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Abstract
This article presents an event-triggered approach to security control for
networked systems by using hybrid attack model. Stochastic deception attacks,
replay attacks, and denial of service attacks are assumed to occur in the commu-
nication network. The main contribution of the article is that an event-triggered
control strategy is presented to stabilize the networked systems based on the
hybrid attacks and the network resource limitations. A novel event-based model
for networked control systems under hybrid attacks is established. Based on the
proposed model, sufficient conditions are acquired to guarantee the closed-loop
system stability and the controller design method is developed. Finally, two
simulation examples are given to validate the feasibility of the proposed method.
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1 INTRODUCTION

Networked control systems (NCSs) have been an popular research subject in which the controlled plants, sensors, con-
trollers, and actuators1,2 are connected via communication networks. The components of NCSs can be modularized
and independently designed, so that the control system can be maintained by detecting and diagnosing each mod-
ule, thus reducing the cost of fault diagnosis. In addition, NCSs are superior to traditional control systems, which has
widely range of applications in harsh environments involving multiagent systems3,4 and remote control of teleoperation
robots.5,6 Stability and state estimation problems have been widely investigated for NCSs. For example, for NCSs with
probabilistic nonlinearities, the dynamic output feedback control problem is studied in Reference 7. Using the variable
sampling approach, the authors of Reference 8 investigate the security stabilization for a kind of wireless NCSs subject
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to attacks. The interacting multiple model estimator is designed for the NCSs in Reference 9, where the impact of the
control/observation packet arrival rate and the control input on the estimation performance is studied.

The introduction of networks into control system is attractive, which makes NCSs become a research hotspot.10-13 It is
still a challenge problem that how to design a suitable transmission mechanism and use the network resources properly. In
the past decades, the mostly used communication mechanism is time-triggered scheme, which transmits all sampled data.
However, if the NCS runs smoothly, the signals still transmitted periodically, then the redundant transmissions will result
in wasting the limited network resources. To decrease transmission frequency while ensuring the stability of the system,
event-triggered scheme was proposed to save the limited network resources, under which the sampled data to be released
into the network only when the corresponding event occurs.14-17 The effectiveness of the event-triggered scheme in getting
rid of the redundant data has been illustrated by some researchers. For instance, Yue et al. proposed an event-triggered
scheme based on period sampling14 and discussed the stability of NCS under the developed event-triggered scheme. The
event-triggered H∞ control problem for NCSs with packet losses was investigated in Reference 16. However, the above
literature does not consider the influence of network attacks (especially denial of service [DoS] attack). Inspired by this,
the design of event-triggered scheme under hybrid attack is studied in this article.

Besides network transmission strategies, network security issue is another major challenge in analysis and design of
NCS.18-20 In practice, communication network is vulnerable to cyberattacks due to its openness, which can be dangerous
for stability and normal operation of the system.21-23 It is very essential to understand the cyberattacks and take preventive
measures to avoid dangerous risks. There are several common types of cyberattacks, which are extensively considered,24,25

such as deception attacks, DoS attacks, and replay attacks. The deception attacks destroy the system by injecting false
signals into the true one.26-29 Replay attacks attempt to record and replay previous normal system data to replace the real
data transmitted in the network.30,31 Different from the deception and replay attacks, the DoS attacks aims to prevent
transmitted data from reaching the destination.32-34

Inspired by the above literature, this article proposes an event-triggered control approach for NCSs under hybrid
attacks. Different from mostly existing literature, the main contributions of this article are as follows:

(1) The control problem is firstly investigated for NCSs subject to hybrid attacks including deception, replay, and DoS
attacks at the same time.

(2) Considering the influence of hybrid attacks, a novel event-triggered scheme is proposed to save the limited resources.
(3) A novel system model for NCSs is established for the first time, which takes event-triggered scheme and hybrid

attacks into a unified framework.
(4) Sufficient conditions are derived to guarantee the stability of the augmented system and the controller design method

is developed.

Notation: Throughout this article, N denotes the set of natural numbers; Rn denotes the n-dimensional Euclidean
space; Rn×n denotes the set of n×n real matrices; MT denotes the transposition of the matrix M; M > 0 for M ∈ Rn×n
means that M is real symmetric and positive definite.

2 PRELIMINARIES

Consider the networked control system:

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn is the state vector of the controlled plant and u(t) ∈ Rm is the control input. A and B are known constant
matrices with appropriate dimensions.

The framework of event-triggered NCSs is shown in Figure 1, where the communication network may suffer from
hybrid attacks, including deception, replay, and DoS attacks. In order to make use of network bandwidth properly, an
event-triggered scheme is introduced to avoid redundant data transmission in communication networks. If the cyberat-
tacks are absent, the sampled data are transmitted via the network normally. The event-triggered condition is designed
as

eT
k (t)Ωek(t) > 𝜚xT(tkh + jh)Ωx(tkh + jh), (2)
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F I G U R E 1 Structure of networked control system
under event-triggered scheme and hybrid attacks [Colour
figure can be viewed at wileyonlinelibrary.com]

where h is the sample period of the smart sensor, 𝜚∈ [0, 1), Ω > 0, ek(t)= x(tkh)− x(tkh+ jh), k, j ∈ N, x(tkh) is the latest
transmission signal, and x(tkh+ jh) represents the current sampling signal.

For simplicity, we use tj
kh to represent tkh+ jh, where tkh is the latest triggered instant. Then, the next triggering instant

is determined by

tk+1h = tkh + inf
j≥1

{
jh|eT

k (t)Ωek(t) > 𝜚xT(tj
kh)Ωx(tj

kh)
}
. (3)

Define 𝜈(t) = t − tj
kh, then the latest triggering state can be represented as

x(tkh) = x(t − 𝜈(t)) + ek(t). (4)

Remark 1. It is noted that communication network resources are often limited. In order to get better system performance,
in this article, an event-triggered mechanism is added into the system. Then, the sampled information is transmitted into
the network only when it satisfies the condition (2), which greatly reduces the amount of transferred data.

