B1)

where
V1i(t) = xT(t)Pix(t)

V2i(t) = ∫
t

t−dM

xT(s)(⋅)Qix(s)ds + ∫
t

t−𝜂M

xT(s)(⋅)Hix(s)ds + ∫
t

t−𝜏M

xT(s)(⋅)Jix(s)ds

V3i(t) = dM ∫
0

−dM
∫

t

t+𝜃
ẋT(s)(⋅)Riẋ(s)dsd𝜃 + 𝜂M ∫

0

−𝜂M
∫

t

t+𝜃
ẋT(s)(⋅)Ziẋ(s)dsd𝜃

+ 𝜏M ∫
0

−𝜏M
∫

t

t+𝜃
ẋT(s)(⋅)Siẋ(s)dsd𝜃

V4i(t) =
1
2
𝜋2(t)e2(−1)i𝜌it

where Pi > 0, Qi > 0, Hi > 0, Ji > 0, Ri > 0, Zi > 0, Si > 0, 𝜌i > 0(i = 1, 2), 𝜃 < 0 and (⋅) = e2(−1)i𝜌i(t−s).
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By taking derivation and expectation on V i(x(t)), one can get

E{V̇ 1i(t)} = 2xT(t)Piẋ(t)
E{V̇ 2i(t)} = xT(t)(Qi + Hi + Ji)x(t) − e−2𝜌idM xT(t − dM)Qix(t − dM)

− e−2𝜌i𝜂M xT(t − 𝜂M)Hix(t − 𝜂M) − e−2𝜌i𝜏M xT(t − 𝜏M)Jix(t − 𝜏M)

+ 2(−1)i𝜌i ∫
t

t−dM

xT(s)(⋅)Qix(s)ds + 2(−1)i𝜌i ∫
t

t−𝜂M

xT(s)(⋅)Hix(s)ds

+ 2(−1)i𝜌i ∫
t

t−𝜏M

xT(s)(⋅)Jix(s)ds

E{V̇ 3i(t)} = ẋT(t)(d2
MRi + 𝜂2

MZi + 𝜏2
MSi)ẋ(t) − dMe−2𝜌idM ∫

t

t−dM

ẋT(s)Riẋ(s)ds

− 𝜂Me−2𝜌i𝜂M ∫
t

t−𝜂M

ẋT(s)Ziẋ(s)ds − 𝜏Me−2𝜌i𝜏M ∫
t

t−𝜏M

ẋT(s)Siẋ(s)ds

+ 2(−1)i𝜌idM ∫
0

−dM
∫

t

t+𝜃
ẋT(s)(⋅)Riẋ(s)dsd𝜃 + 2(−1)i𝜌i𝜂M ∫

0

−𝜂M
∫

t

t+𝜃
ẋT(s)(⋅)Ziẋ(s)dsd𝜃

+ 2(−1)i𝜌i𝜏M ∫
0

−𝜏M
∫

t

t+𝜃
ẋT(s)(⋅)Siẋ(s)dsd𝜃

E{V̇ 4i(t)} =
(

1
𝜋(t)

− 𝜎
)

eT
k (t)Ωek(t)e2(−1)i𝜌it + (−1)i𝜌i𝜋

2(t)e2(−1)i𝜌it

Inspired by the method in [38], we can get the following inequality:

1
𝜋(t)

eT
k (t)Ωek(t) − 𝜎eT

k (t)Ωek(t) ≤ xT(t − 𝜏(t))Ωx(t − 𝜏(t)) − 𝜎eT
k (t)Ωek(t) (B2)

It is easy to acquire the following inequality with some simple calculation

E{V̇ i(t)} ≤ 2(−1)i𝜌iVi(t) + 2𝜌ixT(t)Pix(t) + (xT(t − 𝜏(t))Ωx(t − 𝜏(t)) − 𝜎eT
k (t)Ωek(t))e2(−1)i𝜌it

+ 2xT(t)Piẋ(t) + xT(t)(Qi + Hi + Ji)x(t) − e−2𝜌idM xT(t − dM)Qix(t − dM)
− e−2𝜌i𝜂M xT(t − 𝜂M)Hix(t − 𝜂M) − e−2𝜌i𝜏M xT(t − 𝜏M)Jix(t − 𝜏M)

