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Abstract
This article considers the issue of finite-time H∞ asynchronous state estimation
for event-triggered nonlinear Markovian jump systems subject to cyber-attacks.
An adaptive event-triggered scheme is introduced to cope with the capacity con-
straint of the networked resources. It is assumed that the transmitted sensor
measurements may experience randomly malicious cyber-attacks. Consider-
ing the effect of the adaptive event-triggered scheme and the occurrence of
cyber-attacks, we establish a new state estimation error system model. Sufficient
conditions of the finite-time boundedness and the H∞ finite-time boundedness
are developed for the augmented system. Then, the design methods of the asyn-
chronous estimator gains are derived, which can ensure the H∞ finite-time
boundedness of the estimation error system. Finally, a numerical example is
given to show the effectiveness of the theoretical results.
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1 INTRODUCTION

Markovian jump systems (MJSs) have attracted much attention in the past few decades, owing to their well descriptions
for the practical systems, such as truck-trailer systems and mass-spring system, which may be subject to unpredictable
variations in their structures, possibly caused by sudden environment disturbance, random failures of the components
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and so on.1-4 Close attention has been paid to the filter design and stability analysis for MJSs and many important
results have been appeared.5-8 The authors in Reference 5 studied the problem of stabilization and H∞ performance of
event-triggered semi-Markovian systems with actuator saturation. In Reference 6, the authors have investigated the reli-
able filtering for the nonlinear continuous-time Markov jump system. However, most of the existing publications are
concerned with the asymptotic stability of the MJSs in the infinite time interval. In practice, the industrial production
requires to achieve the desired performance in a finite time.9 Therefore, widespread attentions of researchers has been
devoted to the finite time performance of the systems, including finite-time control10 and finite-time state estimation
problems.11,12 For instance, the finite-time event-driven control problem was addressed in Reference 10 for networked
switched system with cyber-attacks. The event-triggered filter design was concerned in Reference 11 for networked sys-
tems suffering deception attacks. However, most of the existing results focus on the synchronous state estimation or
control problem. The finite-time asynchronous state estimation for MJSs is scarce, which motivates this article.

In recent years, networked control systems (NCSs) have been a hot research topic due to the advantages of low cost,
flexible architectures, convenient system diagnosis, and maintenance.13-17 It should be noted that because of the charac-
teristics of sharing communication network and limited network bandwidth, there exist some unavoidable phenomena
in NCSs such as network-induced delays, data packet dropout and so on, which motivate the researchers to design specific
data transmission schemes for various NCSs to optimize the network resources. As important data transmission strategies,
event-triggered schemes have been proved to be effective in decreasing the number of transmission of communication net-
work while maintaining the system performances.18 Under the event-triggered scheme, sensor measurements transmitted
or not are according to the prescribed event-triggered condition.19-21 Only when the sampled measurements exceeds the
event-triggered condition, they can be sent into the network, which increases the utilization ratio of the network recourses
significantly. Up to now, various event-triggered schemes have been proposed for multi-agent systems,4 nonlinear inter-
connected control systems22 and neural networks,23 and so forth. However, the available related event-triggered methods
for MJSs are not fully investigated, which deserves further investigation.

In addition, NCSs also face the challenges of malicious attacks which aim to prevent the system components from
accessing precise control signals and sensor measurements, resulting in the control systems failing and leading to eco-
nomic lost and calamitous consequence. Generally speaking, the cyber-attacks can be categorized into denial-of-service
(DoS) attacks24 and deception attacks.25 DoS attacks attempt to block sensor/control data from accessing the communi-
cation channel and preventing them reaching their destinations. Deception attacks destroy the NCSs by tampering the
control signals and sensor measurements during transmission,26,27 which is more concealed. Nowadays, security issues
of NCSs have become one of the major concerns and received more and more attention. A series of novel approaches have
been proposed to decrease the influence of cyber-attacks.28,29 Specifically, in Reference 28, the secure distributed optimal
frequency regulation was addressed for power grid under cyber-attacks. The output consensus problem was investigated
considering the occurrence of the random DoS attacks in Reference 29. However, there are few approaches reported to
protect MJSs from cyber-attacks. Due to the fact that the networked systems are vulnerable to malicious cyber-attacks, it is
needed to proposed an effective security method to eliminate the impacts of cyber-attacks against MJSs, which motivates
the current study.

In this article, the finite-time non-fragile asynchronous state estimator design issue is discussed for MJSs under AETS
and cyber-attacks. The main contributions are summarized in the following. 1) The phenomena of network resource con-
straint and cyber-attacks are taken into account. In order to reduce the amount of the networked data transmissions, an
AETS is introduced. The transmitted sensor measurements via network channel are assumed to encounter cyber-attacks.
2) In view of the effect of the AETS and cyber-attacks, an estimation error system model is presented by taking the asyn-
chronous modes between the system and the estimator into account. 3) Sufficient conditions are given, respectively, under
which the estimation error system is FTB and H∞ FTB. In addition, the design approach of the secure asynchronous state
estimator gains are developed.

