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Dynamic Event-Triggered Output Feedback
Control for Networked Systems Subject to

Multiple Cyber Attacks
Lijuan Zha , Rongfei Liao , Jinliang Liu , Xiangpeng Xie , Engang Tian , and Jinde Cao , Fellow, IEEE

Abstract—This article is concerned with the problem of the
H∞ output feedback control for a class of event-triggered
networked systems subject to multiple cyber attacks. Two
dynamic event-triggered generators are equipped at sensor and
observer sides, respectively, to lower the frequency of unneces-
sary data transmission. The sensor-to-observer (STO) channel
and observer-to-controller (OTC) channel are subject to decep-
tion attacks and Denial-of-Service (DoS) attacks, respectively.
The aim of the addressed problem is to design an output feed-
back controller, with the consideration of the effects of dynamic
event-triggered schemes (DETSs) and multiple cyber attacks.
Sufficient condition is derived, which can guarantee that the
resulted closed-loop system is asymptotically mean-square sta-
ble (AMSS) with a prescribed H∞ performance. Moreover, we
provide the desired output feedback controller design method.
Finally, the effectiveness of the proposed method is demonstrated
by an example.

Index Terms—Dynamic event-triggered schemes (DETSs), net-
worked control systems (NCSs), observer-based control, stochas-
tic cyber attacks.

I. INTRODUCTION

IN RECENT years, networked control systems (NCSs) have
been widely concerned due to the advantages of high

reliability and low maintenance cost, flexible configuration,
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and simple installation. Significant attention has been paid and
many important results are achieved [1]–[5]. Considering the
fact that the full information of the system state is difficult
to be obtained in some practical control systems, the output
feedback control is very necessary in these circumstances and
has been implemented in some appealing works. For exam-
ple, considering the existence of interval time-varying delay,
He et al. [6] provided an output feedback control method for
a linear discrete-time system. In [7], the output feedback dis-
tributed containment controller was designed for high-order
nonlinear multiagent systems. Mu et al. [8] studied the finite-
time H∞ control problem for networked semi-Markovian jump
systems based on a reliable observer.

Though the introduction of wireless communication
network into control systems has many advantages, it also
may cause some challenging problems, such as network-
induced delays and packet dropouts, which are mainly
resulted by the bandwidth limitation of communication
networks. Nowadays, event-triggered schemes (ETSs) are
popular with researchers because of their superiority in
reducing the networked transmission amount while maintain-
ing the expected system performance [9]–[12]. It has been
proved by many investigations that ETSs are more effec-
tive to cope with the bandwidth-limitation issue compared
with the periodic transmission schemes [13]–[15]. In the
literature, various different ETSs can be available, under
which the inputs of the controllers or state estimators are
updated when the predesigned triggering conditions are vio-
lated [16]–[20]. It should be mentioned that either fixed or
dynamic thresholds are devised in most of the existing event-
triggered approaches [21]–[23]. For instance, Liu et al. [21]
addressed the leader–follower consensus problems for nonlin-
ear multiagent systems under event-/self-triggered strategies.
In [22], a team-triggered control strategy was proposed for
fixed-time consensus of double-integrator agents with uncer-
tain disturbance. The problem of impulsive control was inves-
tigated for the hybrid event-triggered multiagent system under
switching topologies in [23]. However, the majority of the
current control methods are based on the periodic ETSs
and ignore the negative impact of the cyber attacks on the
NCSs, which motivates us to investigate the resilient dynamic
event-triggered control problem for NCSs undergoing cyber
attacks.

Nowadays, the security issue of NCSs has received broad
interest due to the fact that the signal transmission in NCSs
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is implemented via a shared wireless network, which is vul-
nerable to different types of hostile attacks generated by
adversaries. Once the attackers complete the malicious actions
to the control system, it will cause harm to the NCSs, lead-
ing to tremendous financial and security effects [24]–[28].
Therefore, to protect NCSs from malicious attacks, it is
of great importance to enhance the system counter-attack
ability. Recently, increasing attention has been paid to deal
with the security problem of NCSs [29]–[32]. For example,
Gao et al. [29] researched the deception attacks for discrete
Markov jump control systems with ETS. In [30], considering
Denial-of-Service (DoS) jamming attacks, the distributed set-
membership filtering problem for discrete-time systems with
fading measurements was investigated. In [31], the presence of
cyber attacks was considered for connected vehicle discrete-
time systems with an interaction network. In [32], under
the influence of dual-terminal cyber attacks, a decentralized
control method was developed for event-triggered switched
systems with quantization. Based on the above observations,
it makes great sense to investigate the stability and control
performance for NCSs that are vulnerable to attack.