Remark 2. The periodic event-triggered condition applied in this article is dependent on the sampled data of the system
state. It should be noted that the minimum time of two consecutive triggering events is at least one sampling period h,
which avoids the Zeno effect naturally.

As shown in Figure 1, a hybrid attack includes all three common types of attacks (deception, replay, and DoS ones).
It is assumed that the deception and replay attacks occur randomly, and DoS attack appears in a nonperiodic form. In
this article, we assume only the network at the sensor-to-controller link may be attacked. The proposed method can
be extended to a more general case, where both the sensor-to-controller and controller-to-actuator network links are
attacked.

When the sampled information is transmitted into the network, it may encounter deception attack signal which may
completely replace normal transmission data. Considering occurrence of the deception attacks, the transmitted data have
the following form

xD(t) = 𝛼(t)f (x(t)) + (1 − 𝛼(t))x(tkh), (5)

where the nonlinear function f (⋅) denotes the deception attacks. 𝛼(t) satisfying the Bernoulli distribution represents
whether or not the deception attack occurs. 𝛼(t) = 1 denotes deception attack occurs; 𝛼(t) = 0 denotes the triggered state
is transmitted normally.

In this article, we assume the replay attacks occur randomly which aim to deceive the controller. The attackers are
assumed to be able to intercepts the networked transmitted signals and record a finite amount of signals. We denote the
stored signals are M = {x(tr1 h), x(tr2 h), … , x(trm0

h)}, which will be updated all the time and the oldest one in M will be
replaced by the newly intercepted one. Due to the limitation of storing memory, the attackers cannot send replay attacks
all the time.35 If replay attacks happen, a replay attack x(trs h) ∈ M will be chosen from M to replace the normal transmitted
signal. We use 𝛽(t) to represent whether replay attacks occur or not. Then, under the replay attack and deception attacks,
the data transmitted is denoted as

xr(t) = 𝛽(t)x(trs h) + (1 − 𝛽(t))xD(t). (6)

http://wileyonlinelibrary.com
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The replay attack often assumed to occur at a certain time interval in other papers, as a special case, we consider that
the replay attack occurs at a certain instant. Once the replay attacks are detected by using time-stamp method, they will
be replaced by the last successful transmitted packets x(tk− 1h) which are held at the controller. Then, if the replay attacks
are detected, the control input (6) can be rewritten as

xr(t) = 𝛽(t)x(tk−1h) + (1 − 𝛽(t))xD(t). (7)

Define 𝜂r(t) = t − tk−1h, then, x(tk− 1h) can be written as x(t − 𝜂r(t)), where 0 < 𝜂r(t) < 𝜂. From (5) and (7), we can get
the state under deception attacks and replay attacks can be written as

xr(t) = 𝛽(t)x(t − 𝜂r(t)) + (1 − 𝛽(t))[𝛼(t)f (x(t)) + (1 − 𝛼(t))x(tkh)]. (8)

Assumption 1. In order to facilitate the analysis of this article, we assume that the attack instants can be obtained in
real time. In practice, the information related to DoS attack can be obtained online by using attack detection technology.

The occurrence of DoS attack is described as

𝛾(t) =

{
1, t ∈ [hn, hn + ln),
0, t ∈ [hn + ln, hn+1),

(9)

where hn represents the starting instant of the nth sleeping period, and ln denotes the length of the nth sleeping
period. If 𝛾(t) = 1, the DoS attack is sleeping (i.e., it does not occur), and the data are transmitted normally. Other-
wise, the DoS attack is active, and the data transmission is blocked. In addition, the condition 0≤ h0 < h1 < h1 + l1 < h2
< · · ·<hn < hn + ln < · · · is satisfied. For the sake of simplicity, define Gn,1 ≜ [hn, hn + ln) and Gn,2 ≜ [hn + ln, hn+1).

Then, considering the impacts of the above three types cyberattacks, the real input of the controller is represented as

x̂(t) = 𝛾(t){𝛽(t)x(t − 𝜂r(t)) + (1 − 𝛽(t))[𝛼(t)f (x(t)) + (1 − 𝛼(t))x(tkh)]}. (10)

Remark 3. In (10), if 𝛼(t) = 0, 𝛽(t) = 0, and 𝛾(t) = 1, the actual signal x̂(t) transmitted to the controller coincides with
x(tkh), which means that no attack occurs at this moment and the data are transmitted normally. Otherwise, the data
transmission process is attacked. In particular, if 𝛼(t) = 1, 𝛽(t) = 1, and 𝛾(t) = 0, the actual signal x̂(t) transmitted to the
controller is null, and all three kinds of attacks occur simultaneously.

Due to the presence of hybrid attack, the original event-triggered scheme is not completely suitable, which leads
to redesign of the transmission scheme. By considering the impact of hybrid attack, especially the DoS attack, the
transmission instant can be designed as

tn,kh = {tkl h satisfying (3)|tkl h ∈ Gn−1,1} ∪ {hn}, (11)

where kl, tkl ,n, l ∈ N. k denotes the number of triggering events in nth attack period, and k ∈ {1, … , k(n)} ≜ 𝜆(n), in
which k(n) = sup{k ∈ N|hn + ln ≥ tn,kh}.

It should be noted that the time sequence {tn, kh} in nth action period lies in either interval Gn− 1, 1 or right endpoint
of interval [hn− 1, hn). That means if there are no data satisfied the condition in the interval Gn− 1, 1, in other words,
{tkl h satisfying(3)|tkl h ∈ Gn−1,1} = ∅, then the triggering instant only occurs at hn.

Define 𝜖n,k ≜ sup
{

j ∈ N|tn,kh + jh < tn,k+1h
}

, then the event intervals n,k can be divided into several intervals.

n,k = ∪𝜖n,k+1
j=1  j

n,k, (12)

where the  j
n,k can be presented as: { j

n,k =
[
tn,kh + (j − 1)h, tn,kh + jh

)
𝜖n,k+1

n,k =
[
tn,kh + 𝜖n,kh, tn,k+1h

) . (13)

Note that

Gn,1 = ∪k(n)
k=0

{n,k ∩ Gn,1
}
. (14)
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Then combined with the above equations, Gn, 1 can be divided into small intervals.