2 PRELIMINARIES

Consider the following continuous-time nonlinear MJS

⎧⎪⎨⎪⎩
ẋ(t) = Art x(t) + A𝜔rt𝜔(t) + 𝛼(t)Hrt h(x(t))
y(t) = Crt x(t)
z(t) = Lrt x(t)

(1)
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where x(t) ∈ Rn, y(t) ∈ Rm, and z(t) ∈ Rp are the system state, the measurement output, and the signal to be estimated,
respectively. 𝜔(t) ∈ Rq is the disturbance input which belongs to 2[0,∞) and subjects to

∫
+∞

0
𝜔T(t)𝜔(t)dt ≤ 𝜔

2 (2)

h(x(t)) is a nonlinear function of the state. The stochastic variable 𝛼(t) ∈ {0, 1} and satisfies Pr{𝛼(t) = 1} = 𝛼, Pr{𝛼(t) =
0} = 1 − 𝛼. The matrices Art , A𝜔rt , Crt , Hrt , and Lrt are the system matrices with appropriate dimensions. rt ∈ S ( t ≥ 0, S =
{1, 2,… , r}) is used to denote the continuous-time Markov jump process. rt satisfies the following transition probability
matrix Π = (𝜋ij)r×r described by

Pr{rt+Δt = j|rt = i} =

{
𝜋ijΔt + o(Δt), i ≠ j
1 + 𝜋ijΔt + o(Δt), i = j

where Δt > 0, limh→0
o(Δt)
Δt

= 0, 𝜋ij ≥ 0, for i, j ∈ S, 𝜋ij represents the transition rate from mode i to mode j at instant t + Δt
if j ≠ i. 𝜋ii = −

∑r
j=1,j≠i𝜋ij.

Assumption 1. The nonlinear function h(x(t)) is assumed to satisfy the following condition:

||h(x(t)) − h(x̂(t))|| ≤ ||G(x(t) − x̂(t))|| (3)

where x(t) ∈ Rn, G is a known matrix with compatible dimensions.

The main objective of this article is to design an asynchronous non-fragile state estimator to estimate the state of system
(1). In most of the existing state estimation method, the measurement output y(t) is assumed to be transmitted to the state
estimator via an ideal channel, which is unreality obviously. In this article, we assume there exist cyber-attacks on the
constrained network transmission channel. Thus, the input of the state estimator ỹ(t) is not equal to the measurement
output y(t).

Remark 1. It has been demonstrated that the state estimator can not be implemented exactly.30,31 Due to the fact
that uncertainties are unavoidable because of the unexpected errors or complex environment, it is necessary to design
non-fragile state estimator which is insensitive to fluctuations of its gains.

In this article, the following nonfragile H∞ state estimator will be designed:

⎧⎪⎨⎪⎩
̇̂x(t) = Art x̂(t) + 𝛼Hrt h(x̂(t)) + (K𝜎t + ΔK𝜎t )[ŷ(t) − ỹ(t)]
ŷ(t) = Crt x̂(t)
ẑ(t) = Lrt x̂(t)

(4)

where x̂(t) ∈ Rn and ẑ(t) ∈ Rp are the estimates of x(t) and z(t), respectively; K𝜎t is the state estimator gain to be estimated.
ΔK𝜎t is the disturbance of the state estimator gain and ΔK𝜎t = F𝜎tΔ𝜎t R𝜎t . 𝜎t ∈ L ( t ≥ 0, L = {1, 2,… , l}) satisfies the
following probability matrix Λ = (𝜆i𝜙)r×l described by

Pr{𝜎t = 𝜙|rt = i} = 𝜆i𝜙

where 𝜆i𝜙 ∈ [0, 1] and
∑l

𝜙=1𝜆i𝜙 = 1.
For convenience, in the sequel, rt and 𝜎t will be replaced by i ∈ S and 𝜙 ∈ L, respectively.
In this article, we assume the sensor and the state estimator are connected by communication network which is

vulnerable to cyber-attacks. An event-triggered device between the sensor and the state estimator is adopted to save the
precious network resources and reduce the unnecessary transmission. If the following predefined condition is violated,
the newly sampled data will be released into the network

eT
k (t)Ωiek(t) ≤ 𝜌i(t)yT (

id
kh

)
Ωiy

(
id
kh

)
(5)

where h is the sampling period, ek(t) = y(tkh) − y(id
kh), Ωi > 0, id

kh = tkh + dh, d = 0, 1, 2,… , tk+1 − tk. y(id
kh) is the current

measured output, y(tkh) is the latest transmitted one. The threshold condition in (5) satisfies
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𝜌̇i(t) =
1

𝜌i(t)

(
1

𝜌i(t)
− 𝜇i

)
eT

k (t)Ωiek(t) (6)

where 𝜇i ≥ 1, 𝜌i(0) ∈ (0, 1].
Under the effect of the event-trigger condition (5), the holding interval of the Zero order hold at the state estimator

Π = [tkh, tk+1h) can be divided into
⋃d

d=0Πd, d = tk+1 − tk − 1, Πd = [id
kh, id

kh + h).

Remark 2. The event-triggered condition (5) is adopted to reduce the unnecessary transmissions via communication
network. Noted that 𝜌i(t) can be dynamically adjusted according to the state variation of the system and the desired system
performance. When 𝜌̇i(t) = 0, 𝜌i(t) will become a constant, (5) will turn to the event-triggered condition in Reference 19.

Define 𝜏(t) = t − id
kh, it yields that 0 ≤ 𝜏(t) < h, the transmitted measurement output under the AETS (5) can be

rewritten as

y(tkh) = y(t − 𝜏(t)) + ek(t) (7)

It is assumed that the triggered measurement outputs y(tkh) will undergo malicious cyber-attacks, the input of the
state estimator can be described as

ỹ(t) = s(tkh)y(tkh) + (1 − s(tkh))f (y(tkh)) (8)

where f (y(tkh)) is the cyber-attacks with unknown but energy-bounded value. s(tkh) is a random variable taking values in
{0,1} and E{s(tkh)} = s.

Remark 3. When s(tkh) = 1, the triggered measurement output y(tkh)will be arrive at the filter successfully; when s(tkh) =
0, the cyber-attacks are launched and the transmitted measurement output y(tkh) will be replaced by f (y(tkh)).

