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A B S T R A C T

The issue of 𝐻∞ state estimation is addressed for complex networks (CNs) with inner coupling
disturbance (ICD) while utilizing adaptive-frequency event-triggered mechanism (AFETM) and
multi-channel random access protocol (MRAP). To maintain transmission frequency as much
as possible while reducing data transmission, the proposed AFETM dynamically modifies the
threshold based on the historical number of transmissions within a defined time interval. Data
transmission after AFETM is scheduled by the MRAP, which enables the random selection
and transmission of multiple signals, thereby avoiding network conflicts and congestion. The
primary objective is to devise a estimator that guarantees the estimation errors meet the
prescribed 𝐻∞ performance. The attainment of sufficient conditions to achieve this objective
involves the utilization of stochastic analysis. On this basis, the expected estimator gain is
determined through the solution of the backward coupled difference equations. Ultimately, the
performance of the devised estimator is validated by simulation.

1. Introduction

Complex networks (CNs) are network structures composed of many nodes and connections, possessing many characteristics that
do not exist in traditional networks [1–3], including self-organization, robustness, and adaptability [4]. In fields such as machine
learning, data mining, artificial intelligence, CNs find extensive applications in tasks such as text classification, recommendation
systems, and image recognition to accelerate data processing and analysis [5–7]. The extensive application of CNs in biology, physics,
sociology, computer science, and other fields highlights the importance of researching CNs. By analyzing the structure and properties
of CNs, one can better understand information propagation, dynamic evolution, and related phenomena [8]. CNs provide a novel
method for researching and simulating complex real-world systems.

Obtaining the state of nodes is one of the fundamental challenges encountered in the application of CNs. However, direct
acquisition of state can only be achieved in networks with relatively simple dynamic behaviors and small number of nodes [9].
The state of large-scale CNs is often impossible to obtain directly through measurement [10]. The usual solution is to use the
measurable output data to estimate the unmeasurable state information, which is also the core issue discussed in this paper.
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In [11], the nonfragile estimation method is explored for CNs with switching topologies using quantized signal processing. A
research investigation is presented on the state estimation approach for CNs characterized by stochastic variations in topology
subject to variance constraints in [12]. However, these estimation schemes are based on relatively ideal network environments, and
when applied to practical issues, they may be invalid and result in reduction of estimation accuracy due to unconsidered external
factors [13], which makes the estimation problem in complex environments more valuable. While ensuring that the estimation error
is within an acceptable range, this paper will further propose estimation strategies with stronger robustness and stability from the
more realistic perspectives of external perturbations and network resource limitations.

The coupling between nodes in CNs refers to the interaction relationships between different nodes in the network [14–16].
n CNs, nodes can be coupled to each other in various ways, such as physical connections, information transmission, and energy
ransfer. The coupling relationships between nodes in a complex network form the basis of network structure formation, which
etermines various dynamic behaviors and evolutionary patterns of the network [17,18]. Therefore, in-depth research on the
oupling relationships between nodes in a complex network is of great significance for understanding the structure and function
f the network. Currently, the coupling relationships in related research are assumed to be already determined, but some papers
oint out that the actual coupling relationships in complex networks are not accurate, which has attracted a group of researchers
o further study uncertain couplings. In [19], a recursive state estimation scheme under variance constraints is discussed for CNs
ith uncertain inner couplings and measurement signals processed using quantization techniques. In consideration of the situations

nvolving event-triggered mechanism (ETM) and state saturation, a filtering method is proposed for CNs with random coupling
trengths in [20]. This paper will design an estimator considering inner coupling disturbance (ICD) to enhance the robustness of
stimator.

Due to the property of including many nodes, CNs are prone to generating large amounts of data traffic in a short period of
ime, which can result in network congestion and conflicts and seriously affect normal communication [21,22]. Many studies have
een conducted to solve network conflict issues using ETM [23–26], which aim to reduce unnecessary signal transmission [27]. For
xample, the filtering problem is investigated for CNs in [28], where multiple ETMs regulate communication between nodes. To
ffectively regulate signal transmission in the event of significant fluctuations in sensor data, dynamic event-triggered mechanism
DETM) with dynamic thresholds has been proposed [29–31]. The pinning synchronization for CNs with switched impulsive
ynamics and asynchronous switching is discussed in [32] under the influence of DETM. A filtering method for CNs with switching
opology influenced by DETM and random sensor failures is studied in [33]. However, even with the use of DETM to regulate data
ransmission, it is still challenging to ensure the generation of stable transmission frequencies that are crucial for reducing network
ongestion [34]. In order to further reduce the likelihood of complex network transmitting large amounts of data in a short period
f time, an adaptive frequency event-triggered mechanism has been proposed based on the DETM. AFETM adaptively adjusts the
riggering threshold based on the event trigger frequency in the past period of time, aiming to stabilize the trigger frequency and
void frequent triggering within a short period of time that may cause data flow impact on network stability.