Gn,1 = ∪k(n)
k=0 ∪

𝜖n,k+1
j=1 Θj

n,k, (15)

where Θj
n,k =  j

n,k ∩ Gn,1.
Thus, for k ∈ 𝜆(n),n ∈ N, define the following two piecewise-continuous functions

𝜈n,k(t) =

⎧⎪⎪⎨⎪⎪⎩

t − tn,kh, t ∈ Θ1
n,k

t − tn,kh − h, t ∈ Θ2
n,k

⋮

t − tn,kh − 𝜖n,kh, t ∈ Θ𝜖n,k+1
n,k

(16)

and

en,k(t) =

⎧⎪⎪⎨⎪⎪⎩

0, t ∈ Θ1
n,k

x
(

tn,kh
)
− x

(
tn,kh + h

)
, t ∈ Θ2

n,k

⋮

x
(

tn,kh
)
− x

(
tn,kh + 𝜖n,kh

)
, t ∈ Θ𝜖n,k+1

n,k

, (17)

where 𝜈n,k(t) ∈ [0, h), t ∈ n,k ∩ Gn,1.
From (11), one can get 𝜈n,k(t) and en, k(t) satisfy

eT
n,k(t)Ωen,k(t) < 𝜚xT (

t − 𝜈n,k(t)
)
Ωx

(
t − 𝜈n,k(t)

)
. (18)

Then, under the event-triggered scheme (11), the triggered state in the nth attack period can be represented as

x(tn,kh) = x
(

t − 𝜈n,k(t)
)
+ en,k(t), t ∈ n,k ∩ Gn,1. (19)

Furthermore, the real input of the controller in (10) under the event-triggered scheme (11) can be written as

x̂(t) = 𝛾(t){𝛽(t)x(t − 𝜂r(t)) + (1 − 𝛽(t))[𝛼(t)f (x(t)) + (1 − 𝛼(t))x(tn,kh)]}. (20)

Considering the three types of cyberattacks and the event-triggered scheme (11), combine (19) and (20), the controller
can be designed as

u(t) =
⎧⎪⎨⎪⎩

K
{
𝛽(t)x(t − 𝜂r(t)) + (1 − 𝛽(t))

[
x
(

t − 𝜈n,k(t)
)
+ en,k(t)

+𝛼(t)
(

f (xe(t)) − x
(

t − 𝜈n,k(t)
)
− en,k(t)

)]}
, t ∈ Gn−1,1,

0, t ∈ Gn−1,2.

(21)

Then, the system (1) can be modeled as:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) =

⎧⎪⎨⎪⎩
Ax(t) + BK

{
𝛽(t)x(t − 𝜂r(t)) + (1 − 𝛽(t))

[
x
(

t − 𝜈n,k(t)
)
+ en,k(t)

+𝛼(t)
(

f (x(t)) − x
(

t − 𝜈n,k(t)
)
− en,k(t)

)]}
, t ∈ Gn−1,1,

Ax(t), t ∈ Gn−1,2,

x(t) = 𝜑(t), t ∈ [−h, 0),

(22)

where 𝜑(t) is the initial function of x(t).
For the convenience of analysis in the next section, a lemma and some assumptions are introduced as follows.

Assumption 2 (36). For a given real constant matrix F, the deception attack signal f (x) satisfies the following condition:

||f (x)||2 ≤ ||Fx||2. (23)
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Assumption 3 (37). Assume that there exists a uniform upper bound bmax on the lengths of the DoS active periods, as
for the DoS active periods, there exists a low bound lmin.

⎧⎪⎨⎪⎩
bmax ≥ sup

n∈N

{hn − hn−1 − ln−1},

lmin ≤ inf
n∈N

{ln}.
(24)

Assumption 4 (37). Let n(t) denote DoS attacks off/on transitions during the interval [0, t). There exist a1 ≥ 0, a1 ∈ R

and 𝜂D > h, 𝜂D ∈ R, such that

n(t) ≤ a1 +
t
𝜂D

. (25)

3 MAIN RESULTS

Based on (22), we are devoted to give the following two theorems for the sufficient conditions of exponential stability of
system (22) and the controller design method.

Theorem 1. Given scalars 𝜌i > 0, 𝜍i > 0, 𝜂 > 0, attack probabilities 𝛼, 𝛽, trigger parameter 𝜚, sampling period h, DoS param-
eters a1, 𝜂D, lmin, bmax, and matrices F and K, the system (22) is exponentially mean-square stable if there exist matrices
Pi > 0, Qi > 0, Ri > 0, Zi > 0, Si, Ω > 0, matrices Li, and Ni with appropriate dimensions, such that for i= 1, 2 the following
inequalities hold:

Υ1
1 =

⎡⎢⎢⎢⎢⎢⎣

Γ1
11 ∗ ∗ ∗

Γ1
21 −I ∗ ∗

hΓ1
31 0 Γ1

33 ∗
𝜂Γ1

31 0 0 Γ1
44

⎤⎥⎥⎥⎥⎥⎦
< 0, (26)

Υ2
1 =

⎡⎢⎢⎢⎣
Γ2

11 ∗ ∗
hP2A Γ2

33 ∗
𝜂P2A 0 Γ2

44

⎤⎥⎥⎥⎦ < 0, (27)

P1 ≤ 𝜍2P2,P2 ≤ 𝜍1e2(𝜌1+𝜌2)hP1, (28)

Qi ≤ 𝜍3−iQ3−i, (29)

Ri ≤ 𝜍3−iR3−i, (30)

Si ≤ 𝜍3−iS3−i, (31)

Zi ≤ 𝜍3−iZ3−i, (32)

2𝜌1lmin − 2(𝜌1 + 𝜌2)h − 2𝜌2bmax − ln𝜍1𝜍2

𝜂D
> 0, (33)[

Ri ∗
LT

i Ri

]
< 0,

[
Zi ∗
NT

i Zi

]
< 0. (34)

Other symbol definitions are given in Appendix A.