+ ẋT(t)(d2
MRi + 𝜂2

MZi + 𝜏2
MSi)ẋ(t) − dMe−2𝜌idM ∫

t

t−dM

ẋT(s)Riẋ(s)ds

− 𝜂Me−2𝜌i𝜂M ∫
t

t−𝜂M

ẋT(s)Ziẋ(s)ds − 𝜏Me−2𝜌i𝜏M ∫
t

t−𝜏M

ẋT(s)Siẋ(s)ds

By employing Lemma (1), it can be obtained

− dMe−2𝜌idM ∫
t

t−dM

ẋT(s)Riẋ(s)ds ≤ e−2𝜌idM𝜇T
1 (t)Ξ1i𝜇1(t) (B3)

− 𝜂Me−2𝜌i𝜂M ∫
t

t−𝜂M

ẋT(s)Ziẋ(s)ds ≤ e−2𝜌i𝜂M𝜇T
2 (t)Ξ2i𝜇2(t) (B4)

− 𝜏Me−2𝜌i𝜏M ∫
t

t−𝜏M

ẋT(s)Siẋ(s)ds ≤ e−2𝜌i𝜏M𝜇T
3 (t)Ξ3i𝜇3(t) (B5)

where Ξ1i, Ξ2i, Ξ3i, Ri, Ui, Zi, W i, Si and Li(i= 1, 2) are matrices with appropriate dimensions, and

Ξ1i =

[ −Ri ∗ ∗
Ri − Ui −2Ri + Ui + UT

i ∗
Ui Ri − Ui −Ri

]
, Ξ2i =

[ −Zi ∗ ∗
Zi − Wi −2Zi + Wi + W T

i ∗
Wi Zi − Wi −Zi

]
,
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Ξ3i =

[ −Si ∗ ∗
Si − Li −2Si + Li + LT

i ∗
Li Si − Li −Si

]
, 𝜇1(t) =

[ x(t)
x(t − d(t))
x(t − dM)

]
, 𝜇2(t) =

[ x(t)
x(t − 𝜂(t))
x(t − 𝜂M)

]
,

𝜇3(t) =

[ x(t)
x(t − 𝜏(t))
x(t − 𝜏M)

]
.

Based on the inequality (14) in Assumption 4, the following inequality can be acquired

xT(x(t − d(t)))FTFx(x(t − d(t))) − f T(x(t − d(t)))f (x(t − d(t))) ≥ 0 (B6)

Since there exist matrices Mi and Ni(i= 1, 2), by using Lemma 3, one can obtain[
x(t − 𝜂(t))

g(x(t − 𝜂(t)))

]T [
−MiΓ−

g MiΓ+
g

Γ+
g Mi −Mi

][
x(t − 𝜂(t))

g(x(t − 𝜂(t)))

]
≥ 0

[
x(t − d(t))

f (x(t − d(t)))

]T [
−NiΓ−

f NiΓ+
f

Γ+
f Ni −Ni

][
x(t − d(t))

f (x(t − d(t)))

]
≥ 0 (B7)

Next, two cases of i= 1 and i= 2 will be discussed, respectively.
When i= 1, one can obtain

E{ẋT(t)R1ẋ(t)} = TR1 + 𝛿2
1TR1 + 𝛿2

2TR1 + 𝛿2
1𝛿

2
2TR1

E{ẋT(t)Z1ẋ(t)} = TZ1 + 𝛿2
1TZ1 + 𝛿2

2TZ1 + 𝛿2
1𝛿

2
2TZ1

E{ẋT(t)S1ẋ(t)} = TS1 + 𝛿2
1TS1 + 𝛿2

2TS1 + 𝛿2
1𝛿

2
2TS1 (B8)

where

 = BK(1 − 𝜀)(1 − 𝜚)[x(t − 𝜏(t)) + ek(t)] + Eg(t − 𝜂(t)) + Ax(t) + BK𝜀f (x(t − d(t)))
+ BK(1 − 𝜀)𝜚xr(t)

 = BKf (x(t − d(t))) − 𝜚BKxr(t) − (1 − 𝜚)BK(I + Δr)[x(t − 𝜏(t)) + ek(t)]
 = (1 − 𝜀)BKxr(t) − (1 − 𝜀)BK(I + Δr)[x(t − 𝜏(t)) + ek(t)]
 = −BKxr(t) + BK(I + Δr)[x(t − 𝜏(t)) + ek(t)]

Combining (B1)–(B8), one can derive the following inequality by using the Schur complement.