To the best of our knowledge, the results about the observer-
based dynamic ETSs (DETSs) control problem with multiple
cyber attacks are not fully investigated. Motivated by all the
aforementioned analysis, in this article, we focus on output
feedback control problem for event-triggered NCSs subject to
multiple cyber attacks. The goal of this article is to design
a secure output feedback controller for the addressed system,
which can guarantee the prescribed system performance and
tolerate the cyber attacks. The novelties of this article are
summarized as follows.

1) Two independent DETSs are introduced to economize
the communication network resources. Dynamic thresh-
olds are designed for the DETSs to reduce the bandwidth
usage of the communication networks.

2) A new model of the output feedback control system is
constructed with the consideration of the two-channel
DETSs, external disturbances, unmeasured states, and
randomly occurring malicious cyber attacks, simultane-
ously.

3) An new output feedback control strategy is presented
to guarantee the augmented system is asymptotically
mean-square stable (AMSS) with the prescribed H∞
performance.

The remainder of this article is organized as follows.
Section II describes the observer-based dynamic event-
triggered NCS and gives some preliminaries. Section III
presents the main results of this article. Simulation results
are given in Section IV. Finally, we conclude this article in
Section V.

Notation: R
m×n and R

m stand for, respectively, the set
of m × n real matrices and the m-dimensional Euclidean
space, I is the identity matrix of appropriate dimension, and
0 represents the zero matrix of compatible dimensions. The
superscript T stands for matrix transposition. diag{· · · } rep-
resents a block-diagonal matrix, and the symbol ∗ stands for
the symmetric term in a symmetric block matrix. The nota-
tion P > 0(P ≥ 0) means that matrix P is a symmetric

Fig. 1. Structure of the dynamic event-triggered output feedback control for
networked systems with multiple attacks.

positive-definite (semipositive definite) matrix. ‖ · ‖ is the
Euclidean norm of a vector and its induced norm of a matrix.

II. SYSTEM DESCRIPTION

Consider the following discrete-time system described by:
⎧
⎨

⎩

xk+1 = Axk + Buk + D1ωk

yk = Cxk

zk = Exk + Buk + D2ωk

(1)

where xk ∈ R
m, yk ∈ R

p, and zk ∈ R
q (k = 0, 1, 2, . . .) are

the system state vector, measured output, and control output,
respectively. uk ∈ R

n is the control input. ωk is the external
disturbance, which belongs to L2[0,∞). A, B, C, E, D1, and
D2 are known constant matrices with compatible dimensions.

As the system state vector xk is not fully measurable, the
aim of this article is to design an output feedback controller
as follows:

{
x̂k+1 = Acx̂k + Lcỹk

uk = Kcx̃k
(2)

where x̂k ∈ R
m is the observation of the system state vector

xk, and ỹk ∈ R
p and x̃k ∈ R

m are the real observer input and
controller input, respectively. Ac, Lc, and Kc are the controller
gain matrices to be determined.

In order to reduce the unnecessary data transmission and
save the limited communication resources, as shown in Fig. 1,
two dynamic event generators are used to determine whether
the latest measured output and the observer state signal should
be released and transmitted to the observer and controller,
respectively.

Event generator 1 is set to reduce the unnecessary data trans-
mission of the sensor-to-observer (STO) channel. As shown in
Fig. 1, the sensor periodically samples the signal of the plant
and sends them to event generator 1. Whether the sampled
measured outputs need to be sent to a remote observer via
a wireless network channel is determined by the following
dynamic event-triggered condition:

1

θ1
ζ1,k + σ1yT

k �1yk − φT
k �1φk ≤ 0 (3)

where φk = yk − yik , yik is the signal released by event
generator 1, σ1 and θ1 are given positive scalars, �1 is a
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positive-definite weighting matrix to be designed later, and
ζ1,k is the internal dynamic variable satisfying

ζ1,k+1 = λ1ζ1,k + σ1yT
k �1yk − φT

k �1φk (4)

with ζ1,0 = ζ 0
1 ≥ 0 being the initial condition and λ1 ∈ (0, 1)

being a given constant satisfying λ1θ1 ≥ 1.
If ik is the latest triggering instant, then the next triggering

instant ik+1 is defined as

ik+1 = min{k ∈ N|k > ik, k satisfying(3)}. (5)

Remark 1: It is observed that the adaptive ETS in [33]
and the DETSs in this article are different in some aspects.
In [33], the adaptive ETS is designed for continuous networked
systems, in which the threshold parameter can be dynamically
adjusted dependent on the error between filter input updates.
Whereas, in this article, the DETSs are designed for discrete-
time networked systems. An additional internal dynamical
variable is introduced for (3) in this article, which has per-
ceptible influence on dynamically regulating the amount of
the released data and the interevent time.