Proof. See Appendix B ▪

Theorem 2. For given positive scalars 𝜌i, 𝜍i, 𝜂, 𝜀0, 𝜀i, 𝜅i,𝜇i, 𝜈i, attack probabilities 𝛼, 𝛽, trigger parameter 𝜚, sampling period h,
DoS parameters a1, 𝜂D, lmin, bmax, and matrix F, the system (22) is exponentially mean-square stable under the event-triggered
scheme (11) and hybrid attacks if there exist matrices Q̂i > 0, R̂i > 0, Ẑi > 0, Ŝi > 0, Xi > 0, Y > 0, Ω̂ > 0, and matrices L̂i,
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and N̂i with appropriate dimensions, such that for i= 1, 2 the following inequalities hold:

Υ̂1
1 =

⎡⎢⎢⎢⎢⎢⎣

Γ̂1
11 ∗ ∗ ∗

Γ̂1
21 −I ∗ ∗

hΓ̂1
31 0 Γ̂1

33 ∗
𝜂Γ̂1

31 0 0 Γ̂1
44

⎤⎥⎥⎥⎥⎥⎦
< 0, (35)

Υ̂2
1 =

⎡⎢⎢⎢⎣
Γ̂2

11 ∗ ∗
hAX2 Γ̂2

33 ∗
𝜂AX2 0 Γ̂2

44

⎤⎥⎥⎥⎦ < 0, (36)

[
−𝜍2X2 ∗

X2 −X1

]
≤ 0,

[
−𝜍1e2(𝜌1+𝜌2)hX1 ∗

X1 X2

]
≤ 0, (37)[

−𝜍3−iQ̂3−i ∗
X3−i −2𝜇iXi + 𝜇2

i Q̂i

]
≤ 0, (38)[

−𝜍3−iŜ3−i ∗
X3−i −2𝜀iXi + 𝜀2

i Ŝi

]
≤ 0, (39)[

−𝜍3−iR̂3−i ∗
X3−i −2𝜈iXi + 𝜈2

i R̂i

]
≤ 0, (40)[

−𝜍3−iẐ3−i ∗
X3−i −2𝜅iXi + 𝜅2

i Ẑi

]
≤ 0, (41)[

R̂i ∗
L̂T

i R̂i

]
< 0,

[
Ẑi ∗
N̂T

i Ẑi

]
< 0. (42)

Other symbols are defined in Appendix C.
Moreover, the designed controller gain can be given by

K = YX−1
1 . (43)

Proof. Appendix D ▪

Remark 4. Notice that one of the main difficulties in deriving the main results of this article is how to deal with the
nonlinear terms −PiR−1

i Pi and −PiZ−1
i Pi, (i = 1, 2) . However, we can tackle with the nonlinear terms using the cone

complementary linearization algorithm or use the inequalities in (D1). Although the cone complementary linearization
algorithm38 can cut conservativeness down, but it will need more auxiliary variables to obtain a feasible solution set. In
this article, we use the inequalities in (D1) to linearize the nonlinear terms. Then, by directly applying the MATLAB/LMI
Toolbox, the feasible solution set can be obtained solving matrix inequalities.

Remark 5. In this article, we devote to the controller design problem for event-triggered NCSs under three kinds of cyber-
attacks, which has not been discussed yet and still be a challenging issue. Based on the established model, sufficient
conditions are proposed to guarantee the stability of system (22). By applying the MATLAB/LMI Toolbox, the feasible
solution set of LMIs (33) and (35)–(42) in Theorem 2 can be obtained. Then the desired controller K can be derived
from (43).

4 SIMULATION EXAMPLES

Example 1. Consider the networked control system (22) with the parameters

A =
⎡⎢⎢⎢⎣
−1 0 −2
−1 −0.5 0
2 −1 −0.5

⎤⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎣

2
−1
−1

⎤⎥⎥⎥⎦ .
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The deception attack signal is selected as

f (x(t)) =
⎡⎢⎢⎢⎣
− tanh(0.15x(t))
− tanh(0.10x(t))
− tanh(0.05x(t))

⎤⎥⎥⎥⎦ .
According to Assumption 2, we can obtain that if the nonlinearity upper bound is given by F = diag{0.05, 0.10, 0.15}, the
condition (23) is satisfied.

We assume 𝜌1 = 0.05, 𝜌1 = 0.3, 𝜍1 = 𝜍2 = 1.01, 𝜂 = 0.2, 𝜀0 = 10, 𝜀i = 10, 𝜅i = 10, 𝜇i = 10, 𝜈i = 10, attack probabilities
𝛼 = 0.2, 𝛽 = 0.1, trigger parameter 𝜚= 0.02, sampling period h= 0.06, DoS parameters 𝜂D = 1, lmin = 1.78, bmax = 0.2. The
initial condition is x0 =

[
−1.8 1.2 −0.1

]T . Set 𝛼 = 0.08, 𝛽 = 0.05, bmax = 0.2, lmin = 1.78. This means that the networked
control system is under all three types of network attacks.

Solving the LMIs of Theorem 2 with MATLAB, one can obtain:

K =
[
−0.0559 0.0226 0.0244

]
, Ω =

⎡⎢⎢⎢⎣
0.0173 −0.0058 −0.0025
−0.0058 0.0142 0.0050
− 0.0025 0.0050 0.0112

⎤⎥⎥⎥⎦ . (44)

As shown in Table 1, the number of transmission packets under the event-triggered scheme proposed in this article is
recorded with different trigger parameters and the number of data transmission packets under time-triggered scheme is
also recorded. From the data in Table 1, one can see that the amount of the triggered dada is dependent on the sampling
period h and the triggering parameter 𝜚. The larger of h and 𝜚, the less amount of the triggered packets. Figure 3 shows
the release instants and intervals of the event generator. Figure 2 presents the state response under an event-triggered
scheme and hybrid attacks, validating that the system is exponentially stable while the transmission of data packets is
reduced. Obviously, the above simulation results illustrate the effectiveness of the designed controller.