E{V̇ 1(t)} ≤ − 2𝜌1V1(t) +𝜛T
1 (t)[Υ1 + dME{ẋT(t)R1ẋ(t)} + 𝜂ME{ẋT(t)Z1ẋ(t)}

+ 𝜏ME{ẋT(t)S1ẋ(t)}]𝜛1(t)

where
𝜛1(t) =

[
xT(t) 𝜑1(t) 𝜑2(t) 𝜑3(t) 𝜑4(t)

]T
, 𝜑1(t) =

[
xT(t − d(t)) xT(t − dM)

]
,

𝜑2(t) =
[

xT(t − 𝜂(t)) xT(t − 𝜂M)
]
, 𝜑3(t) =

[
xT(t − 𝜏(t)) xT(t − 𝜏M)

]
,

𝜑4(t) =
[

eT
k (t) xT(tr − 𝜏(tr)) eT

k (tr) gT(x(t − 𝜂(t))) f T(x(t − d(t)))
]

According to the inequality (28), one can get 𝜛T
1 (t)[Υ1 + dME{ẋT(t)R1ẋ(t)} + 𝜂ME{ẋT(t)Z1ẋ(t)} +

𝜏ME{ẋT(t)S1ẋ(t)}]𝜛1(t) < 0. Then, we can obtain E{V̇ 1(t)} ≤ −2𝜌1V1(t).
When i= 2, following the same analysis method, it is easy to get

E{V̇ 2(t)} ≤ 2𝜌2V2(t) +𝜛T
2 (t)[Υ2 + dME{ẋT(t)R2ẋ(t)} + 𝜂ME{ẋT(t)Z2ẋ(t)}

+ 𝜏ME{ẋT(t)S2ẋ(t)}]𝜛2(t)

where𝜛2(t) = [xT(t) xT(t − 𝜂(t)) xT(t − 𝜂M) gT(x(t − 𝜂(t)))]T .



4724 LIU et al.

Based on the inequality (28), it can obtain 𝜛T
2 (t)[Υ2 + dME{ẋT(t)R2ẋ(t)} + 𝜂ME{ẋT(t)Z2ẋ(t)} +

𝜏ME{ẋT(t)S2ẋ(t)}]𝜛2(t) < 0, one can get E{V̇ 2(t)} ≤ 2𝜌2V2(t).
Following the proposed method in Reference 37, for t ∈ [ti,n, t3−i,n+i−1), i ∈ {1, 2},n ∈ N, it can be acquired

E{Vi(t)} ≤ e2(−1)i𝜌i(t−ti,n)E{Vi(ti,n)}

where

ti,n =

{
wn−1, i = 1
wn−1 + 𝜖n−1, i = 2

Then we have {
E{V1(t)} ⩽ e−2𝜌1(t−t1,n)E{V1(t)}, t ∈ [t1,n, t2,n)
E{V2(t)} ⩽ e2𝜌2(t−t2,n)E{V2(t)}, t ∈ [t2,n, t1,n+1)

(B9)

By combining the inequalities (29)–(31), it yields that{
E{V1(t1,n)} − a2E{V2(t−1,n)} ≤ 0
E{V2(t2,n)} − a1e2(𝜌1+𝜌2)hE{V1(t−2,n)} ≤ 0

(B10)

If t ∈ [t1, n, t2, n), the following inequality can be acquired by combining (B9) and (B10)

E{V1(t)} ≤ a2e−2𝜌1(t−t1,n)E{V2(t−1,n)}

≤ e (⋅)×2(𝜌1+𝜌2)h+ (⋅)ln(a1a2)E{V1(0)}ed

≤ ev1(t)E{V1(0)}

where d = 2𝜌2(wn − wn−1 − 𝜖n−1 − 𝜖n−2 − … − 𝜖1 − 𝜖0) − 2𝜌1(𝜖n−1 + 𝜖n−2 + … + 𝜖1 + 𝜖0), v1(t) = (0 + t
m

) × 2(𝜌1 +
𝜌2)h + 2𝜌2cmax(0 + t

m
) − 2𝜌2𝜖min(0 + t

m
) + (0 + t

m
)ln(a1a2).