Remark 2: In (3), when θ1 → ∞, the dynamic event-
triggered condition (3) will reduce to the static event-triggered
condition in particular as follows:

σ1yT
k �1yk − φT

k �1φk ≤ 0. (6)

Remark 3: It is noted that for any k ∈ [ik, ik+1), because
there are no new triggered signals, the signal received by the
observer keeps yik and the following constraint holds:

1

θ1
ζ1,k + σ1yT

k �1yk − φT
k �1φk > 0. (7)

As shown in Fig. 1, we assume that the STO channel
is attacked by the deception attacks. The occurrence of the
deception attacks has impacts on the signal ỹk received by the
observer as follows (see [10], [34] for example):

ỹk = αk
[
δ(yik) − yik

]+ yik (8)

where δ(yk) is a nonlinear function. The stochastic variable αk,
which accounts for the probabilistic occurrence of the decep-
tion attacks, is a Bernoulli distributed variable taking values
on {0, 1} with the following probabilities:

Prob{αk = 1} = ᾱ, Prob{αk = 0} = 1 − ᾱ (9)

where ᾱ ∈ [0, 1) is a known positive constant and Prob(αk −
ᾱ)2 = ᾱ(1 − ᾱ), obviously.

Remark 4: In (8), when αk = 1, the system is subject to
the deception attacks, and the actual signal received by the
observer is ỹk = δ(yik). When αk = 0, cyber attacks are absent
in the network, and the actual signal received by the observer
is yik .

As shown in Fig. 1, event generator 2 at the observer side
is set up to further reduce the unnecessary data transmission
and make better use of the limited communication resources.
The triggering condition in event generator 2 is designed as
follows:

1

θ2
ζ2,k + σ2x̂T

k �2x̂k − ϕT
k �2ϕk ≤ 0 (10)

where ϕk = x̂k − x̂tk , x̂tk is the signal released by event
generator 2, σ2 and θ2 are given positive scalars, �2 is a
positive-definite weighting matrix to be designed later, and
ζ2,k is the internal dynamic variable satisfying

ζ2,k+1 = λ2ζ2,k + σ2x̂T
k �2x̂k − ϕT

k �2ϕk (11)

with ζ2,0 = ζ 0
2 ≥ 0 being the initial condition and λ2 ∈ (0, 1)

being a given constant satisfying λ2θ2 ≥ 1.
If tk is the latest triggered instant of event generator 2, then

the next triggering instant tk+1 is expressed as

tk+1 = min{k ∈ N|k > tk, k satisfying(10)}. (12)

Remark 5: As stated in article [35], [37], in order to
keep ζi,k ≥ 0(i = 1, 2), the parameters λi and θi in
DETSs (3) and (10) should satisfy λiθi ≥ 1.

Remark 6: Motivated by the DETSs in [36] and [37], in
this article, the value of ζi,k for i = 1, 2 in (3) and (10)
can be adjusted real time according to the information of
the current measurement yk (or the observer state x̂k) and
the latest released measurement yik (or the latest transmit-
ted observer state x̂tk ). With the implementation of the two
DETSs (3) and (10), the rate of the utilization of the limited
network resources can be improved.

In the observer-to-controller (OTC) channel, we assume that
DoS attacks may occur, which will block the communication
channel. Based on the DETS (10) and DoS jamming attacks,
the signal received by the controller in (2) can be written as

x̃k = βkx̂tk (13)

where βk is a Bernoulli distributed white variable taking values
on {0, 1} with the following probabilities:

Prob{βk = 1} = β̄, Prob{βk = 0} = 1 − β̄ (14)

where β̄ ∈ [0, 1) is a known positive constant and Prob(βk −
β̄)2 = β̄(1 − β̄), obviously.