Recently, another data transmission control method utilizing communication protocols has gained attention [35,36]. The
ommon scheduling approach in current communication protocols is to select data from one node at a time for transmission [37].
ommon communication protocols include random access protocol (RAP) [38,39], round-robin protocol (RRP) [40–42], and weight
ry-once-discard protocol [43–45]. Currently, some communication protocols have been employed to mitigate network congestion.
he estimation method of CNs with sensor saturation under RAP is investigated in [46] based on partial node information. The
∞ state estimation problem of CNs with nonlinear singular perturbations and RRP is discussed in [47]. Among communication

rotocols, RAP is simple to implement and widely used in industrial practical problems, and therefore is also an important research
bject. Its main principle is to randomly select signal of one node transmission at each moment. It is demonstrated as an effective
ethod for mitigating network conflict, but the significant reduction in the amount of transmitted data diminishes the performance

f the estimator. In order to control the estimation error within an acceptable range, the amount of transmitted data should be
ppropriately increased, and thus the multi-channel random access protocol (MRAP) that uses multiple channels to transmit signals
imultaneously will be proposed. MRAP selects signals from multiple nodes for transmission at each moment. By adjusting the
umber of occupied channels, it can balance the performance of the estimator and network transmission amount. The estimator
esigned based on MRAP in this paper has better performance than general RAP, under the premise of effectively solving network
ongestion problems.

Based on the aforementioned discussion, this paper investigates the estimation problem of CNs with ICD under limited network
andwidth. The AFETM and MRAP are implemented to mitigate network congestion and conflicts caused by limited network
ommunication resources. The distinguishing innovations of the main results are characterized by the following aspects: (1) The

state estimation of CNs with ICD under the simultaneous influence of AFETM and MRAP is explored for the first time. (2) To tackle
the challenge posed by limited network resources, AFETM is proposed, which can dynamically adjust the threshold to maintain a
stable transmission frequency. In addition, MRAP that enables the random selection and transmission of measurements from multiple
nodes is introduced. (3) The adequate conditions for guaranteeing that the dynamic estimation errors satisfy the 𝐻∞ performance
are obtained through the utilization of random analysis techniques and solving backward coupled difference equations.
2
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2. Problem formulation

2.1. System description

The dynamics of CNs with 𝑁 coupled nodes are described as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑖(𝑘 + 1) = 𝐴𝑖(𝑘)𝑥𝑖(𝑘) +
𝑁
∑

𝑗=1
𝜔𝑖𝑗 (𝛤 + 𝛤 )𝑥𝑗 (𝑘) + 𝐵𝑖(𝑘)𝑣𝑖(𝑘)

𝑦𝑖(𝑘) = 𝐶𝑖(𝑘)𝑥𝑖(𝑘) +𝐷𝑖(𝑘)𝑣𝑖(𝑘)

𝑧𝑖(𝑘) = 𝐻𝑖(𝑘)𝑥𝑖(𝑘)

(1)

where 𝑥𝑖(𝑘) ∈ R𝑛(𝑖 = 1, 2,… , 𝑁) denotes the state of 𝑖th node for 𝑘 ∈ [0, 𝑇 ]. 𝑦𝑖(𝑘) ∈ R𝑚 and 𝑧𝑖(𝑘) ∈ R𝑚 stand for the measurement
output and the output to be estimated, respectively. 𝑣𝑖(𝑘) denotes the external disturbances. 𝑊 =

(

𝜔𝑖𝑗
)

𝑁×𝑁 with 𝜔𝑖𝑗 ≥ 0(𝑖 ≠ 𝑗) is the
coupling configuration matrix, where 𝜔𝑖𝑗 = 𝜔𝑗𝑖 and 𝜔𝑖𝑖 = −

∑𝑁
𝑗=1,𝑗≠𝑖 𝜔𝑖𝑗 . 𝛤 = diag1≤𝑖≤𝑁

{

𝛾𝑖
}

is the inner coupling matrix with 𝛾𝑖 > 0,
and 𝛤 = diag1≤𝑖≤𝑁

{

�̃�𝑖
}

is the coupling disturbance. The expectation of independent random variables �̃�𝑖 is 0, and its variance is 𝛽𝑖.
𝐴𝑖(𝑘), 𝐵𝑖(𝑘), 𝐶𝑖(𝑘), 𝐷𝑖(𝑘) and 𝐻𝑖(𝑘) are bounded and known matrices.

2.2. Adaptive-frequency event-triggered mechanism

For reducing the data transmission burden on the communication network between sensors and remote estimators, an adaptive-
frequency event-triggered mechanism based on the trigger frequency is used to make the determination of whether or not to transmit
the current measurement value.