Based on the equality (31), it can be obtained

E{V1(t)} ≤ ep1 e−st
E{V1(0)} (B11)

where p1 = 20(𝜌1 + 𝜌2)h + 0ln(a1a2) + 2𝜌2cmax0 − 2𝜌1𝜖min0.
If t ∈ [t2, n, t1, n+ 1), it is easy to get

E{V2(t)} ≤ E{V1(0)}
a2

ev2(t)

Then

E{V2(t)} ≤ E{V1(0)}
a2

ep2 e−st (B12)

where v2(t) = (0 + t
m

+ 1) × 2(𝜌1 + 𝜌2)h + 2𝜌2cmax(0 + t
m

+ 1) − 2𝜌1𝜖min(0 + t
m

+ 1) + (0 + t
m

+ 1)ln(a1a2), p2 =
(0 + 1)(2(𝜌1 + 𝜌2)h + ln(a1a2) + 2𝜌2cmax − 2𝜌1𝜖min).

Define  = max{ep1 ,
ep2

a2
}, o1 =min{smin(Pi)}, o2 =max{smax(Pi)} and o3 = max{smax(Pi)} + hsmax(Q1) + h2

2
smax(R1 +

Z1).
By combining the equalities (B11) and (B12), it can be acquired

E{Vi(t)} ≤ e−st
E{V1(0)} (B13)



LIU et al. 4725

Based on the definition of V i(t), it is easy to derive

E{Vi(t)} ≥ o1||x(t)||2,E{V1(0)} ≤ o3||𝜑0||2h (B14)

Combining (B14) and (B13), one can get that

E{||x(t)||} ≤
√o3

o1
e𝛼t||𝜑0||h,∀t ≥ 0 (B15)

That completes the proof. ▪

APPENDIX C. THE ELEMENTS OF THEOREM 2

Ψ̂
1
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ̂1
11 ∗ ∗ ∗ ∗

Υ̂1
21 Υ̂1

22 ∗ ∗ ∗
Υ̂1

31 Υ̂1
32 Υ̂1

33 ∗ ∗
Υ̂1

41 Υ̂1
42 0 Υ̂1

44 ∗
Υ̂1

51 Υ̂1
52 0 0 Υ̂1

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Υ̂1
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ̂
1
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Θ̂
1
21 Θ̂

1
22 ∗ ∗ ∗ ∗ ∗ ∗

Θ̂
1
31 Θ̂

1
32 Θ̂

1
33 ∗ ∗ ∗ ∗ ∗

Θ̂
1
41 0 0 Θ̂

1
44 ∗ ∗ ∗ ∗

Θ̂
1
51 0 0 Θ̂

1
54 Θ̂

1
55 ∗ ∗ ∗

Θ̂
1
61 0 0 0 0 Θ̂

1
66 ∗ ∗

Θ̂
1
71 0 0 0 0 Θ̂

1
76 Θ̂

1
77 ∗

Θ̂
1
81 0 0 0 0 0 0 −Ω̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Θ̂

1
11 = 2𝜌1X1 + X1A + ATX1 + Q̂1 + Ĥ1 + Ĵ1 − f1R̂1 − f2Ẑ1 − f3Ŝ1, f1 = e−2𝜌1dM

Θ̂
1
21 = f1(R̂

T
1 − ÛT

1 ), Θ̂
1
22 = f1(−2R̂1 + ÛT

1 + Û1) − N̂1Γ−
f + X1FTFX1

Θ̂
1
31 = f1ÛT

1 , f2 = e−2𝜌1𝜂M , Θ̂
1
32 = f1(R̂

T
1 − ÛT

1 ), Θ̂
1
33 = f1(Q̂1 − R̂1), f3 = e−2𝜌1𝜏M

Θ̂
1
41 = f2(Ẑ

T
1 − Ŵ T

1 ), Θ̂
1
51 = f2Ŵ1, Θ̂

1
44 = f2(−2Ẑ1 + Ŵ1 + Ŵ T

1 ) − M̂1Γ−
g

Θ̂
1
54 = f2(Ẑ

T
1 − Ŵ T

1 ), Θ̂
1
55 = f2(Ĥ1 − Ẑ1), Θ̂

1
61 = (I + Δr)𝜚1𝜀1Y TBT + f3Ŝ1 − f3L̂1

Θ1
66 = f3(−2Ŝ1 + L̂1 + L̂T

1 ), Θ̂
1
71 = f3L̂T

1 , Θ̂
1
76 = f3(ŜT

1 − L̂T
1 ), Θ̂

1
77 = f3(J1 − Ŝ1)