Remark 7: In (13), when βk = 0, the system is subject
to the DoS attacks, and the signal received by the controller
is zero. When βk = 1, it means data transmission in the
OTC channel is normal, and the actual signal received by the
controller is x̂tk .

Defining the error of observation as ek = xk − x̂k, we can
derive xk+1 from (1), (2), and (13)

xk+1 = [A + β̄BKc
]
x̂k + Aek − β̄BKcϕk + D1ωk

+ (
βk − β̄

)
BKc

(
x̂k − ϕk

)
. (15)

From (2) and (8), one can obtain

x̂k+1 = [Ac + (1 − ᾱ)LcC]x̂k + (1 − ᾱ)LcCek

− (1 − ᾱ)Lcφk + ᾱLcδ(yik)

+ (αk − ᾱ)Lc
[
δ(yik) − C(x̂k + ek) + φk

]
. (16)

Hence

ek+1 = xk+1 − x̂k+1

= [A + β̄BKc − Ac − (1 − ᾱ)LcC
]
x̂k

+ [A − (1 − ᾱ)LcC]ek + (1 − ᾱ)Lcφk

− β̄BKcϕk − ᾱLcδ(yik) + D1ωk
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+ (αk − ᾱ)Lc
[
Cx̂k + Cek − φk − δ(yik)

]

+ (
βk − β̄

)
BKc(x̂k − ϕk). (17)

Let ηk =
[

x̂k

ek

]

, we derive the following augmented system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ηk+1 = Ãηk − (1 − ᾱ)L̃φk − β̄B̃ϕk + ᾱL̃δ(yik)

+(αk − ᾱ)
[
C̃ηk + L̃φk + L̃δ(yik)

]

+(βk − β̄
)(

K̃ηk − B̃ϕk
)+ D̃ωk

zk = (EĨ + β̄BKcĪ
)
ηk − β̄BKcϕk + D2ωk

+(βk − β̄
)[

BKcĪηk − BKcϕk
]

(18)

where

Ã =
[

Ac + (1 − ᾱ)LcC (1 − ᾱ)LcC
A − Ac + β̄BKc − (1 − ᾱ)LcC A − (1 − ᾱ)LcC

]

B̃ =
[

0
BKc

]

, L̃ =
[

Lc

−Lc

]

, D̃ =
[

0
D1

]

, K̃ =
[

0 0
BKc 0

]

C̃ =
[−LcC −LcC

LcC LcC

]

, Ĩ = [I I
]
, Ī = [I 0

]
.

Remark 8: In this article, the NCSs under multiple cyber
attacks are described by a discrete-time linear system (1) with
input and external disturbance. The input of the observer is
modeled as (8), which reflects the effect of the deception
attacks. The control input subject to DoS attacks is expressed
as (13). The Bernoulli-distributed sequences αk and βk account
for the successful ratio of the cyber attacks [9].

The objective of this article is to design an output feed-
back controller in the form of (2) such that the following
requirements are satisfied.

1) The augmented system (18) with ωk = 0 is AMSS.
2) Under the zero-initial condition, the control output zk

satisfies

E

{+∞∑

k=0

‖zk‖2

}

< γ 2
+∞∑

k=0

‖ωk‖2 (19)

for all nonzero ωk, where γ > 0 is the given attenuation
level.

The following lemma and assumptions are necessary in the
derivation of the main results.

Assumption 1: ∀y ∈ R
p, δ(y) is a nonlinear function, which

is assumed to satisfy

δ
(
yik

)T
δ
(
yik

) ≤ yT
ik�

T�yik (20)

where � is a known matrix.
Assumption 2: B is assumed to be a matrix with full column

rank.
Lemma 1: For the full rank matrix rank(B) = n, B ∈ Rm×n,

the singular value decomposition (SVD) for B can be described

as B = O

[
S
0

]

VT , where OT ·O = I and VT ·V = I. Let matrices

P > 0, M ∈ Rm×m, N ∈ Rn×m. Then, there exits P1 such that
PB = BP1 if and only if the following condition holds:

P = O

[
M 0
0 N

]

OT . (21)

III. MAIN RESULTS

In this section, a sufficient condition is derived to guarantee
that the augmented system (18) is AMSS with a weighted
H∞ performance and then the desired H∞ output feedback
controller gains are designed by solving a certain linear matrix
inequality (LMI).