Define the triggering instant sequence as 𝑠(0) < 𝑠(1) <⋯ < 𝑠(𝑡) < ⋯ < 𝑇 , and the following threshold function

 (𝑘, 𝛿(𝑘)) = ‖𝜉(𝑘)‖ − (𝜃𝛿(𝑘) +𝜛)‖𝑦(𝑘)‖, (2)

in which

𝜉(𝑘) = 𝑦(𝑘) − 𝑦(𝑠(𝑡)), 𝛿(𝑘) =
𝑇 (𝑝)

𝑇 (𝑟) + 𝑇 (𝑝)
,

𝑇 (𝜍) =
𝑠(𝑡) − 𝑠(𝑡 − 𝜍)

𝜍
, 𝜍 = 𝑟, 𝑝.

The positive scalars 𝜃 and 𝜛 are given parameters. 𝑠(𝑡) being the latest triggering instant before time 𝑘.
The measurement output 𝑦(𝑘) can be triggered and accessible to the communication network only when (𝑘, 𝛿(𝑘)) ≥ 0.

Specifically, the update rule for the next moment of transmission is

𝑠(𝑡 + 1) = min {𝑘 ∣ 𝑘 > 𝑠(𝑡), (𝑘, 𝛿(𝑘)) ≥ 0} . (3)

By employing AFETM, the actual triggered signal �̃�(𝑘) is denoted as

�̃�(𝑘) = 𝑦 (𝑠(𝑡)) , ∀𝑘 ∈ [𝑠(𝑡), 𝑠(𝑡 + 1)) . (4)

Remark 1. The recent triggering interval 𝑇 (𝑟) represents the time interval of the latest 𝑟 signal transmissions. Typically, 𝑟 is set to
be a small value to reflect the frequency of recent signal transmissions. Similarly, the average triggering interval 𝑇 (𝑝) represents
the time interval of the previous 𝑝 signal transmissions. It is necessary to set 𝑝 to be a larger value to reflect the frequency of signal
transmissions over a longer period of time. The core idea of AFETM is that 𝑇 (𝑟) dynamically approaches 𝑇 (𝑝) under the influence
of adaptive threshold 𝛿(𝑘), resulting in a more stable triggering frequency compared to conventional ETM.

Remark 2. If 𝑇 (𝑟) is smaller than 𝑇 (𝑝), it signifies a higher frequency of signal transmissions in the previous moment 𝑘 − 1. From
the calculation method of the dynamic threshold 𝛿(𝑘), it can be inferred that 𝛿(𝑘) will be greater than 𝛿(𝑘 − 1), thereby making
it more difficult for AFETM to meet the triggering condition (𝑘, 𝛿(𝑘)) ≥ 0 and consequently reducing the frequency of signal
transmission. Conversely, if 𝑇 (𝑟) is greater than 𝑇 (𝑝), it indicates a lower frequency of signal transmissions. As a result, 𝛿(𝑘) will be
smaller than 𝛿(𝑘), facilitating the occurrence of signal transmission, which contributes to enhancing the performance of estimator.
Through adaptively adjusting the threshold to stabilize the triggering frequency of AFETM, more stable data transmission and better
estimator performance on average can be achieved.

2.3. Multi-channel random access protocol

To reduce communication pressure, MRAP are used in network to determine which signals of nodes can be transmitted. Compared
with traditional RAP that only select one node each time, the MRAP considered here can select 𝑎(1 < 𝑎 < 𝑁) nodes at each moment.

Define �̃�(𝑘) = col𝑁{�̃�𝑖(𝑘)}. Let 𝜎𝑖(𝑘) represents whether the 𝑖th node is selected and ∑𝑁
𝑖=1 𝜎𝑖(𝑘) = 𝑎. Assuming that each node is

considered to have an equal weight in terms of selection. The probability of 𝜎𝑖(𝑘) being selected is given by

Prob{𝜎 (𝑘) = 1} = 𝑎 , Prob{𝜎 (𝑘) = 0} = 1 − 𝑎 ,
3
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where 𝜎𝑖(𝑘) = 1 means that the 𝑖th node can transmit signals, otherwise it cannot transmit.
Denote �̄�(𝑘) = col𝑁{�̄�𝑖(𝑘)} as the measurement output received by the remote estimation. Adopting the zero-order holder strategy,

we have

�̄�(𝑘) = 𝛷𝜎(𝑘)�̃�(𝑘) +
(

𝐼 −𝛷𝜎(𝑘)
)

�̄�(𝑘 − 1) (5)

where 𝛷𝜎(𝑘) = diag1≤𝑖≤𝑁
{

𝜎𝑖(𝑘)𝐼𝑚
}

.

Remark 3. Currently, the widely used RAP for addressing network congestion issues randomly sends data of single node at each
moment. Although frequent package collisions are avoided, it also has a considerable adverse effect on the performance of the
estimator. In CNs, network resources are often insufficient to support data transmission from all sensors, but there are enough
network resources to send some data. To fully utilize the existing network resources, MRAP has been introduced, which can specify
the number of channels occupied by the scheduling signal according to the specific network environment, balancing the conflict
relationship between limited network resources and estimator performance.