Assumption 2. The cyber-attacks are assumed to satisfy the following condition:

yT(tkh)NTNy(tkh) − f T(y(tkh))f (y(tkh)) ≥ 0 (9)

where N is a constant matrix.

Define e(t) = x(t) − x̂(t), z̃(t) = z(t) − ẑ(t). Combine(1), (4), (7), and (8), we can obtain state estimation error system as:

ė(t) = (Ai + K𝜙 + ΔK𝜙)e(t) + A𝜔i𝜔(t) + 𝛼Hi(h(x(t) − h(x̂(t)))
− (K𝜙 + ΔK𝜙)[Cix(t) − s(Cix(t − 𝜏(t)) + ek(t)) − (1 − s)f (y(t − 𝜏(t)))]
+ (𝛼(t) − 𝛼)Hih(x(t)) + (s(tkh) − s)(K𝜙 + ΔK𝜙)

[
Cix(t − 𝜏(t)) + ek(t) − f (y(t − 𝜏(t)))

]
(10)

z̃(t) = Lie(t) (11)

Setting 𝜉(t) =
[
xT(t) eT(t)

]T , from (1) and (10), we can calculate that

𝜉̇(t) = Āi𝜙𝜉(t) + sĀ𝜏i𝜙𝜉(t − 𝜏(t)) + sĀe𝜙ek(t) + Ā𝜔i𝜔(t) + (1 − s)Āe𝜙 f (y(t − 𝜏(t))) + 𝛼Hig(𝜉(t))

+ (𝛼(t) − 𝛼)Ĥig(𝜉(t)) − (s − s(tkh))[Ā𝜏i𝜙𝜉(t − 𝜏(t)) + Āe𝜙ek(t) − Āe𝜙 f (y(tkh))] (12)

where

Āi𝜙 = (Ãi𝜙 + ΔA𝜙), Ā𝜏i𝜙 = Ã𝜏i𝜙 + ΔA𝜏i𝜙 , Āe𝜙 = Ãe𝜙 + ΔAe𝜙

Ãi𝜙 =

[
Ai 0

−K𝜙Ci Ai + K𝜙Ci

]
,ΔAi𝜙 = S1ΔK𝜙CiS2

Ã𝜏i𝜙 =

[
0 0

K𝜙Ci 0

]
,ΔA𝜏i𝜙 = S1ΔK𝜙CiS3,Ãe𝜙 =

[
0

K𝜙

]
,ΔAe𝜙 = S1ΔK𝜙,
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Ā𝜔i =

[
A𝜔i

A𝜔i

]
,Hi =

[
Hi 0
0 Hi

]
, Ĥi =

[
Hi 0
Hi 0

]
, h(e(t)) = h(x(t) − h(x̂(t))

S1 =

[
0
I

]
, S2 =

[
−I I

]
, S3 =

[
I 0

]
, g(𝜉(t)) =

[
h(x(t))
h(e(t))

]
Definition 1. (Finite-time bounded (FTB)) For given scalars 𝜑2 > 𝜑1 > 0 and Ji > 0, the system (12) is said to be FTB
with respect to (𝜑1, 𝜑2,T, Ji, 𝜔), if

sup
−tM≤t≤0

 {
𝜉T(t)Ji𝜉(t), 𝜉̇

T(t)Ji𝜉̇(t)
} ≤ 𝜑2

1 ⇒  {
𝜉T(t)Ji𝜉(t)

} ≤ 𝜑2
2 (13)

The objective of this article is to design a non-fragile asynchronous state estimator for system (1), such that system
(11) and (12) are FTB and satisfy a H∞ prescribed performance level. The following two requirements should be ensured:

(1) The system (12 ) is FTB with respect to (𝜑1, 𝜑2,T, Ji, 𝜔)
(2) Under zero initial state, the following condition holds for 𝜔(t) ∈ 2[0,∞):


{
∫

T

0
z̃T(t)z̃(t)dt

}
< 𝛾2

{
∫

T

0
𝜔T(t)𝜔(t)dt

}
(14)

3 MAIN RESULTS

In this section, we will develop a non-fragile state estimator design method. First, the FTB and H∞ performance anal-
ysis problem will be conducted. Then, the parameters of the non-fragile state estimator and the event generator will be
designed.

Theorem 1. For given positive scalars 𝛼, 𝛽, s, h, 𝜇i, 𝜔, 𝜑1, T, and matrices K𝜙, F𝜙, R𝜙, Ji > 0, the augmented system (12) is
FTB with (𝜑1, 𝜑2,T, Ji, 𝜔) if there exist positive scalars 𝜚p(p = 1, 2, 3, 4, 5), 𝜆 > 0, 𝜑2 and matrices Q1 = diag{Q11,Q12} > 0,

Q2 = diag{Q21,Q22} > 0, Pi = diag{P1i,P2i} > 0, Di > 0, Ωi > 0, and U with appropriate dimensions satisfying
[

Q2 U
U Q2

]
≥

0 such that for each i ∈ S, 𝜙 ∈ L, the following inequalities hold

Ξ
i𝜙
=

⎡⎢⎢⎢⎢⎢⎢⎣

Φ
i𝜙
11 ∗ ∗ ∗

hΦ
i𝜙
21 −PiQ−1

2 Pi ∗ ∗

hΦ
i𝜙
31 0 −PiQ−1

2 Pi ∗

Φ
i𝜙
41 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦
< 0 (15)

𝜚1Ji < Pi < 𝜚2Ji,Q1 < 𝜚3Ji,Q2 < 𝜚4Ji, 0 < Di < 𝜚5I (16)