Example 2. Considering the following mass spring system{
ẋ1(t) = x2(t)
ẋ2(t) = − k

m
x1(t) − c

m
x2(t) + 1

m
u(t)

. (45)

Choose xT(t) =
[
xT

1 (t) xT
2 (t)

]
, m= 1, k= c= 2, system (45) can be described as (1) with

A =

[
0 1
−2 −2

]
, B =

[
0
1

]
.

The deception attacks are

f (x(t)) =

[
− tanh(0.05x(t))
− tanh(0.10x(t))

]
.

with F = diag{0.05, 0.05}.

T A B L E 1 The number of data packet transmitted with
different sampling periods (T = 10 s)

Sampling period 0.02 0.06

Time-triggered 500 166

Event-triggered scheme with 𝜚= 0.1 72 69

Event-triggered scheme with 𝜚= 0.3 43 41

Event-triggered scheme with 𝜚= 0.5 34 32
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F I G U R E 2 State response under K and Ω in
(44) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 3 Release instants and intervals
under K and Ω in (44) [Colour figure can be
viewed at wileyonlinelibrary.com]

Choosing 𝜌1 = 0.0005, 𝜌1 = 0.0003, 𝜍1 = 𝜍2 = 2, 𝜂 = 0.2, 𝜀0 = 10, 𝜀i = 10, 𝜅i = 10, 𝜇i = 10, 𝜈i = 10, attack probabilities
𝛼 = 0.2, 𝛽 = 0.1, trigger parameter 𝜚= 0.02, sampling period h= 0.1, DoS parameters 𝜂D = 1, lmin = 1.88, bmax = 0.2. The
initial state is x(0) =

[
−1 0.5

]T .
By applying Theorem 2, we obtain the feedback gain K and the event triggering matrix Ω are

K =

[
0.0512 0.0225
0.0225 0.0402

]
, Ω =

[
0.2480 −0.2268

]
. (46)

The system state response with the feedback gain K and the event triggering matrix Ω in (46) are shown in Figures 4
and 5. From these simulation results, we can see that the designed controller can eliminate the effects of the cyberattacks
and ensure the stability of the mass-spring system while reducing the amount of transmissions.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 4 State response under K and Ω in (46)
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 The release instants and release
interval under K and Ω in (46) [Colour figure can be
viewed at wileyonlinelibrary.com]
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5 CONCLUSIONS

The event-based security control problem is studied for networked systems subjected to hybrid attacks. A hybrid attack,
including deception, replay, and DoS attacks, is considered for the first time. To save the limited network resources,
a novel event-triggered scheme is proposed with the consideration of hybrid attacks. Then, an event-based model for
NCSs under hybrid attacks is proposed. By applying the Lyapunov stability theory, sufficient conditions are obtained
in LMI terms to guarantee the system stability and determine the controller gain. In the future, we will focus on
more complex systems against hybrid-attacks, such as multiagent systems and discrete systems with missing sensor
measurements.
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APPENDIX A

Γ1
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1
11 ∗ ∗ ∗ ∗ ∗ ∗

Φ1
21 Φ1

22 ∗ ∗ ∗ ∗ ∗
LT

1 R1 − LT
1 Φ1

33 ∗ ∗ ∗ ∗
Φ1

41 0 0 −Ω ∗ ∗ ∗
Φ1

51 Φ1
52 Φ1

53 0 Φ1
55 ∗ ∗

N1 0 0 0 Z1 − NT
1 Φ1

66 ∗
𝛼𝛽1KTBTP1 0 0 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝛼1 = 1 − 𝛼, 𝛽1 = 1 − 𝛽, 𝛿1 =
√
𝛼 𝛼1, 𝛿2 =

√
𝛽 𝛽1,

Φ1
11 = 2𝜌1P1 + P1A + ATP1 + Q1 + S1 − R1 − Z1,

Φ1
21 = 𝛼1𝛽1KTBTP1 + R1 − L1, Φ1

22 = 𝜚Ω − 2R1 + L1 + LT
1 ,

Φ1
33 = −e−2𝜌1hQ1 − R1, Φ1

41 = 𝛼1𝛽1KTBTP1,

Φ1
51 = 𝛽1KTBTP1 + Z1 − N1,

Φ1
55 = −2Z1 + N1 + NT

1 , Φ1
66 = −e−2𝜌1𝜂S1 − Z1,

Γ1
21 =

[
F 0 0 0 0 0 0

]
,

Γ1
31 =

[
Π1 Π2 0 Π2 Π3 0 Π4

]
,

https://doi.org/10.1109/TCYB.2020.3030028
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Π1 =

⎡⎢⎢⎢⎢⎢⎣

P1A
0
0
0

⎤⎥⎥⎥⎥⎥⎦
, Π2 =

⎡⎢⎢⎢⎢⎢⎣

(Φ1
41)

T

−𝛿1𝛽1P1BK
−𝛿2𝛼1P1BK
𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
, Π3 =

⎡⎢⎢⎢⎢⎢⎣

𝛽P1BK
0

𝛿2P1BK
0

⎤⎥⎥⎥⎥⎥⎦
, Π4

⎡⎢⎢⎢⎢⎢⎣

𝛼𝛽1P1BK
𝛿1𝛽1P1BK
−𝛿2𝛼P1BK
−𝛿1𝛿2P1BK

⎤⎥⎥⎥⎥⎥⎦
,

Γ1
33 = diag{−P1R−1

1 P1,−P1R−1
1 P1,−P1R−1

1 P1,−P1R−1
1 P1},

Γ1
44 = diag{−P1Z−1

1 P1,−P1Z−1
1 P1,−P1Z−1

1 P1,−P1Z−1
1 P1},

Γ2
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ2
11 ∗ ∗ ∗ ∗

R1 − L1 Φ2
22 ∗ ∗ ∗

LT
2 R2 − LT

2 Φ2
33 ∗ ∗

Z2 − NT
2 0 0 Φ2

44 ∗
NT

2 0 0 Z2 − NT
2 Φ2

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ2
11 = 2𝜌2P2 + P2A + ATP2 + Q2 + S2 − R2 − Z2, Φ2