Remark 4. Compared to the existing state estimation for CNs [11,47], this study considers AFETM with dynamic thresholds and
MRAP that fully utilize network resources. The basic difference between the AFETM proposed in this paper and the ETM in [32,33]
is that the threshold function in (2) is time-varying and can be adjusted adaptively according to the triggering frequency. The MRAP
can adjust the number of transmitted measurement outputs from sensor nodes based on the network environment, which allows for
the optimal utilization of currently idle communication channels.

2.4. State estimator design

Based on the AFETM (2) and the MRAP (5), the state estimator for CNs (1) is constructed as

⎧

⎪

⎨

⎪

⎩

�̂�𝑖(𝑘 + 1) =
(

𝐴𝑖(𝑘) − 𝐿𝑖(𝑘)𝐶𝑖(𝑘)
)

�̂�𝑖(𝑘) +
𝑁
∑

𝑗=1
𝜔𝑖𝑗𝛤 �̂�𝑗 (𝑘) + 𝐿𝑖(𝑘)�̄�𝑖(𝑘)

�̂�𝑖(𝑘) = 𝐻𝑖(𝑘)�̂�𝑖(𝑘)

(6)

where �̂�𝑖(𝑘) and �̂�𝑖(𝑘) are the estimation of 𝑥𝑖(𝑘) and 𝑧𝑖(𝑘), respectively. 𝐿𝑖(𝑘) is the estimation gain matrix.
Denote 𝑒𝑖(𝑘) = 𝑥𝑖(𝑘) − �̂�𝑖(𝑘), �̃�𝑖(𝑘) = 𝑧𝑖(𝑘) − �̂�𝑖(𝑘), 𝑥(𝑘) = col𝑁{𝑥𝑖(𝑘)}, 𝑒(𝑘) = col𝑁{𝑒𝑖(𝑘)}, �̃�(𝑘) = col𝑁{�̃�𝑖(𝑘)}, 𝑣(𝑘) = col𝑁{𝑣𝑖(𝑘)}, and

𝜂(𝑘) =
[

𝑥𝑇 (𝑘) �̄�𝑇 (𝑘 − 1) 𝑒𝑇 (𝑘)
]𝑇 , then the estimation error system is

{

𝜂(𝑘 + 1) = ̄(𝑘)𝜂(𝑘) + (𝑘)𝜉(𝑘) + (𝑘)𝑣(𝑘)

�̃�(𝑘) = (𝑘)𝜂(𝑘)
(7)

where

�̄�(𝑘) = �̃�(𝑘) − 𝐿(𝑘)𝐶(𝑘), �̃�(𝑘) = 𝐴(𝑘) +𝑊 ⊗𝛤,

̄(𝑘) = (𝑘) +(𝑘), �̃�(𝑘) = 𝐿(𝑘)(𝐼 −𝛷𝜎(𝑘)),

�̃�(𝑘) = 𝐵(𝑘) − 𝐿(𝑘)𝛷𝜎(𝑘)𝐷(𝑘),

𝛶 = diag1≤𝑖≤𝑁{𝛶𝑖}, 𝛶 = 𝐴(𝑘), 𝐿(𝑘), 𝐶(𝑘),𝐻(𝑘), 𝐵(𝑘), 𝐷(𝑘),

(𝑘) =
⎡

⎢

⎢

⎣

�̃�(𝑘) 0 0
𝛷𝜎(𝑘)𝐶(𝑘) 𝐼 −𝛷𝜎(𝑘) 0
�̃�(𝑘)𝐶(𝑘) −�̃�(𝑘) �̄�(𝑘)

⎤

⎥

⎥

⎦

,

(𝑘) =
⎡

⎢

⎢

⎣

𝑊 ⊗𝛤 0 0
0 0 0

𝑊 ⊗𝛤 0 0

⎤

⎥

⎥

⎦

, (𝑘) =
⎡

⎢

⎢

⎣

0
−𝛷𝜎(𝑘)
𝐿(𝑘)𝛷𝜎(𝑘)

⎤

⎥

⎥

⎦

,

(𝑘) =
⎡

⎢

⎢

⎣

𝐵(𝑘)
𝛷𝜎(𝑘)𝐷(𝑘)
�̃�(𝑘)

⎤

⎥

⎥

⎦

, (𝑘) =
[

0 0 𝐻(𝑘)
]

.

In this paper, we aim to construct the state estimator (6) for the CNs (1) with the ICD under the simultaneous influence of AFETM
(2) and MRAP (5) such that the resulting augmented estimation error dynamics (7) satisfy the following 𝐻∞ performance index:

E
{ 𝑇
∑

𝑘=0
1(𝑘)

}

=
𝑇
∑

𝑘=0
E
{

‖�̃�(𝑘)‖2 − 𝛾2‖𝑣(𝑘)‖2
}

< 𝜂𝑇 (0)𝑆𝜂(0) (8)

for a prescribed disturbance attenuation level 𝛾 > 0 over a finite-time horizon [0, 𝑇 ], where 𝑆 > 0 is a weighted matrix and 𝜂(0) is
4

any given non zero initial condition.
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3. Main results