𝜚−1
1 (Δ𝜑2

1 + 𝜚5𝜔
2)e𝛽T < 𝜑2

2,Δ = 𝜚2 + 𝜏M𝜚3 + h3𝜚4 (17)

where

Φ
i𝜙
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi𝜙
1 ∗ ∗ ∗ ∗ ∗ ∗

sĀT
𝜏i𝜙

Pi + Q2 − UT Γi
2 ∗ ∗ ∗ ∗ ∗

UT Q2 − UT −e𝛽hQ1 − Q2 ∗ ∗ ∗ ∗
sĀT

e𝜙Pi 0 0 −𝜇iΩi ∗ ∗ ∗
ĀT
𝜔i

Pi 0 0 0 −Di ∗ ∗
(1 − s)ĀT

e𝜙Pi 0 0 0 0 −I ∗
𝛼H

T
i Pi 0 0 0 0 0 Γi

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Γi𝜙
1 = PiĀi𝜙 + ĀT

i𝜙Pi + Q1 − Q2 − 𝛽Pi + 𝜆G
T

G +
r∑

j=1
𝜋ijPj

Γi
2 = −2Q2 + U + UT + ST

3 CT
i ΩiCiS3,Γi

3 = 𝛿2
𝛼𝜏

2
MĤT

i Q2Ĥi − 𝜆I

Φ
i𝜙
21 =

[
PiĀi𝜙 sPiĀ𝜏i𝜙 0 sPiĀe𝜙 PiĀ𝜔i (1 − s)PiĀe𝜙 𝛼PiHi

]
Φ

i𝜙
31 =

[
0 Pi𝛿sĀ𝜏i𝜙 0 𝛿sPiĀe𝜙 0 −𝛿sPiĀe𝜙 0

]
Φ

i𝜙
41 =

[
0 NCiS3 0 N 0 0 0

]
, 𝛿2

𝛼 = 𝛼(1 − 𝛼), 𝛿2
s = s(1 − s)

Proof. Choose the following Lyapunov functional:

V(𝜉(t), i, t) = V1(𝜉(t), i, t) + V2(𝜉(t), i, t) + V3(𝜉(t), i, t) + V4(𝜉(t), i, t) (18)

where

V1(𝜉(t), i, t) = 𝜉T(t)Pi𝜉(t)

V2(𝜉(t), i, t) = ∫
t

t−h
e𝛽(t−s)𝜉T(s)Q1𝜉(s)ds

V3(𝜉(t), i, t) = h∫
0

−h∫
t

t+s
e𝛽(t−s)𝜉̇

T(v)Q2𝜉̇(v)dvds

V4(𝜉(t), i, t) = 1
2
𝜌2

i (t)
▪

Along system (12), it can be deduced that:

{V̇1(𝜉(t), i, t)} =
l∑

𝜙=1
𝜆i𝜙

[
𝛽V1(𝜉(t), i, t) − 𝛽𝜉T(t)Pi𝜉(t) +

r∑
j=1

𝜉T(t)𝜋ijPj𝜉(t) + 2𝜉T(t)Pi𝜉̇(t)

]
(19)

{V̇2(𝜉(t), i, t)} =
l∑

𝜙=1
𝜆i𝜙

[
𝛽V2(𝜉(t), i, t) + 𝜉T(t)Q1𝜉(t) − e𝛽h𝜉T(t − h)Q1x(t − h)

]
(20)

{V̇3(𝜉(t), i, t)} =
l∑

𝜙=1
𝜆i𝜙

[
𝛽V3(𝜉(t), i, t) + h2𝜉̇

T(t)Q2𝜉̇(t) − h∫
t

t−h
e𝛽h𝜉̇

T(s)Q2𝜉̇(s)ds
]

(21)

Note that22,32

V̇ 4(𝜉(t), t) ≤ (Cix(t − 𝜏(t)))TΩi(Cix(t − 𝜏(t))) − 𝜇ieT
k (t)Ωiek(t) (22)

By lemma 1 in Reference 33, for Q2 and U satisfy[
Q2 U
∗ Q2

]
≥ 0

it follows that

−h∫
t

t−h
e𝛽h ̇𝜉T(s)Q2 ̇𝜉(s)ds ≤ 𝜁T(t)Σ𝜁(t) (23)

in which

Σ =
⎡⎢⎢⎢⎣
−Q2 Q2 − U U
∗ −2Q2 + U + UT Q2 − U
∗ ∗ −Q2

⎤⎥⎥⎥⎦ , 𝜁(t) =
⎡⎢⎢⎢⎣

𝜉(t)
𝜉(t − 𝜏(t))
𝜉(t − 𝜏M)

⎤⎥⎥⎥⎦
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Note that

h2𝜉̇
T(t)Q2𝜉̇(t) =

l∑
𝜙=1

𝜆i𝜙h2
[T

i𝜙Q2i𝜙 + h2𝛿2
s T

i𝜙Q2i𝜙 + 𝛿2
𝛼h2gT(𝜉(t))ĤT

i Q2Ĥig(𝜉(t))
]

(24)

where

i𝜙 = Āi𝜙𝜉(t) + sĀ𝜏i𝜙𝜉(t − 𝜏(t)) + sĀe𝜙ek(t) + Ā𝜔i𝜔(t)

+ (1 − s)Āe𝜙 f (y(t − 𝜏(t))) + 𝛼Hig(𝜉(t))

i𝜙 = Ā𝜏i𝜙𝜉(t − 𝜏(t)) + Āe𝜙ek(t) − Āe𝜙 f (y(t − 𝜏(t)))

One can easily get the following inequality from (3):

𝜆gT(𝜉(t))g(𝜉(t)) − 𝜆𝜉T(t)G
T

G𝜉(t) ≤ 0 (25)

in which G = diag{G,G}.
According to Assumption 2, we can get the cyber-attacks satisfy