22 = −2R2 + L2 + LT
2 ,

Φ2
33 = −e−2𝜌2hQ2 − R2, Φ2

44 = −2Z2 + N2 + NT
2 , Φ2

55 = −e−2𝜌2𝜂S2 − Z2,

Γ2
33 = −P2R−1

2 P2, Γ2
44 = −P2Z−1

2 P2.

APPENDIX B

Proof of Theorem 1. Choose the following Lyapunov functional for system (22):

V𝜙(t)(t) = xT(t)P𝜙(t)x(t) + ∫
t

t−h
xT(s)exp(⋅)Q𝜙(t)x(s)ds + ∫

t

t−𝜂
xT(s)exp(⋅)S𝜙(t)x(s)ds

+ h∫
0

−h ∫
t

t+v
ẋT(s)exp(⋅)R𝜙(t)ẋ(s)dsdv + 𝜂 ∫

0

−𝜂 ∫
t

t+v
ẋT(s)exp(⋅)Z𝜙(t)ẋ(s)dsdv, (B1)

where P𝜙(t) > 0, Q𝜙(t) > 0, R𝜙(t) > 0, S𝜙(t) > 0, Z𝜙(t) > 0, exp(⋅) = e2(−1)𝜙(t)𝜌𝜙(t)(t−s), 𝜌𝜙(t) > 0, and

𝜙(t) =
⎧⎪⎨⎪⎩

1, t ∈ [−h, 0] ∪ ( ∪
n∈N

Gn,1),

2, t ∈ ∪
n∈N

Gn,2.

When 𝜙(t) = 1, by taking the derivative and mathematical expectation of equations (B1), one obtains:

E{V̇ 1(t)} ≤ −2𝜌1V1(t) + 2𝜌1xT(t)P1x(t) + 2E{xT(t)P1ẋ(t)} + xT(t)(Q1 + S1)x(t)

− xT(t − h)e−2𝜌1hQ1x(t − h) + h2
E{ẋT(t)R1ẋ(t)} + 𝜂

2
E{ẋT(t)Z1ẋ(t)}

− h∫
t

t−h
ẋT(s)e−2𝜌1hR1ẋ(s)ds − xT(t − 𝜂)e−2𝜌1𝜂Q1x(t − 𝜂)

− 𝜂 ∫
t

t−𝜂
ẋT(s)e−2𝜌1𝜂Z1ẋ(s)ds. (B2)

Using the lemma 1 in Reference 27, For L1 and N1 satisfying (35), the following equalities hold

− h∫
t

t−h
ẋT(s)e−2𝜌1hR1ẋ(s)ds ≤ 𝜃T

1 (t)U1𝜃1(t),

− 𝜂 ∫
t

t−𝜂
ẋT(s)e−2𝜌1𝜂Z1ẋ(s)ds ≤ 𝜃T

2 (t)U2𝜃2(t), (B3)
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where 𝜃T
1 (t) =

[
xT(t) xT(t − 𝜈n,k(t)) xT(t − h)

]
, 𝜃T

2 (t) =
[
xT(t) xT(t − 𝜂r(t)) xT(t − 𝜂)

]
.

U1 =

[ − R1 ∗ ∗
R1 − L1T −2R1 + L1 + LT

1 ∗
LT

1 R1 − LT
1 −R1

]
, U2 =

[ − Z1 ∗ ∗
Z1 − N1T −2Z1 + N1 + NT

1 ∗
NT

1 Z1 − NT
1 −Z1

]
.

Note that

E{ẋT(t)R1ẋ(t)} = TR1 + 𝛿2
1T

𝛼R1𝛼 + 𝛿2
2T

𝛽
R1𝛽 + 𝛿2

1𝛿
2
2T

𝛼𝛽
R1𝛼𝛽 , (B4)

E{ẋT(t)Z1ẋ(t)} = TZ1 + 𝛿2
1T

𝛼Z1𝛼 + 𝛿2
2T

𝛽
Z1𝛽 + 𝛿2

1𝛿
2
2T

𝛼𝛽
Z1𝛼𝛽 , (B5)

where

 = Ax(t) + 𝛽BKx(t − 𝜂r(t)) + 𝛼(1 − 𝛽)BKf (x(t)) + (1 − 𝛼)(1 − 𝛽)BK
[
(x(t − 𝜈n,k(t))) + en,k(t)

]
,

𝛼 = (1 − 𝛽)BKf (x(t)) − (1 − 𝛽)BK
[
(x(t − 𝜈n,k(t))) + en,k(t)

]
,

𝛽 = BKx(t − 𝜂r(t)) − 𝛼BKf (x(t)) − (1 − 𝛼)BK
[
x(t − 𝜈n,k(t)) + en,k(t)

]
,

𝛼𝛽 = BK
[
(x(t − 𝜈n,k(t))) + en,k(t)

]
− BKf (x(t). (B6)

Taking into account the condition (18), one obtains:

𝜚xT(t − 𝜈n,k(t))Ωx(t − 𝜈n,k(t)) − eT
n,k(t)Ωen,k(t) > 0. (B7)

In addition, from Assumption 2, the following inequality can be derived:

xT(t)FTFx(t) − f T(x(t))f (x(t)) ≥ 0. (B8)

Combining (B2)–(B8), it can be yields by using the free weighting matrix method and the Schur complement:

E{V̇ 1(t)} ≤ −2𝜌1V1(t) + 𝜃T(t)Γ1
11𝜃(t) + h2

E{ẋT(t)R1ẋ(t)} + 𝜂
2
E{ẋT(t)Z1ẋ(t)} + xT(t)FTFx(t), (B9)

in which 𝜃T(t) =
[
𝜃T

1 (t) en,k(t) xT(t − 𝜂r(t)) xT(t − 𝜂) f (x(t))
]
.