In this part, we utilize the stochastic analysis to derive the sufficient conditions satisfying the expected performance requirement
ased on (7).

heorem 1. Given 𝛾 > 0, 𝛼 > 0, matrix 𝑆𝑇 = 𝑆 > 0, and the estimator gain 𝐿(𝑘), the estimation error system (7) satisfies the 𝐻∞
erformance if there exists matrices 𝑅(𝑘) > 0 such that the backward difference equations (BDEs) hold for 𝑘 ∈ [0, 𝑇 ]:

𝑅(𝑘) = 𝛱3,𝑘+1 + 𝛩𝑇1,𝑘+1𝛺
−1
2,𝑘+1𝛩1,𝑘+1 (9)

ith 𝑅(𝑇 + 1) = 0 and

𝛺1,𝑘+1 > 0, 𝛺2,𝑘+1 > 0, 𝑅(0) < 𝛾2𝑆 (10)

here

𝛱3,𝑘+1 = ̃𝑇 (𝑘)𝛯𝑘+1̃(𝑘) + ̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘)

+𝑇 (𝑘)(𝑘) + �̃��̄�𝑇 (𝑘)�̄�(𝑘),

𝛯𝑘+1 = 𝑅(𝑘 + 1) + 𝑅(𝑘 + 1)̃(𝑘)𝛺−1
1,𝑘+1̃

𝑇 (𝑘)𝑅(𝑘 + 1),

𝛩1,𝑘+1 = ̃𝑇 (𝑘)𝛯𝑘+1̃(𝑘) + �̃�𝐷𝑇 (𝑘)�̄�(𝑘),

𝛺1,𝑘+1 = 𝛼2𝐼 − ̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘),

𝛺2,𝑘+1 = 𝛾2𝐼 − ̃𝑇 (𝑘)𝛯𝑘+1̃(𝑘) − �̃�𝐷𝑇 (𝑘)𝐷(𝑘),

̃(𝑘) =
⎡

⎢

⎢

⎣

�̃�(𝑘) 0 0
�̄�𝐶(𝑘) 𝐼 − �̄� 0
�̄�(𝑘)𝐶(𝑘) −�̄�(𝑘) �̄�(𝑘)

⎤

⎥

⎥

⎦

,

̃(𝑘) =
⎡

⎢

⎢

⎣

𝑊 ⊗𝛤 0 0
0 0 0

𝑊 ⊗𝛤 0 0

⎤

⎥

⎥

⎦

, ̃(𝑘) =
⎡

⎢

⎢

⎣

0
−�̄�
𝐿(𝑘)�̄�

⎤

⎥

⎥

⎦

,

̃(𝑘) =
⎡

⎢

⎢

⎣

𝐵(𝑘)
�̄�𝐷(𝑘)

𝐵(𝑘) − 𝐿(𝑘)�̄�𝐷(𝑘)

⎤

⎥

⎥

⎦

, �̄�(𝑘) =
[

𝐶(𝑘) 0 0
]

,

�̄�(𝑘) = 𝐿(𝑘)(𝐼 − �̄�), �̄� = 𝑎
𝑁
𝐼,

𝛤 = diag1≤𝑖≤𝑁{𝛽𝑖}, �̃� = (𝜃 +𝜛)𝛼2.

Proof. Define

R(𝑘) = 𝜂𝑇 (𝑘)𝑅(𝑘)𝜂(𝑘), (11)

𝐽1(𝑘) = R(𝑘 + 1) − R(𝑘). (12)

Similarly to the employment of Lemma 1 in [48], it can be derived from E{𝛤 } = 0 and E{𝛷𝜎(𝑘)} = �̄�. Incorporating the zero
term

E
{

1(𝑘) + 𝛼2‖𝜉(𝑘)‖2 + 𝛾2‖𝑣(𝑘)‖2 − ‖�̃�(𝑘)‖2 − 𝛼2‖𝜉(𝑘)‖2
}

and considering

𝜉𝑇 (𝑘)𝜉(𝑘) ≤ (𝜃𝛿(𝑘) +𝜛)𝑦𝑇 (𝑘)𝑦(𝑘), (13)

we obtain

E{𝐽1(𝑘)} ≤ E
{

𝜂𝑇 (𝑘)
(

𝛱1,𝑘+1 +𝑇 (𝑘)(𝑘) + �̃��̄�𝑇 (𝑘)�̄�(𝑘) − 𝑅(𝑘)
)

𝜂(𝑘)

− 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) − 𝑣𝑇 (𝑘)
(

𝛾2𝐼 − ̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘)

− �̃�𝐷𝑇 (𝑘)𝐷(𝑘)
)

𝑣(𝑘) + 2𝜂𝑇 (𝑘)
(

̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘)

+𝛱2,𝑘+1 + �̃��̄�(𝑘)𝐷(𝑘)
)

𝑣(𝑘) − 1(𝑘)
}

(14)

where

𝛱1,𝑘+1 = ̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘) + ̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘),

𝛱2,𝑘+1 = 2𝜂𝑇 (𝑘)̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘)𝜉(𝑘) + 2𝜉𝑇 (𝑘)̃𝑇 (𝑘)𝑅(𝑘 + 1)̃(𝑘)𝑣(𝑘).
5
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Utilizing the technique of completing the square, we obtain

−𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) +𝛱2,𝑘+1 = 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) − 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) (15)

where

𝜉(𝑘) = 𝜉(𝑘) − 𝜉(𝑘),

𝜉(𝑘) = 𝛺−1
1,𝑘+1̃

𝑇 (𝑘)𝑅(𝑘 + 1)
(

̃(𝑘)𝜂(𝑘) + ̃(𝑘)𝑣(𝑘)
)

.