[CiS3𝜉(t − 𝜏(t)) + ek(t)]TNTN[CiS3𝜉(t − 𝜏(t)) + ek(t)] − f T(y(t − 𝜏(t)))f (y(t − 𝜏(t))) ≥ 0 (26)

Combing (19)–(26), for t ∈ [0,T), we have

V̇(𝜉(t), t) ≤
l∑

𝜙=1
𝜆i𝜙

{
𝛽V(𝜉(t), t) +

r∑
j=1

𝜉T(t)𝜋ijPj𝜉(t) + 2𝜉T(t)Pii𝜙 + 𝜉T(t)Q1𝜉(t)

+ h2T
i𝜙Q2i𝜙 + h2𝛿2

s T
i𝜙Q2i𝜙 + 𝛿2

𝛼h2gT(𝜉(t))ĤT
i Q2Ĥig(𝜉(t))

− e𝛽h𝜉T(t − h)Q1x(t − h) + 𝜁T(t)Σ𝜁(t)

− 𝜆gT(𝜉(t))g(𝜉(t)) + 𝜆𝜉T(t)G
T

G𝜉(t) − 𝜉(t)TST
2 GTGS2𝜉(t) − 𝛽𝜉T(t)Pi𝜉(t)

+ [CiS3𝜉(t − 𝜏(t)) + ek(t)]TNTN[CiS3𝜉(t − 𝜏(t)) + ek(t)] − f T(y(t − 𝜏(t)))f (y(t − 𝜏(t)))

+ (Cix(t − 𝜏(t)))TΩi(Cix(t − 𝜏(t))) − 𝜇ieT
k (t)Ωiek(t)

}
(27)

Applying Schur complement lemma, from (15) and 0 < Di < 𝜚5I in Theorem 1, one can derive the following

V̇(𝜉(t), t) < 𝛽V(𝜉(t), t) + 𝜔T(t)Di𝜔(t)
< 𝛽V(𝜉(t), t) + 𝜚5𝜔

T(t)𝜔(t) (28)

which implies


{

d
dt

(
e−𝛽tV(𝜉(t), t)

)}
< 𝜚5𝜔

T(t)𝜔(t) (29)

Integrating both sides of (29) from 0 to T, we obtain

∫
T

0

{

d
dt

(
e−𝛽sV(𝜉(s), s)

)}
ds < 𝜚5∫

T

0
𝜔T(s)𝜔(s)ds (30)

Noted that 𝛽 > 0, one can easily get from (30) that

e−𝛽t{V(𝜉(t), t)} ≤ {V(𝜉(0), 0)} + 𝜚5
{
∫

T

0
𝜔T(s)𝜔(s)ds

}
(31)
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Recalling (2), (16), and (17), we have

{𝜉T(t)Pi𝜉(t)} < {V(𝜉(t), t))}

< e𝛽T{V(𝜉(0), 0)} + e𝛽t𝜚5𝜔
2

< e𝛽T(Δ𝜑2
1 + 𝜚5𝜔

2) (32)

In view of 𝜎1Ji < Pi in (16), we have

{𝜉T(t)Pi𝜉(t)} = 
{
𝜉T(t)J

1
2

i

(
J
− 1

2
i PiJ

− 1
2

i

)
J

1
2

i 𝜉(t)
}

> 𝜚1 {
𝜉T(t)Ji𝜉(t)

}
(33)

Then, combine (32) and e𝛽T(Δ𝜑2
1 + 𝜚5𝜔

2) < 𝜑2
2 in (17), we derive

{𝜉T(t)Ji𝜉(t)} < 𝜚−1
1 e𝛽T(Δ𝜑2

1 + 𝜚5𝜔
2) < 𝜑2

2 (34)

This completes the proof.

Theorem 2. For given positive scalars 𝛼, 𝛽, s, h, 𝜇i, 𝜔, 𝜑1, T and matrices K𝜙, F𝜙, R𝜙, Ji > 0, the augmented system (11)
and (12) is H∞ FTB with (𝜑1, 𝜑2,T, Ji, 𝛾, 𝜔) if there exist positive scalars 𝜚p(p = 1, 2, 3, 4, 5), 𝜆, 𝜑2, 𝛾 and matrices Q1 =
diag{Q11,Q12} > 0, Q2 = diag{Q21,Q22} > 0, Pi = diag{P1i,P2i} > 0, Ωi > 0, and U with appropriate dimensions satisfying[

Q2 U
U Q2

]
≥ 0 such that (16) and the following constraints hold for each i ∈ S, 𝜙 ∈ L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi𝜙
11 ∗ ∗ ∗ ∗

hΦ
i𝜙
21 −PiQ−1

2 Pi ∗ ∗ ∗

hΦ
i𝜙
31 0 −PiQ−1

2 Pi ∗ ∗

Φ
i𝜙
41 0 0 −I ∗

Φ
i
51 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (35)