Θ̂
1
81 = (I + Δr)𝜚1𝜀1Y TBT , 𝜀1 = 1 − 𝜀, 𝜚1 = 1 − 𝜚, 𝛿1 =

√
𝜀𝜀1, 𝛿2 =

√
𝜚𝜚1

Υ̂1
21 =

⎡⎢⎢⎢⎢⎢⎣

𝜚𝜀1Y TBT 0 0 0 01×4

𝜚 𝜀1Y TBT 0 0 0 01×4

X1ET 0 0 Γ+
g M̂1 01×4

𝜀Y TBT Γ+
f N̂1 0 0 01×4

⎤⎥⎥⎥⎥⎥⎦
Υ1

22 = {𝜎Ω̂,−Ω̂,−M̂1,−N̂1}, Υ̂
1
31 =

[
Λ̂1

31 Ξ̂1
31

]
, Υ̂1

32 =
[
Λ̂1

32 Ξ̂1
32

]

Λ̂1
31 =

⎡⎢⎢⎢⎢⎢⎣

dMAX1 01×4 dM𝜚1𝜀1BY
0 01×4 dM(I + Δr)𝛿1𝜀1BY
0 01×4 dM(I + Δr)𝛿2BY
0 01×4 −dM𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Ξ̂1

31 =

⎡⎢⎢⎢⎢⎢⎣

0 dM𝜚1𝜀1BY
0 dM(I + Δr)𝛿1𝜀1BY
0 dM(I + Δr)𝛿2BY
0 −dM𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
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Ξ̂1
32 =

⎡⎢⎢⎢⎢⎢⎣

dMEX1 dM𝜀BY
0 dMBY
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
, Λ̂1

32 =

⎡⎢⎢⎢⎢⎢⎣

dM𝜚 𝜀1BY dM𝜚 𝜀1BY
dM𝛿1𝜀1BY dM𝛿1𝜀1BY
−dM𝛿2BY −dM𝛿2BY
−dM𝛿1𝛿2BY −dM𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
Υ̂1

33 = diag{−2e11X1 + e2
11R̂1,−2e11X1 + e2

11R̂1 − 2e11X1 + e2
11R̂1,−2e11X1 + e2

11R̂1}

Λ̂1
41 =

⎡⎢⎢⎢⎢⎢⎣

𝜂MAX1 01×4 𝜂M𝜚1𝜀1BY
0 01×4 𝜂M(I + Δr)𝛿1𝜀1BY
0 01×4 𝜂M(I + Δr)𝛿2BY
0 01×4 −𝜂M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Ξ̂1

41 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜂M𝜚1𝜀1BY
0 𝜂M(I + Δr)𝛿1𝜀1BY
0 𝜂M(I + Δr)𝛿2BY
0 −𝜂M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
Υ̂1

41 =
[
Λ̂1

41 Ξ̂1
41

]
, Υ̂1

42 =
[
Λ̂1

42 Ξ̂1
42

]
, Υ̂51 =

[
Λ̂1

51 Ξ̂1
51

]
, Υ̂52 =

[
Λ̂1

52 Ξ̂1
52

]

Λ̂1
42 =

⎡⎢⎢⎢⎢⎢⎣

𝜂M𝜚 𝜀1BY 𝜂M𝜚 𝜀1BY
𝜂M𝛿1𝜀1BY 𝜂M𝛿1𝜀1BY
−𝜂M𝛿2BY −𝜂M𝛿2BY
−𝜂M𝛿1𝛿2BY −𝜂M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Ξ̂1

42 =

⎡⎢⎢⎢⎢⎢⎣

𝜂MEX1 𝜂M𝜀BY
0 𝜂MBY
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
Υ̂1

44 = diag{−2e12X1 + e2
12Ẑ1,−2e12X1 + e2

12Ẑ1 − 2e12X1 + e2
12Ẑ1,−2e12X1 + e2

12Ẑ1}

Λ̂1
51 =

⎡⎢⎢⎢⎢⎢⎣

𝜏MAX1 01×4 𝜏M𝜚1𝜀1BY
0 01×4 𝜏M(I + Δr)𝛿1𝜀1BY
0 01×4 𝜏M(I + Δr)𝛿2BY
0 01×4 −𝜏M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Ξ̂1

51 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜏M𝜚1𝜀1BY
0 𝜏M(I + Δr)𝛿1𝜀1BY
0 𝜏M(I + Δr)𝛿2BY
0 −𝜏M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
Λ̂1