Substituting (15) into (14) yields

E{𝐽1(𝑘)} ≤ E
{

𝜂𝑇 (𝑘)
(

𝛱3,𝑘+1 − 𝑅(𝑘)
)

𝜂(𝑘) − 𝑣𝑇 (𝑘)𝛺2,𝑘+1𝑣(𝑘) +𝛱4,𝑘+1

− 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) − 1(𝑘)
}

(16)

where

𝛱4,𝑘+1 = 2𝜂𝑇 (𝑘)
(

̃𝑇 (𝑘)𝛯𝑘+1̃(𝑘) + �̃��̄�𝑇 (𝑘)𝐷(𝑘)
)

𝑣(𝑘).

Similar to (15), we have

−𝑣𝑇 (𝑘)𝛺2,𝑘+1𝑣(𝑘) +𝛱4,𝑘+1 = �̃�𝑇 (𝑘)𝛺2,𝑘+1�̃�(𝑘) − �̄�𝑇 (𝑘)𝛺2,𝑘+1�̄�(𝑘) (17)

where

�̄�(𝑘) = 𝑣(𝑘) − �̃�(𝑘), �̃�(𝑘) = 𝛺−1
2,𝑘+1𝛩1,𝑘+1𝜂(𝑘).

Substituting (17) into (16) yields

E{𝐽1(𝑘)} ≤ E
{

𝜂𝑇 (𝑘)
(

𝛱3,𝑘+1 + 𝛩𝑇1,𝑘+1𝛺
−1
2,𝑘+1𝛩1,𝑘+1 − 𝑅(𝑘)

)

𝜂(𝑘)

− 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) − �̃�𝑇 (𝑘)𝛺2,𝑘+1�̃�(𝑘) − 1(𝑘)
}

. (18)

Accumulating the sum from 0 to 𝑇 on both sides of (18) with (12), one obtains

E
{

R(𝑘 + 1) − R(0)
}

≤ E
{

−
𝑇
∑

𝑘=0

(

1(𝑘) + 𝜉𝑇 (𝑘)𝛺1,𝑘+1𝜉(𝑘) + �̃�𝑇 (𝑘)𝛺2,𝑘+1�̃�(𝑘)
)

}

. (19)

Considering the condition (10) and 𝑅(𝑇 + 1) = 0, we can obtain

E
{ 𝑇
∑

𝑘=0
1(𝑘)

}

< 𝜂𝑇 (0)𝑆𝜂(0). (20)

Based on the definition of 𝐻∞ performance in (8), it follows from (20) that (6) satisfies the 𝐻∞ estimation performance.
Afterwards, we will obtain the gain 𝐿(𝑘) under the most unfavorable circumstances. Suppose that

𝜉(𝑘) = 𝜉(𝑘) = 𝛺−1
1,𝑘+1𝛩2,𝑘+1𝜂(𝑘), (21)

𝑣(𝑘) = �̃�(𝑘) = 𝛺−1
2,𝑘+1𝛩1,𝑘+1𝜂(𝑘) (22)

where

𝛩2,𝑘+1 = ̃𝑇 (𝑘)𝑅(𝑘 + 1)
(

̃(𝑘) + ̃(𝑘)𝛺−1
2,𝑘+1𝛩1,𝑘+1

)

.

Substituting (21) and (22) into (7) yields

⎧

⎪

⎨

⎪

⎩

𝜂(𝑘 + 1) =
(

̂(𝑘) +(𝑘) + (𝑘)𝛺−1
1,𝑘+1𝛩2,𝑘+1

+ (𝑘)𝛺−1
2,𝑘+1𝛩1,𝑘+1

)

𝜂(𝑘) + 𝜓(𝑘)

�̃�(𝑘) = (𝑘)𝜂(𝑘)

(23)

where

̂(𝑘) =
⎡

⎢

⎢

⎣

�̃�(𝑘) 0 0
𝛷𝜎(𝑘)𝐶(𝑘) 𝐼 −𝛷𝜎(𝑘) 0
�̃�(𝑘)𝐶(𝑘) −�̃�(𝑘) �̃�(𝑘)

⎤

⎥

⎥

⎦

,

 =
[

0 0 𝐼
]𝑇 , �̂�(𝑘) =

[

0 0 𝐶(𝑘)
]

, 𝜓(𝑘) = 𝐿(𝑘)�̂�(𝑘)𝜂(𝑘).