𝜚−1
1 (Δ𝜑2

1 + 𝛾2e−𝛽T𝜔
2) < e−𝛽T𝜑2

2 (36)

where

Φi𝜙
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi𝜙
1 ∗ ∗ ∗ ∗ ∗ ∗

sĀT
𝜏i𝜙

Pi + Q2 − UT Γi𝜙
2 ∗ ∗ ∗ ∗ ∗

UT Q2 − UT −e𝛽hQ1 − Q2 ∗ ∗ ∗ ∗

sĀT
e𝜙Pi 0 0 −𝜇iΩi ∗ ∗ ∗

ĀT
𝜔i

Pi 0 0 0 −𝛾2e𝛽TI ∗ ∗

(1 − s)ĀT
e𝜙Pi 0 0 0 0 −I ∗

𝛼H
T
i Pi 0 0 0 0 0 Γi

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Φ

i
51 =

[
Li 0 0 0 0 0 0

]
Other symbols are defined in Theorem 1.
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Proof. Letting Di = 𝛾2e−𝛽T𝜔
2, (15) can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φi𝜙
11 ∗ ∗ ∗

hΦ
i𝜙
21 −I ∗ ∗

hΦ
i𝜙
31 0 −PiQ−1

2 Pi ∗

Φ
i𝜙
41 0 0 −PiQ−1

2 Pi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (37)

▪

The definition of Φi
11 is given in Theorem 2. By Theorem 1, the FTB of the system (12) can be guaranteed by (16), (36),

and (37) with respect to (𝜑1, 𝜑2,T, Ji, 𝜔).
By using Schur complement, from (28) and (35), we can derive

V̇(𝜉(t), t) < 𝛽V(𝜉(t), t) + 𝛾2e−𝛽T𝜔T(t)𝜔(t) − z̃T(t)z̃(t) (38)

which can be represented as

e−𝛽tV̇(𝜉(t), t) < e−𝛽t[𝛾2e−𝛽T𝜔T(t)𝜔(t) − z̃T(t)z̃(t)] (39)

Integrating both sides of (39) from 0 to T, under zero initial condition, one can get

∫
T

0
e−𝛽t[z̃T(t)z̃(t) − 𝛾2e−𝛽T𝜔T(t)𝜔(t)]dt < −∫

T

0
e−𝛽tV̇(𝜉(t), t)dt ≤ V(x(0)) = 0 (40)

It yields that

∫
T

0
z̃T(t)z̃(t)dt < ∫

T

0
𝛾2𝜔T(t)𝜔(t)dt (41)

The proof of the theorem is completed.

Remark 4. The main difficulty in deriving the main results is how to deal with the adopted AETS and the asynchronous
modes information between the system and the state estimator. Inspired by References 22,35, we overcome these dif-
ficulties and derive the sufficient conditions under which the estimation error system is H∞ FTB. Besides, the desired
non-fragile asynchronous state estimator are designed which can be applicable event if the MJSs are subject to limited
network resources and cyber-attacks.

Theorem 3. For given positive scalars 𝛼, 𝛽, s, h, 𝜇i, 𝜔, 𝜑1, T, 𝜃i and matrices F𝜙, R𝜙, Ji > 0, the augmented system (11) and
(12) is FTB with regard to (𝜑1, 𝜑2,T, Ji, 𝛾, 𝜔), if there exist positive scalars 𝜀1, 𝜀2, 𝜀3, 𝜑2, and H∞ disturbance attenuation level
𝛾 , and matrices Q1 = diag{Q11,Q12} > 0, Q2 = diag{Q21,Q22} > 0, Pi = diag{P1i,P2i} > 0, Ωi > 0, and U satisfying with

appropriate dimensions
[

Q2 U
U Q2

]
≥ 0 such that (16), (36) and the following inequality hold for each i ∈ S, 𝜙 ∈ L:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̃i𝜙 ∗ ∗ ∗ ∗ ∗ ∗

MT
1i𝜙 −𝜀1I ∗ ∗ ∗ ∗ ∗

M2i𝜙 0 −𝜀1I ∗ ∗ ∗ ∗

MT
3i𝜙 0 0 −𝜀2I ∗ ∗ ∗

M4i𝜙 0 0 0 −𝜀2I ∗ ∗

MT
5i𝜙 0 0 0 0 −𝜀3I ∗

M6i𝜙 0 0 0 0 0 −𝜀3I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (42)
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where

Ξ̃i𝜙 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃i𝜙
11 ∗ ∗ ∗ ∗

hΦ̃i𝜙
21 Θ4i ∗ ∗ ∗

hΦ̃i𝜙
31 0 Θ4i ∗ ∗

Φ̃i𝜙
41 0 0 −I ∗

Φ
i𝜙
51 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Φ̃i𝜙
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̃i𝜙
1 ∗ ∗ ∗ ∗ ∗ ∗

sΘ2i𝜙 + Q2 − UT Γi
2 ∗ ∗ ∗ ∗ ∗

UT Q2 − UT −e𝛽hQ1 − Q2 ∗ ∗ ∗ ∗
sΘ3i𝜙 0 0 −𝜇iΩi ∗ ∗ ∗
ĀT
𝜔i

Pi 0 0 0 −𝛾2e𝛽TI ∗ ∗
(1 − s)Θ3i𝜙 0 0 0 0 −I ∗
𝛼H

T
i Pi 0 0 0 0 0 Γi

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Γ̃i𝜙

1 = Θ1i𝜙 + ΘT
1i𝜙 + Q1 − Q2 − 𝛽Pi + 𝜆G

T
G +

r∑
j=1

𝜋ijPj

Φ̃i𝜙
21 =

[
Θ1i𝜙 sΘ2i𝜙 0 sΘ3i𝜙 PiĀ𝜔i (1 − s)Θ3i 𝛼PiHi

]
Φ̃i𝜙

31 =
[
0 𝛿sΘ2i𝜙 0 𝛿sΘ3i𝜙 0 −𝛿sΘ3i𝜙 0

]
Θ1i𝜙 =

[
P1iAi 0
−Yi𝜙Ci P2iAi + Yi𝜙Ci

]
,Θ2i𝜙 =

[
0 0

Yi𝜙Ci 0

]

Θ3i𝜙 =

[
0

Yi𝜙

]
,Θ4i = −2𝜃iPi + 𝜃2

i Q2

MT
1i𝜙 =

[
𝜀1(PiS1F𝜙)T 0 0 0 0 0 0 0 0 0 0

]
M2i𝜙 =

[
R𝜙CiS2 sR𝜙CiS3 0 sR𝜙 0 (1 − s)R𝜙 0 0 0 0 0

]
MT

3i𝜙 =
[
0 0 0 0 0 0 0 0 𝜀2𝜏M(PiS1F𝜙)T 0 0

]
MT

5i𝜙 =
[
0 0 0 0 0 0 0 0 0 0 𝜀3𝜏M𝛿s(PiS1F𝜙)T

]
M6i𝜙 =

[
0 R𝜙CiS3 0 R𝜙 0 −R𝜙 0 0 0 0 0

]
Other symbols are defined in Theorem 2. Moreover, the desired parameter of the state estimator is given by K𝜙 = P−1

2i Yi𝜙.