Using (26), it can be obtained that E{V̇ 1(t)} ≤ −2𝜌1V1(t).
Processing V 2(t) in the same way, one obtains:

E{V̇ 2(t)} ≤ 2𝜌2V2(t) + 𝜃̂
T(t)Γ2

11𝜃̂(t) + h2
E{ẋT(t)R2ẋ(t)} + 𝜂

2
E{ẋT(t)Z2ẋ(t)} (B10)

and E{V̇ 2(t)} ≤ −2𝜌2V2(t), where 𝜃̂
T(t) =

[
𝜃T

1 (t) xT(t − 𝜂r(t)) xT(t − 𝜂)
]

Hence, one can see that {
E{V1(t)} ≤ e−2𝜌1(t−tn,1)E{V1(t)}, t ∈ [tn,1, tn,2)
E{V2(t)} ≤ e2𝜌2(t−tn,2)E{V2(t)}, t ∈ [tn,2, tn+1,1)

. (B11)

Choose

V(t) =

{
V1(t), t ∈ n−1,k ∩ Gn−1,1

V2(t), t ∈ Gn−1,2
. (B12)

Using the inequalities (28)–(32), it yields {
E{V1(tn,1)} ≤ 𝜍2E{V2(t−n,1)},
E{V2(tn,2)} ≤ 𝜍1e2(𝜌1+𝜌2)hE{V2(t)}.

(B13)

For t ∈ [tn, 1, tn, 2), from (B11) and (B13), it can be derived that
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E{V1(t)} ≤ 𝜍2e−2𝜌1(t−tn,1)E{V2(t−n,1)}

≤ 𝜍2e−2𝜌1(t−tn,1)e2𝜌2(tn,1−tn−1,2)E{V2(tn−1,2)}
⋮

≤ ec1(t)E{V1(0)}, (B14)

where c1(t) =
(

a1 + t
𝜂D

) [
2(𝜌1 + 𝜌2)h + 2𝜌2bmax − 2𝜌1lmin + ln(𝜍1𝜍2)

]
.

According to (33),

E{V1(t)} ≤ em1 e−dt
E{V1(0)}, (B15)

where m1 = a1
[
2(𝜌1 + 𝜌2)h + 2𝜌2bmax − 2𝜌1lmin + ln(𝜍1𝜍2)

]
, d = 𝜌1lmin−(𝜌1+𝜌2)h−𝜌2bmax−1∕2ln𝜍1𝜍2

𝜂D
.

Similarly,

E{V2(t)} ≤ 1
𝜍2

em2 e−dt
E{V1(0)}, (B16)

where m2 = (a1 + 1)[2(𝜌1 + 𝜌2)h + 2𝜌2bmax − 2𝜌1lmin + ln(𝜍1𝜍2)].
Defining M = max{em1 ,

1
𝜍2

em2},

E{V(t)} ≤ Me−dt
E{V1(0)}. (B17)

According to the definition of V(t), we can obtain:

E{V(t)} ≥ c1||x(t)||2,E{V1(0)} ≤ c2||𝜑||2h, (B18)

where c1 =min{dmin(Pi)}, c2 =max{dmax(Pi)+ hdmax(Q1)+ dmax(R1 +Z1)}.
Then, combining (B17) with (B18), one obtains:

||x(t)|| ≤ √
Mc2

c1
e−

d
2

t|𝜑||h. (B19)

That is to say, under the conditions (27)–(33), the exponentially mean-square stability of system (22) is ensured. This
completes the proof. ▪

APPENDIX C

Symbol definitions in Theorem 2:

Γ̂1
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̂1
11 ∗ ∗ ∗ ∗ ∗ ∗

Φ̂1
21 Φ̂1

22 ∗ ∗ ∗ ∗ ∗
L̂T

1 R̂1 − L̂T
1 Φ̂1

33 ∗ ∗ ∗ ∗
Φ̂1

41 0 0 −Ω̂ ∗ ∗ ∗
Φ̂1

51 Φ̂1
52 Φ̂1

53 0 Φ̂1
55 ∗ ∗

N̂1 0 0 0 Ẑ1 − N̂T
1 Φ̂1

66 ∗
𝛼𝛽1Y TBT 0 0 0 0 0 −2𝜀0X1 + 𝜀2

0I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝛼1 = 1 − 𝛼, 𝛽1 = 1 − 𝛽, 𝛿1 =
√
𝛼 𝛼1, 𝛿2 =

√
𝛽 𝛽1,

Φ̂1
11 = 2𝜌1X1 + AX1 + X1AT + Q̂1 + Ŝ1 − R̂1 − Ẑ1,

Φ̂1
21 = 𝛼1𝛽1Y TBT + R̂1 − L̂1, Φ̂1

22 = 𝜚Ω̂ − 2R̂1 + L̂1 + L̂T
1 ,
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Φ̂1
33 = −e−2𝜌1hQ̂1 − R̂1, Φ̂1

41 = 𝛼1𝛽1Y TBT ,

Φ̂1
51 = 𝛽1Y TBT + Ẑ1 − N̂1,

Φ̂1
55 = −2Ẑ1 + N̂1 + N̂T

1 , Φ̂1
66 = −e−2𝜌1𝜂Ŝ1 − Ẑ1,

Γ̂1
21 =

[
FX1 0 0 0 0 0 0

]
,

Γ̂1
31 =

[
Π̂1 Π̂2 0 Π̂2 Π̂3 0 Π̂4

]
,

Π̂1 =

⎡⎢⎢⎢⎢⎢⎣

AX1

0
0
0

⎤⎥⎥⎥⎥⎥⎦
, Π̂2 =

⎡⎢⎢⎢⎢⎢⎣

𝛽1𝛼1BY
−𝛿1𝛽1BY
−𝛿2𝛼1BY
𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
, Π̂3 =