In view of (21) and (22) under the most unfavorable scenarios, we define the performance index for the system (23) as follows:

(𝐿(𝑘)) =
𝑇
∑

E
{

2(𝑘)
}

(24)
6

𝑘=0



Journal of the Franklin Institute 361 (2024) 106838J. Miao et al.
where

2(𝑘) = ‖�̃�(𝑘)‖2 + ‖𝜓(𝑘)‖2.

Theorem 2. Consider the CNs (1) and the estimation error system (7). Assume that there are matrices 𝑅(𝑘) > 0 and 𝑄(𝑘) > 0 such that
for given scalars 𝛾 > 0, 𝛼 > 0, matrix 𝑆𝑇 = 𝑆 > 0, and the estimator gain 𝐿(𝑘), the BDEs hold for 𝑘 ∈ [0, 𝑇 ]:

𝑄(𝑘) = 𝛬2,𝑘+1 − 𝛬3,𝑘+1𝛺
−1
3,𝑘+1𝛬

𝑇
3,𝑘+1 (25)

with

𝑅(𝑇 + 1) = 0, 𝑄(𝑇 + 1) = 0, (26)

the conditions (10) and

𝛺3,𝑘+1 > 0 (27)

where

𝛬1,𝑘+1 = �̃�𝑇𝑘+1𝑄(𝑘 + 1)�̃�𝑘+1 + ̃𝑇 (𝑘)𝑄(𝑘 + 1)̃(𝑘),

𝛬2,𝑘+1 = 𝛬1,𝑘+1 +𝑇 (𝑘)(𝑘) + 2𝛹𝑇𝑘+1𝑄(𝑘 + 1)𝐿(𝑘)�̂�(𝑘),

𝛬3,𝑘+1 = ̄𝑇 (𝑘)𝑄(𝑘 + 1),

𝛹𝑘+1 = ̃(𝑘)𝛺−1
1,𝑘+1𝛩2,𝑘+1 + ̃(𝑘)𝛺−1

2,𝑘+1𝛩1,𝑘+1,

𝛺3,𝑘+1 = 𝑇𝑄(𝑘 + 1) + 𝐼, �̃�𝑘+1 = ̄(𝑘) + 𝛹𝑘+1,

̄(𝑘) =
⎡

⎢

⎢

⎣

�̃�(𝑘) 0 0
�̄�𝐶(𝑘) 𝐼 − �̄� 0
�̄�𝐶(𝑘) −�̄�(𝑘) �̃�(𝑘)

⎤

⎥

⎥

⎦

.

Proof. Define

Q(𝑘) = 𝜂𝑇 (𝑘)𝑄(𝑘)𝜂(𝑘), (28)

𝐽2(𝑘) = Q(𝑘 + 1) − Q(𝑘). (29)

Similar to Theorem 1, one has

E{𝐽2(𝑘)} = E
{

𝜂𝑇 (𝑘)
(

𝛬1,𝑘+1 −𝑄(𝑘)
)

𝜂(𝑘) + 2𝜂𝑇 (𝑘)�̃�𝑇𝑘+1𝑄(𝑘 + 1)𝜓(𝑘)

+ 𝜓𝑇 (𝑘)𝑇𝑄(𝑘 + 1)𝜓(𝑘)
}

. (30)

Incorporating the zero term

E
{

‖�̃�(𝑘)‖2 + ‖𝜓(𝑘)‖2 − 2(𝑘)
}

into (30), we get

E{𝐽2(𝑘)} = E
{

𝜂𝑇 (𝑘)
(

𝛬2,𝑘+1 −𝑄(𝑘)
)

𝜂(𝑘) + 2𝜂𝑇 (𝑘)

× 𝛬3,𝑘+1 + 𝜓𝑇 (𝑘)𝛺3,𝑘+1𝜓(𝑘) − 2(𝑘)
}

. (31)

Implementing the method of square completion, it follows that

2𝜂𝑇 (𝑘)𝛬3,𝑘+1 + 𝜓𝑇 (𝑘)𝛺3,𝑘+1𝜓(𝑘) = −�̃�𝑇 (𝑘)𝛺3,𝑘+1�̃�(𝑘) + �̄�𝑇 (𝑘)𝛺3,𝑘+1�̄�(𝑘) (32)

where

�̄�(𝑘) = 𝜓(𝑘) + �̃�(𝑘), �̃�(𝑘) = 𝛺−1
3,𝑘+1𝛬

𝑇
3,𝑘+1𝜂(𝑘).

Based on (32), one has

E{𝐽2(𝑘)} = E
{

𝜂𝑇 (𝑘)
(

𝛬2,𝑘+1 − 𝛬3,𝑘+1𝛺
−1
3,𝑘+1𝛬

𝑇
3,𝑘+1

−𝑄(𝑘)
)

𝜂(𝑘) + �̄�𝑇 (𝑘)𝛺3,𝑘+1�̄�(𝑘) − 2(𝑘)
}

.