Proof. It can be verified that (35) can be rewritten as

Ξ̂i𝜙 + sym{M1i𝜙Δ(t)iM2i𝜙} + sym{M3i𝜙Δi(t)M2i𝜙} + sym{M5i𝜙Δi(t)M6i𝜙} < 0 (43)

where

Ξ̂i𝜙 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̂i
11 ∗ ∗ ∗ ∗

hΦ̂i
21 −PiQ−1

2 Pi ∗ ∗ ∗
hΦ̂i

31 0 −PiQ−1
2 Pi ∗ ∗

Φ̂i
41 0 0 −I ∗

Φ
i
51 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Φ̂i𝜙
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γi𝜙
1 ∗ ∗ ∗ ∗ ∗ ∗

sÃT
𝜏i𝜙Pi + Q2 − UT Γi

2 ∗ ∗ ∗ ∗ ∗
UT Q2 − UT −e𝛽hQ1 − Q2 ∗ ∗ ∗ ∗

sÃT
e𝜙Pi 0 0 −𝜇iΩi ∗ ∗ ∗

ĀT
𝜔i

Pi 0 0 0 −𝛾2e𝛽TI ∗ ∗
(1 − s)ÃT

e𝜙Pi 0 0 0 0 −I ∗
𝛼H

T
i𝜙Pi 0 0 0 0 0 Γi

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Γ̂i𝜙

1 = PiÃi𝜙 + ÃT
i𝜙Pi + Q1 − Q2 − 𝛽Pi + 𝜆G

T
G +

r∑
j=1

𝜋ijPj

Φ̂i𝜙
21 =

[
PiÃi𝜙 sPiÃ𝜏i𝜙 0 sPiÃe𝜙 PiĀ𝜔i (1 − s)PiÃe𝜙 𝛼PiHi

]
Φ̂i𝜙

31 =
[
0 𝛿sPiÃ𝜏i𝜙 0 𝛿sPiÃe𝜙 0 −𝛿sPiÃe𝜙 0

]
▪

Applying lemma 2 in Reference 33, the following (44) can ensure (43) holds if there exist positive scalars 𝜀i(i = 1, 2, 3)
such that

Ξ̂i𝜙 + 𝜀1M1i𝜙MT
1i𝜙 + (𝜀−1

1 + 𝜀−1
2 )MT

2i𝜙M2i𝜙 + 𝜀2M3i𝜙MT
3i𝜙 + 𝜀3M5i𝜙MT

5i𝜙 + 𝜀−1
3 MT

6i𝜙M6i𝜙 < 0 (44)

By using Schur complement lemma, (44) is equivalent to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ̂i𝜙 ∗ ∗ ∗ ∗ ∗ ∗
MT

1i𝜙 −𝜀1I ∗ ∗ ∗ ∗ ∗
M2i𝜙 0 −𝜀1I ∗ ∗ ∗ ∗
MT

3i𝜙 0 0 −𝜀2I ∗ ∗ ∗
M2i𝜙 0 0 0 −𝜀2I ∗ ∗
MT

5i𝜙 0 0 0 0 −𝜀3I ∗
M6i𝜙 0 0 0 0 0 −𝜀3I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (45)

Since

(Q2 − 𝜃iPi)Q−1
2 (Q2 − 𝜃iPi) ≥ 0 (46)

we can easily get

−PiQ−1
2 Pi ≥ −2𝜃iPi + 𝜃2

i Q2 (47)

Define Yi𝜙 = P2iK𝜙 and replace −PiQ−1
2 Pi with −2𝜃iPi + 𝜃2

i Q2, it is easy to derive that (45) can be guaranteed by (42).
This completes the proof.

Remark 5. Although some asynchronous state estimation and control problem have been conducted in References 34-36,
but the addressed issue in this article is different from the existing ones. In Reference 34, the asynchronous state estima-
tion problem was investigated for Markovian jump neural networks with randomly occurring nonlinearities, parameter
uncertainties, and sensor saturations. In Reference 35, the authors considered the stochastically passive asynchronous
control for MJSs. The authors in Reference 36 proposed a novel asynchronous output feedback controller design method.
However, the above mentioned references are based on the assumption that the network-based communication resources
are not limited and the addressed systems work in safe environments, which is actually unrealistic. To be more realistic,
in this article, with consideration of the rare network resources and the effect of the cyber-attacks, we present a finite-time
adaptive event-triggered asynchronous state estimator design approach for MJSs.
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Remark 6. It should be noted that advanced analytical technology is crucial in decreasing conservation degree of the state
estimation. Superior methods to deal with the Integral term in (20) lead to less conservative. In this article, lemma 1 in
Reference 27 is applied to deal with the Integral term in (20). Other methods, such as delay departioning method and
Wirtinger-based integral inequality, also can be used to reduce the conservatism, But the complexity will be increased in
the analysis and the derived conditions.