52 =

⎡⎢⎢⎢⎢⎢⎣

𝜏M𝜚 𝜀1BY 𝜏M𝜚 𝜀1BY
𝜏M𝛿1𝜀1BY 𝜏M𝛿1𝜀1BY
−𝜏M𝛿2BY −𝜏M𝛿2BY
−𝜏M𝛿1𝛿2BY −𝜏M𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Ξ̂1

52 =

⎡⎢⎢⎢⎢⎢⎣

𝜏MEX1 𝜏M𝜀BY
0 𝜏MBY
0 0
0 0

⎤⎥⎥⎥⎥⎥⎦
Υ̂1

55 = diag{−2e13X1 + e2
13Ŝ1,−2e13X1 + e2

13Ŝ1 − 2e13X1 + e2
13Ŝ1,−2e13X1 + e2

13Ŝ1}

Ψ̂
2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ̂2
11 ∗ ∗ ∗ ∗

Υ̂2
21 Υ̂2

22 ∗ ∗ ∗
Υ̂2

31 Υ̂2
32 Υ̂2

33 ∗ ∗
Υ̂2

41 Γ+
g M2 0 −M̂2 ∗

Υ̂2
51 0 0 0 Υ̂2

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Υ̂2

11 = 2𝜌2X2 + X2A + ATX2H2 − f4Ẑ2 + FTF, Υ̂2
21 = f4(Ẑ

T
2 − Ŵ T

2 ), Υ̂
2
31 = f4Ŵ2

Υ̂2
22 = f4(−2Ẑ2 + Ŵ2 + Ŵ T

2 ) − M2Γ−
g , Υ̂

2
32 = f4(Ẑ

T
2 − Ŵ T

2 ), Υ̂
2
33 = −f4Ẑ2

Υ̂2
41 = X2ET , Υ̂2

51 = 𝜂MAX2, Υ̂
2
54 = 𝜂MEX2, Υ̂

2
55 = −2e13X2 + e2

13Ŝ2, f4 = e−2𝜌2𝜂M

APPENDIX D. THE PROOF OF THEOREM 2

Proof. When i= 1, the matrix Ψ1 can be equivalently expressed as follows

Ψ1 = Ψ̃1 + sym{HT
e ΔrHf } (D1)
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where

Ψ̃1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Υ̃1
11 ∗ ∗ ∗ ∗

Υ1
21 Υ1

22 ∗ ∗ ∗
Υ̃1

31 Υ1
32 Υ1

33 ∗ ∗
Υ̃1

41 Υ1
42 0 Υ1

44 ∗
Υ̃1

51 Υ1
52 0 0 Υ1

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Υ̃1
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θ1
11 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Θ1
21 Θ1

22 ∗ ∗ ∗ ∗ ∗ ∗
Θ1

31 Θ1
32 Θ1

33 ∗ ∗ ∗ ∗ ∗
Θ1

41 0 0 Θ1
44 ∗ ∗ ∗ ∗

Θ1
51 0 0 Θ1

54 Θ1
55 ∗ ∗ ∗

Θ1
61 0 0 0 0 Θ1

66 ∗ ∗
Θ1

71 0 0 0 0 Θ1
76 Θ1

77 ∗
Θ1

81 0 0 0 0 0 0 −Ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Υ̃1

31 =
[
Λ̃1

31 Ξ̃1
31

]
, Υ̃1

41 =
[
Λ̃1

41 Ξ̃1
41

]
, Υ̃1

51 =
[
Λ̃1

51 Ξ̃1
51

]
,

Λ̃1
31 =

⎡⎢⎢⎢⎢⎢⎣

dMP1A 01×4 dM𝜚1𝜀1P1BK
0 01×4 dM𝛿1𝜀1P1BK
0 01×4 dM𝛿2P1BK
0 01×4 −dM𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
, Ξ̃1

31 =

⎡⎢⎢⎢⎢⎢⎣

0 dM𝜚1𝜀1P1BK
0 dM𝛿1𝜀1P1BK
0 dM𝛿2P1BK
0 −dM𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Θ̃1