Theorem 1: Given scalars ᾱ ∈ (0, 1), β̄ ∈ (0, 1), and
μ > 0, feedback gain matrix Kc, and observer gain matri-
ces Ac and Lc, system (18) (with ωk = 0) is AMSS under
the DETSs (3) and (10), if there exists a positive-definite
symmetric matrix P such that

�1 =

⎡

⎢
⎢
⎢
⎢
⎣

� ∗ ∗ ∗ ∗
PĀ −P ∗ ∗ ∗√

ᾱ(1 − ᾱ)PC̄ 0 −P ∗ ∗√
β̄(1 − β̄)PB̄ 0 0 −P ∗

μ�D̄ 0 0 0 −μI

⎤

⎥
⎥
⎥
⎥
⎦

< 0 (22)

where

� =

⎡

⎢
⎢
⎣

�11 ∗ ∗ ∗
0 �22 ∗ ∗
0 0 �33 ∗
0 0 0 −μI

⎤

⎥
⎥
⎦

�11 = −P + m1σ1 ĨTCT�1CĨ + m2σ2 ĪT�2 Ī

�22 = −m1�1

�33 = −m2�2

m1 = 1 − λ1 + 1

θ1

m2 = 1 − λ2 + 1

θ2

Ā = [Ã −(1 − ᾱ)L̃ −β̄B̃ ᾱL̃
]

B̄ = [K̃ 0 −B̃ 0
]

C̄ = [C̃ L̃ 0 L̃
]

D̄ = [CĨ −I 0 0.
]

Proof: Construct a Lyapunov–Krasovskii function as

Vk = ηT
k Pηk + 1

θ1
ζ1,k + 1

θ2
ζ2,k. (23)

According to (4) and (11), with ωk = 0, the forward differ-
ence of Vk defined as �Vk = Vk+1 − Vk along the trajectory
of (18) is calculated as

E{�Vk} = E{Vk+1 − Vk}
≤ E{

[
Ãηk − (1 − ᾱ)L̃φk − β̄B̃ϕk + ᾱL̃δ(yik )

]T
P

[
Ãηk − (1 − ᾱ)L̃φk − β̄B̃ϕk + ᾱL̃δ(yik )

]

+ (αk − ᾱ)2
[
C̃ηk + L̃φk + L̃δ(yik )

]T
P

[
C̃ηk + L̃φk + L̃δ(yik )

]

+ (βk − β̄
)2[

K̃ηk − B̃ϕk
]T

P
[
K̃ηk − B̃ϕk

]

− ηT
k Pηk

+ 1

θ1

[
(λ1 − 1)ζ1,k + σ1yT

k �1yk − φT
k �1φk

]

+ 1

θ2

[
(λ2 − 1)ζ2,k + σ2x̂T

k �2x̂k − ϕT
k �2ϕk

]
. (24)
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Define ξk = [
ηT

k φT
k ϕT

k δT(yik)
]T

. By combining (20) and
the triggering condition (3) and (10), we have

E{�Vk} ≤ ξT
k

[
ĀTPĀ + ᾱ(1 − ᾱ)C̄TPC̄

+ β̄(1 − β̄)B̄TPB̄
]
ξk − E

{
ηT

k Pηk
}

+ E

{(

1 − λ1 + 1

θ1

)
[
σ1yT

k �1yk − φT
k �1φk

]
}

+ E

{

(1 − λ2 + 1

θ2
)
[
σ2x̂T

k �2x̂k − ϕT
k �2ϕk

]
}

− μ
[
δT(yik)δ(yik) − yT

ik�
T�yik

]

= E
{
ξT

k

[
� + ĀTPĀ + ᾱ(1 − ᾱ)C̄TPC̄

+ β̄(1 − β̄)B̄TPB̄ + μD̄T�T�D̄
]
ξk
}
. (25)

It is clear that �1 < 0 indicates there exists a sufficiently
small scalar ι > 0 such that

�1 + ιdiag{I2m×2m, 0} < 0. (26)

By the Schur complement, one can derive that (26) can
ensure

� + ιdiag{I2m×2m, 0} + ĀTPĀ + ᾱ(1 − ᾱ)C̄TPC̄

+β̄(1 − β̄)B̄TPB̄ + μD̄T�T�D̄ < 0. (27)

It follows from (25) and (27) that:

E{�Vk} ≤ −ιE
{
‖ηk‖2

}
. (28)

Summing up both sides of (28) from 0 to ∞ with respect
to k, we can derive that

E

{ ∞∑

k=0

‖ηk‖2

}

≤ 1

ι
E{V0}. (29)

Let ρmax = λmax(P), it is obvious that

E

{ ∞∑

k=0

‖ηk‖2

}

≤ 1

ι

{

ρmaxE{‖η0‖2 + 1

θ1
ζ1,0 + 1

θ2
ζ2,0}

}

.