4 NUMERICAL EXAMPLES

In this section, we present a simulation example to illustrate the effectiveness of the proposed state estimation method
for the MJSs subject to cyber-attacks.

Consider the system (1) with the following parameters

A1 =

[
−3 1
−0.9 −1

]
,A2 =

[
−2 1
−1 −2

]
,A3 =

[
−1 0
−1 −2

]

C1 =

[
1 0
0 1

]
,C2 =

[
0.8 0
0 0.8

]
,C3 =

[
0.2 0
0 0.8

]

L1 =

[
0.3 0.2
0.1 0.2

]
,L2 =

[
0.3 0.1

−0.25 0.4

]
,L3 =

[
0.3 0.1

−0.25 0.4

]

Aw1 =

[
1

−0.4

]
,Aw2 =

[
−0.2
0.1

]
Aw3 =

[
−0.2
0.1

]

H1 =

[
0.3 0.2
0.1 0.2

]
,H2 =

[
0.1 0.2
0 0.2

]
,H3 =

[
0.3 0.1
0.1 0.05

]

Assume that the uncertain matrix parameters and uncertainties are as follows

F3 = F2 = F1 =

[
0.3
0.3

]
, R3 = R2 = R1 =

[
0.01 0.01

]
, Δ1(t) = Δ2(t) = sin(t)I

The nonlinear function and the cyber-attacks are

h3(x(t)) = h2(x(t)) = h1(x(t)) =

[
0.3tanh(x1(t))
0.2tanh(x2(t))

]
, f (y(tkh)) =

[
0.01tanh(x1(t))
0.03tanh(x2(t))

]

which satisfy the constraint (3) and (9) with

G =

[
0.3 0
0 0.2

]
, N =

[
0.01 0

0 0.03

]

The initial conditions of system (1) and the state estimator (4) are chosen by x̂T(t) =
[
−0.2 0.6

]
, xT(t) =

[
−0.2 0.8

]
. The

disturbance input is assumed to be 𝜔(t) = 0.01e−2t. The transition rate matrix Π =

[−0.5 0.2 0.3
0.1 −0.3 0.2
0.1 0.3 −0.4

]
.

Set J1 = J2 = J3 = I, T = 3, 𝜑1 = 1, 𝜔 = 1, 𝛽 = 1.2, 𝛼 = 0.3, s = 0.4, h = 0.05, 𝜇1 = 2, 𝜇2 = 4, 𝜇3 = 8, 𝜃1 = 0.1, 𝜃2 = 0.2,
𝜃3 = 0.3. Applying the Matlab toolbox, by Theorem 3, we can derive 𝜑2 = 5.9161, 𝛾 = 12.2378, the desired estimator gains
and the triggering matrices are

K1 =

[
0.3329 0.0166
0.0267 0.1078

]
, K2 =

[
0.2371 −0.0199
−0.0134 0.2460

]
, K3 =

[
0.0373 0.0146
0.0067 0.2425

]
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F I G U R E 2 State response

Ω1 =

[
1.0793 0.0846
0.0846 1.4767

]
, Ω2 =

[
2.3207 0.0482
0.0482 2.7909

]
, Ω3 =

[
4.0975 0.0328
0.0328 2.3763

]
(48)

The modes of the system and estimator are given in Figure 1. Under the obtained triggering matrices and the estimator
gains in (48), the state response is shown in Figure 2, from which one can see that the augmented system (11) and (12)
is H∞ FTB. Under the AETS, the transmitting instants of modes 1–3 are illustrated in Figure 3, 13% sampled instants are
released by the event generator. The adaptive threshold law of modes 1–3 are described in Figure 5. It can be seen that
𝜌1(t), 𝜌2(t), and 𝜌3(t) are dynamically adjusted and finally converge to 0.8836, 0.5553, and 0.1496, respectively. Under the
AETS, 𝜌1(t), 𝜌2(t), and 𝜌3(t) can be adjusted with the variation of the state.
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F I G U R E 3 Transmitting instants under the AETS
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F I G U R E 4 Transmitting instants under the periodic event-triggered scheme

Let 𝜌1(t) = 𝜌2(t) = 0.01, the AETS in this article will be reduced to be the periodic event-triggered scheme in Reference
19, the transmitting instants are plotted in Figure 4, 30% sampled instants are released by the event generator. Compared
Figure 3 with Figure 4, one can see that the AETS is superiors than the periodic event-triggered scheme.

Based on the simulation results above, it can be verified that the event-triggered state estimator design method can
not only save the communication resources, but also can ensure the H∞ FTB of the augmented systems (11) and (12)
subject to cyber-attacks.

Remark 7. It is evident that when the state response becomes close to the steady-state, 𝜌i(t) will become constants. The
lager of 𝜌i(t), the less amount of the transmitted sampled packets, which also have been shown by the simulated results
Figures 3–5.
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F I G U R E 5 Variations of 𝜌1(t), 𝜌2(t) and 𝜌3(t) in modes 1–3

5 CONCLUSIONS

In this article, the finite-time state estimator is designed for event-trigged asynchronous MJSs with stochastic
cyber-attacks. First, an AETS is adopted to improve the efficiency of network resource utilization. Considering the ran-
dom occurring cyber-attacks, the augmented estimation error system model is constructed. Sufficient conditions are
derived, which can, respectively, ensue the estimation error system FTB and H∞ FTB. The design method of the esti-
mator parameters are gained by solving a set of linear matrix inequalities. Finally, a numerical example is provided to
illustrate the effectiveness of the proposed method. In the future, we will investigate the event-triggered control strat-
egy and state estimation problem for asynchronous MJSs, considering the effects of the multiple-attacks and sensor
saturation.
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