⎡⎢⎢⎢⎢⎢⎣

𝛽BY
0

𝛿2BY
0

⎤⎥⎥⎥⎥⎥⎦
, Π4

⎡⎢⎢⎢⎢⎢⎣

𝛼𝛽1BY
𝛿1𝛽1BY
−𝛿2𝛼BY
−𝛿1𝛿2BY

⎤⎥⎥⎥⎥⎥⎦
,

Γ̂1
33 = diag{−2𝜈1X1 + 𝜈2

1 R̂1,−2𝜈1X1 + 𝜈2
1 R̂1,−2𝜈1X1 + 𝜈2

1 R̂1,−2𝜈1X1 + 𝜈2
1 R̂1},

Γ̂1
44 = diag{−2𝜅1X1 + 𝜅2

1 Ẑ1,−2𝜅1X1 + 𝜅2
1 Ẑ1,−2𝜅1X1 + 𝜅2

1 Ẑ1,−2𝜅1X1 + 𝜅2
1 Ẑ1},

Γ̂2
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̂2
11 ∗ ∗ ∗ ∗

R̂1 − L̂1 Φ2
22 ∗ ∗ ∗

L̂T
2 R̂2 − L̂T

2 Φ̂2
33 ∗ ∗

Ẑ2 − N̂T
2 0 0 Φ̂2

44 ∗
N̂T

2 0 0 Ẑ2 − N̂T
2 Φ̂2

55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ̂2
11 = 2𝜌2X2 + AX2 + X2AT + Q̂2 + Ŝ2 − R̂2 − Ẑ2, Φ̂2

22 = −2R̂2 + L̂2 + L̂T
2 ,

Φ̂2
33 = −e−2𝜌2hQ̂2 − R̂2, Φ̂2

44 = −2Ẑ2 + N̂2 + N̂T
2 , Φ̂2

55 = −e−2𝜌2𝜂Ŝ2 − Ẑ2,

Γ̂2
33 = −2𝜈2X2 + 𝜈2

2 R̂2, Γ̂
2
44 = −2𝜅2X2 + 𝜅2

2 Ẑ2.

APPENDIX D

Proof of Theorem 2. The proof of Theorem 2 is as follows. Since{
− PiZ−1

i Pi ≤ −2𝜅iPi + 𝜅2
i Zi,

− PiR−1
i Pi ≤ −2𝜈iPi + 𝜈2

2 Ri.
(D1)

Replace −P1R−1
1 P1 and −P1Z−1

1 P1 in (26) with −2𝜈1P1 + 𝜈2
1 R1 and −2𝜅1P1 + 𝜅2

1 Z1, and replace −P2R−2
2 P2 and −P2Z−2

1 P2 in
(27) with −2𝜈2P2 + 𝜈2

2 R2 and −2𝜅2P2 + 𝜅2
2 Z2, respectively, one can obtain (26) and (27) can be ensured by

Υ
1
1 =

⎡⎢⎢⎢⎢⎢⎣

Γ1
11 ∗ ∗ ∗

Γ1
21 −I ∗ ∗

hΓ1
31 0 Γ

1
33 ∗

𝜂Γ1
31 0 0 Γ

1
44

⎤⎥⎥⎥⎥⎥⎦
< 0, (D2)

Υ
2
1 =

⎡⎢⎢⎢⎣
Γ2

11 ∗ ∗
hP2A Γ

2
33 ∗

𝜂P2A 0 Γ
2
44

⎤⎥⎥⎥⎦ < 0, (D3)

where Γ
1
33 = diag{−2𝜈1P1 + 𝜈2

1 R1,−2𝜈1P1 + 𝜈2
1 R1,−2𝜈1P1 + 𝜈2

1 R1,−2𝜈1P1 + 𝜈2
1 R1}, Γ

1
44 = diag{−2𝜅1P1 + 𝜅2

1 Z1,−2𝜅1P1 +
𝜅2

1 Z1,−2𝜅1P1 + 𝜅2
1 Z1,−2𝜅1P1 + 𝜅2

1 Z1}, Γ
2
33 = −2𝜈2P2 + 𝜈2

2 R2, and Γ
2
44 = −2𝜅2P2 + 𝜅2

2 Z2.
Define Xi = P−i

1 , Y =KX1, Ω̂ = X1ΩX1, Q̂i = XiQiXi, R̂i = XiRiXi, and Ẑi = XiZiXi, L̂i = XiLiXi, N̂i = XiNiXi, Ŝi =
XiSiXi(i = 1, 2, … , 7), J1 = diag{X1, … ,X1

⏟⏞⏞⏞⏟⏞⏞⏞⏟
7

, I,X1,X1,X1,X1}, J2 = diag{X2, … ,X2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

5

, I,X2,X2}. Pre- and postmultiplying
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both sides of Υ
1
1 in (D2) with J1 and its transposition, pre- and postmultiplying both sides of Υ

2
1 in (D3) with J2 and its

transposition, one can obtain (D2) and (D3) can be guaranteed by the following (D4) and (42).

Υ̃1
1 =

⎡⎢⎢⎢⎢⎢⎣

Γ̂1
11 ∗ ∗ ∗

Γ̂1
21 −X1X1 ∗ ∗

hΓ̂1
31 0 Γ̂1

33 ∗
𝜂Γ̂1

31 0 0 Γ̂1
44

⎤⎥⎥⎥⎥⎥⎦
< 0. (D4)

Recalling that−X1X1 ≤ −2𝜀0X1 + 𝜀2
0I. Replace−X1X1 in (D4) by−2𝜀0X1 + 𝜀2

0I, we derive (D4) can be ensured by (35). Pre-
and postmultiplying the first inequality and the second inequality in (28), respectively, one can obtain that (37) can ensure
(28) holds by applying Schur complement. Similarly, one can get (38)–(41) from (29)–(32). Pre- and postmultiplying (35)
by {Xi, Xi} and its transposition, one can get (42). This completes the proof. ▪