(30)

Then, the augmented system (18) with ωk = 0 is AMSS.
Now, we are in a position to analyze the H∞ performance

of the augmented system (18).
Theorem 2: Given scalars γ , ᾱ ∈ (0, 1), β̄ ∈ (0, 1) and

μ > 0, feedback gain matrix Kc, and observer gain matri-
ces Ac and Lc, system (18) is AMSS with a guaranteed H∞
performance index γ under the DETSs (3) and (10), if there
exists a positive-definite symmetric matrix P such that

�2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄ ∗ ∗ ∗ ∗ ∗ ∗
PA −P ∗ ∗ ∗ ∗ ∗
ε1PC 0 −P ∗ ∗ ∗ ∗
ε2PB 0 0 −P ∗ ∗ ∗
μ�D 0 0 0 −μI ∗ ∗
E 0 0 0 0 −I ∗

ε2� 0 0 0 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(31)

where

�̄ =

⎡

⎢
⎢
⎢
⎢
⎣

�11 ∗ ∗ ∗ ∗
0 �22 ∗ ∗ ∗
0 0 �33 ∗ ∗
0 0 0 −μI ∗
0 0 0 0 −γ 2I

⎤

⎥
⎥
⎥
⎥
⎦

A = [Ã −(1 − ᾱ)L̃ −β̄B̃ ᾱL̃ D̃
]

B = [K̃ 0 −B̃ 0 0
]

C = [C̃ L̃ 0 L̃ 0
]

D = [CĨ −I 0 0 0
]

E = [EĨ + β̄BKcĪ 0 −β̄BKc 0 D2
]

� = [BKcĪ 0 −BKc 0 0
]

ε1 = √ᾱ(1 − ᾱ), ε2 =
√

β̄(1 − β̄).

Other symbols are given in Theorem 1.
Proof: For all nonzero ωk, selecting the same Lyapunov

function as in Theorem 1, by similar derivation as in
Theorem 1, one has

E{�Vk} ≤ E
{
ςT

k

[
�1 + ATPA + ᾱ(1 − ᾱ)CTPC

+ β̄(1 − β̄)BTPB + μDT�T�D]ςk
}

(32)

where

ςk = [ηT
k φT

k ϕT
k δT(yik) ωT

k

]T

�1 =

⎡

⎢
⎢
⎢
⎢
⎣

�11 ∗ ∗ ∗ ∗
0 �22 ∗ ∗ ∗
0 0 �33 ∗ ∗
0 0 0 −μI ∗
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.

Adding the zero term E{zT
k zk −γ 2ωT

k ωk −(zT
k zk −γ 2ωT

k ωk)}
to E{�Vk} yields

E{�Vk} ≤ E
{
ςT

k

[
�̄ + AT PA + ᾱ(1 − ᾱ)CT PC + μDT�T�D
+ β̄(1 − β̄)BT PB + ETE + β̄(1 − β̄)�T�

]
ςk
}

− E

{
zT

k zk − γ 2ωT
k ωk

}
. (33)

Under the zero-initial condition, summing up (33) on both
sides from 0 to T with respect to k, we can derive that

T∑

k=0

E{�Vk}

≤
T∑

k=0

E
{
ςT

k

[
�̄ + ATPA + ᾱ(1 − ᾱ)CTPC + μDT�T�D

+β̄(1 − β̄)BTPB + ETE + β̄(1 − β̄)�T�
]
ςk
}

−
T∑

k=0

E
{
zT

k zk
}+

T∑

k=0

γ 2ωT
k ωk (34)

and hence

E

{
T∑

k=0

‖zk‖2 − γ 2
T∑

k=0

‖ωk‖2

}

≤
T∑

k=0

E
{
ςT

k

[
�̄ + ATPA + ᾱ(1 − ᾱ)CTPC
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+ β̄(1 − β̄)BTPB + ETE + β̄(1 − β̄)�T�

+μDT�T�D]ςk
}− E{VT+1}. (35)

Based on the Schur complement lemma, noticing (31), it is
easy to derive E{∑T

k=0 ‖zk‖2 − γ 2∑T
k=0 ‖ωk‖2} < 0. Letting

T → +∞, then H∞ performance constraint (19) is met, which
completes the proof.