61 = 𝜚1𝜀1KTBTP1 + f3𝜏MS1 − f3𝜏ML1, Θ̃
1
81 = 𝜚1𝜀1KTBTP1

Λ̃1
41 =

⎡⎢⎢⎢⎢⎢⎣

𝜂MP1A 01×4 𝜂M𝜚1𝜀1P1BK
0 01×4 𝜂M𝛿1𝜀1P1BK
0 01×4 𝜂M𝛿2P1BK
0 01×4 −𝜂M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
, Ξ̃1

41 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜂M𝜚1𝜀1P1BK
0 𝜂M𝛿1𝜀1P1BK
0 𝜂M𝛿2P1BK
0 −𝜂M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
Λ̃1

51 =

⎡⎢⎢⎢⎢⎢⎣

𝜏MP1A 01×4 𝜏M𝜚1𝜀1P1BK
0 01×4 𝜏M𝛿1𝜀1P1BK
0 01×4 𝜏M𝛿2P1BK
0 01×4 −𝜏M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
, Ξ̃1

51 =

⎡⎢⎢⎢⎢⎢⎣

0 𝜏M𝜚1𝜀1P1BK
0 𝜏M𝛿1𝜀1P1BK
0 𝜏M𝛿2P1BK
0 −𝜏M𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
He =

[
He1 He2 He3

]
,Hf =

[
01×5 K 0 K 01×16

]
He1 =

[
𝜚1𝜀1P1B 01×12 dM𝛿1𝜀1P1B dM𝛿2P1B 0

]
He2 =

[
0 𝜂M𝛿1𝜀1P1B 𝜂M𝛿2P1B 0

]
He3 =

[
0 𝜏M𝛿1𝜀1P1B 𝜏M𝛿2P1B 0

]
By utilizing the Lemma 2, the following inequality can be obtained

Ψ̃1 + m1𝜅
2HT

e Δ2
r He + m−1

1 HT
f Hf < 0 (D2)

Then, according to Δ2
r < 𝜅

2, one can get

Ψ̃1 + m1HT
e He + m−1

1 HT
f Hf < 0 (D3)
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By using Schur complement, the equality (D3) can be rewritten as follows

Π1 =
⎡⎢⎢⎢⎣
Ψ̃1 ∗ ∗
𝜅He −m1I ∗
Hf 0 −m−1

1 I

⎤⎥⎥⎥⎦ (D4)

For given positive scalars e11, e12, e13, due to

⎧⎪⎨⎪⎩
(R1 − e11P1)R−1

1 (R1 − e11P1) ≥ 0
(Z1 − e12P1)Z−1

1 (Z1 − e12P1) ≥ 0
(S1 − e13P1)S−1

1 (S1 − e13P1) ≥ 0

(D5)

From (D5), one can get

⎧⎪⎨⎪⎩
−P1R−1

1 P1 ≤ −2e11P1 + e2
11R1

−P1Z−1
1 P1 ≤ −2e12P1 + e2

12Z1

−P1S−1
1 P1 ≤ −2e13P1 + e2

13S1

(D6)

By replacing −P1R−1
1 P1, −P1Z−1

1 P1, −P1S−1
1 P1 in Υ1

33, Υ1
44, Υ1

55 with −2e11P1 + e2
11R1, −2e12P1 + e2

12Z1, −2e13P1 + e2
13S1,

respectively.
When i= 1, define X1 = P−1

1 , 𝜍1 = diag{X1, … ,X1
⏟⏞⏞⏞⏟⏞⏞⏞⏟

24

, I, I}, Y =KX1, Q̂1 = X1Q1XT
1 , R̂1 = X1R1XT

1 , Û1 = X1U1XT
1 , Ŵ1 =

X1W1XT
1 , L̂1 = X1L1XT

1 , Ŝ1 = X1S1XT
1 , Ẑ1 = X1Z1XT

1 , Ĥ1 = X1H1XT
1 , Ĵ1 = X1J1XT

1 , M̂1 = X1M1XT
1 , N̂1 = X1N1XT

1 . Pre- and
post- multiplying both sides of Π1 with 𝜍1 and its transpose, one can get Ψ̂

1
. When i= 2, following the method above, the

matrix Ψ̂
2

also can be acquired. In addition, pre- and post- multiplying the inequalities in (29) with X2 and X1, respectively,
then by utilizing the Schur complement, we can obtain that (33)−(34) imply (29). Similarly, one can conclude that the
inequalities in (35)−(37) imply (30). Thus, the system (26) is exponentially mean-square stable. According to Y =KX1, it
is easy to get K = YX−1

1 .
This completes the proof. ▪