It is noted that due to some nonlinear terms in (31), it
is difficult to obtain the observer-based controller parameters
from Theorem 2. In order to deal with this problem, the fol-
lowing theorem is provided to convert the nonlinear matrix
inequality (31) into LMI.

Theorem 3: For given parameters γ , ᾱ ∈ (0, 1), β̄ ∈ (0, 1),
μ > 0, for the augmented system (18) , if there exists a sym-
metric positive-definite matrix P � diag{P̄, P̄} such that the
following LMI holds:

�4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̄ ∗ ∗ ∗ ∗ ∗ ∗
�21 −P ∗ ∗ ∗ ∗ ∗
�31 0 −P ∗ ∗ ∗ ∗
�41 0 0 −P ∗ ∗ ∗

��51 0 0 0 −μI ∗ ∗
�61 0 0 0 0 �66 ∗
�71 0 0 0 0 0 �77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(36)

where

�21 = [�21 −ε3�22 −β̄�23 ᾱ�24 �27
]

�31 = [ε1�31 ε1�32 0 ε1�34 0
]

�41 = [ε2�41 0 −ε2�43 0 0
]

�51 = [μCĨ −μI 0 0 0
]
,

�61 = [P̄EĨ + β̄BT 0 −β̄BT 0 P̄D2
]

�71 = [ε2BTĪ 0 −ε2BT 0 0
]

�21 =
[

A1 + ε3L1C ε3L1C
P̄A − A1 + β̄BT − ε3L1C P̄A − ε3L1C

]

�22 = �24 = �32 = �34 =
[

L1
−L1

]

�23 = �43 =
[

0
BT

]

�27 =
[

0
P̄D1

]

�31 =
[−L1C −L1C

L1C L1C

]

�41 =
[

0 0
BT 0

]

�55 = −μI, �66 = �77 = −2εP̄ + ε2I

ε1 = √ᾱ(1 − ᾱ), ε2 =
√

β̄(1 − β̄), ε3 = 1 − ᾱ.

Other symbols are given in Theorem 2.
Proof: Set P = diag{P̄, P̄}, and define A1 = P̄Ac,

L1 = P̄Lc and T = P1Kc. According to Lemma 1, for

P̄ = O

[
M ∗
0 N

]

OT , there exists P1 = VS−1MSVT satisfy-

ing P̄B = BP1. Premultiplying and postmultiplying (31) by
diag{I, . . . , I

︸ ︷︷ ︸
9

, P̄, P̄}, replace P̄Ac, P̄Lc, and P1Kc by A1, L1,

and T , respectively, then we can obtain

�3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�4 ∗ ∗ ∗ ∗ ∗ ∗
�21 −P ∗ ∗ ∗ ∗ ∗
�31 0 −P ∗ ∗ ∗ ∗
�41 0 0 −P ∗ ∗ ∗
�51 0 0 0 �0 ∗ ∗
�61 0 0 0 0 −P̄2 ∗
�71 0 0 0 0 0 −P̄2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0.

(37)

For ∀ε > 0, from
(

I − ε−1P̄
)(

I − ε−1P̄
)

≥ 0 (38)

we can obtain

− P̄2 ≤ −2εP̄ + ε2I. (39)

Replacing −P̄2 by −2εP̄ + ε2I in (37), then (37) can be
guaranteed by (36). This completes the proof.

Remark 9: In this article, the dynamic event-triggered out-
put feedback control problem is addressed for networked
systems subject to multiple cyber attacks. There are four
factors that complicate the observer-based controller design
method, that is, the two dynamic event-triggered control
approach, the DoS attacks, and the deception attacks. In
Theorem 3, the observer-based controller and the dynamic
event-triggering matrices are co-designed, which reflect the
influences of the four factors.

IV. SIMULATION EXAMPLES

In this section, a simulation example is presented to illus-
trate the validity of the proposed output feedback controller.

Consider the system (1) with

A =
⎡

⎣
0.2335 −0.0672 0
2.0570 −0.2967 0

0 0 0.4

⎤

⎦, B =
⎡

⎣
1 0
1 1
0 1

⎤

⎦

D1 =
⎡

⎣
0.1
0

0.1

⎤

⎦E =
⎡

⎣
0.1 0 0
0.2 0 0.2
0 0.1 0.2

⎤

⎦, D2 =
⎡

⎣
0.11
0.03
0.09

⎤

⎦

C =
[

0.1 0.8 0.7
−0.6 0.9 0.6

]

.

For the DETS of (3) and (10), let λ1 = 0.1, λ2 = 0.8,
θ1 = θ2 = 10, σ1 = 0.1, and σ2 = 0.7, the initial conditions
of ζ1,k and ζ2,k are ζ 0

1 = 10 and ζ 0
2 = 15, respectively.

The occurrence probabilities of cyber attacks are chosen as
ᾱ = 0.3 and β̄ = 0.7, and the nonlinear function is as follows:

δ(yik) =
[

0.7 sin(ik) 0
0 0.7 sin(ik)

]

× yik

then we can obtain δ(yik)
Tδ(yik) ≤ yT

ik
�T�yik , where

� = diag{0.7, 0.7}.
By solving condition (36), the feedback gain matrix, the

observer gains, and the triggering matrices are obtained as

Ac =
⎡

⎣
0.1544 −0.0376 0.0202
1.4913 −0.2123 0.0255

−0.0022 0.0014 0.1800

⎤

⎦
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Fig. 2. State responses.

Fig. 3. Error responses between system states and observed states.

Lc =
⎡

⎣
0.0077 −0.0143
0.0799 −0.1078
0.0074 −0.0008

⎤

⎦

Kc =
[−0.1550 0.0643 0.1801
−0.1177 −0.0318 −0.2217

]

�1 =
[−0.1550 0.0643 0.1801
−0.1177 −0.0318 −0.2217

]

�2 =
⎡

⎣
271.2308 −19.1228 5.1005
−19.1228 65.5148 −16.0926

5.1005 −16.0926 240.7276

⎤

⎦.

Given the initial conditions as xT
0 = [0.5 0 −0.5

]
and

x̂T
0 = [1 0 −1

]
, the external disturbance is ωk = e−0.2k.

According to the initial conditions and above-obtained
parameters, the state responses of system (1) under multiple
attacks and DETSs are depicted in Fig. 2, which illustrates
that the system state is AMSS even when the multiple attacks
are present intermittently. The error responses ek are shown
in Fig. 3. We can see the error gradually decreases to zero as
expected.

The released instants in the STO channel based on DETS
and static ETS (SETS) are depicted in Fig. 4, respectively.
During the simulation time, the events are triggered 16 times

Fig. 4. Release instants.

Fig. 5. Signal received by observer under deception attacks.

under DETS and 25 times under SETS. From the compari-
son, we can easily obtain the conclusion that the DETSs can
reduce the unnecessary data transmission more effectively than
SETS.

Fig. 5 shows the signal received by an observer under decep-
tion attacks, which will make the signal suddenly stray from
the original path. Especially at the instant of k = 5, the decep-
tion attacks result in serious system deterioration. However,
even though there are random deception attacks occurring, the
signal reaches stability gradually. Fig. 6 depicts the control
input subject to DoS attacks. When DoS attacks occur, the
control input will turn out to be zero. The control input is
also tending toward stability under stochastic DoS jamming
attacks.

Based on the simulation results above, the proposed event-
triggered output feedback control method performs very
well.

Remark 10: The similar DETSs have been proposed
in [36] and [37]. Whereas, the DETS proposed in [36] for
observer-based control is in the continuous context. In [37],
the DETS was designed for the distributed set-membership
estimation for a discrete-time linear time-varying system. In
contrast, in this article, the DETSs are exploited to study
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Fig. 6. Control input uk under DoS attacks.

the observer-based control for networked systems subject to
multiple cyber attacks.

V. CONCLUSION

In this article, we have investigated the dynamic event-
triggered output feedback control for NCSs with multiple
cyber attacks. A novel two-channel DETSs has been proposed
to enhance the utilization efficiency of network resources.
Considering the characteristics of the randomly occurring
deception attacks and DoS jamming attacks, an observer
error system model is constructed. Tractable LMI-based sta-
bility analysis and control design criteria for the co-design
of the observer and controller gains have been derived while
preserving satisfactory control performance despite the pres-
ence of deception attacks and DoS jamming attacks. Finally,
a numerical example has been exploited to demonstrate the
effectiveness of the proposed dynamic event-triggered output
feedback controller design method.

Future research directions will include the problem of an
observer-based dynamic event-triggering consensus control for
multiagent systems with multiple cyber attacks.
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