Similar to (19), we have

(𝐿(𝑘)) − Q(0) = E
{

𝑇
∑

𝑘=0
�̄�𝑇 (𝑘)𝛺3,𝑘+1�̄�(𝑘)

}

≤ E
{ 𝑇
∑

‖𝜂(𝑘)‖2‖(𝑘)‖2𝐹 ‖𝛺3,𝑘+1‖
2
𝐹

}

(33)
7
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𝑅

w

P
F

F

R
f
e
g
A

4

𝛤

M
d

𝑥

where

(𝑘) = 𝐿(𝑘)�̂�(𝑘) + 𝑃 (𝑘), 𝑃 (𝑘) = 𝛺−1
3,𝑘+1𝛬

𝑇
3,𝑘+1.

It can be inferred from (33) that the performance index (𝐿(𝑘)) can be minimized by adjusting gain matrix 𝐿(𝑘).

Theorem 3. Consider the CNs (1) and the estimation error system (7). Given 𝛾 > 0, 𝛼 > 0, and matrix 𝑆𝑇 = 𝑆 > 0, if there exist matrices
(𝑘) > 0 and 𝑄(𝑘) > 0 such that the BDEs (9) and (25) hold with (26), (10), and (27), the gain of (6) is determined by

𝐿(𝑘) = −𝑃 (𝑘)𝐶+(𝑘) (34)

here 𝑃 (𝑘) represents the third block element of 𝑃 (𝑘) and 𝐶+(𝑘) denotes the Moore–Penrose pseudoinverse of 𝐶(𝑘).

roof. From (33), we can deduce that minimizing the performance metric (𝐿(𝑘)) can be transformed into minimizing ‖(𝑘)‖2𝐹 .
urther derivation leads us to obtain

𝐿(𝑘)𝐶(𝑘) = −𝑃 (𝑘). (35)

urthermore, we get (34).

emark 5. Through the analysis of Theorems 1 and 2, adequate conditions guaranteeing the estimator 𝐻∞ performance are obtained
or CNs under the influence of ICD, AFETM, and MRAP. Based on this, Theorem 3 provides specific methods for calculating the
stimator gain during the process of solving the BDEs. This calculation process incorporates all the key information necessary to
uarantee the estimator 𝐻∞ performance, including the system parameter, statistical characteristics of ICD, relevant parameters of
FETM, scheduling matrix of MRAP, and 𝐻∞ performance indicators.

. Numerical example

This section demonstrates the effectiveness of the devised estimator by one numerical instance.
Consider the CNs (1) consisting of five nodes, its parameters are specified as follows:

𝐴1(𝑘) =
[

0.41 + 0.82 sin(𝑘) 0.21
−0.60 0.81 − 0.65 cos(𝑘)

]

,

𝐴2(𝑘) =
[

0.75 + 0.29 sin(𝑘) 0.26
−0.65 0.78 + 0.64 cos(𝑘)

]

,

𝐴𝑙(𝑘) =
[

0.65 + 0.26 cos(𝑘) −0.46
0.25 0.77 + 0.62 sin(𝑘)

]

,

𝐵1(𝑘) =
[

0.06 + 0.1 cos(𝑘)
0.18

]

, 𝐵2(𝑘) =
[

0.13 + 0.2 sin(𝑘)
0.21

]

,

𝐵𝑙(𝑘) =
[

0.12
0.21 + 0.2 sin(𝑘)

]

,

𝐶1(𝑘) =
[

0.32 0.62 + 0.4 cos(0.3𝑘)
]

,

𝐶2(𝑘) =
[

0.32 0.39 + 0.3 cos(0.5𝑘)
]

,

𝐶𝑙(𝑘) =
[

0.25 0.48 + 0.1 cos(0.2𝑘)
]

,

𝐻1(𝑘) =
[

0.12 sin(𝑘) 0.10 sin(𝑘)
]

,

𝐻2(𝑘) =
[

0.21 cos(𝑘) 0.11 cos(𝑘)
]

,

𝐻𝑙(𝑘) =
[

0.20 sin(𝑘) 0.12 cos(𝑘)
]

, 𝑙 = 3, 4, 5.

𝑊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−0.35 0.08 0.09 0.08 0.10
0.08 −0.40 0.11 0.09 0.12
0.09 0.11 −0.33 0.07 0.06
0.08 0.09 0.07 −0.32 0.08
0.10 0.12 0.06 0.08 −0.36

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

= diag{0.2, 0.3}, and the variance of ICD is 𝛤 = diag{0.04, 0.05}.
The parameters related to AFETM are 𝜃 = 0.12, 𝜛 = 0.20, 𝑟 = 2, 𝑝 = 5, and the initial threshold 𝛿(0) = 0.5. In each scheduling of

RAP, the number of randomly selected nodes for transmission is 𝑎 = 2. The scalars 𝛾 = 1.20, 𝛼 = 0.40, and 𝑆 = 3𝐼 . The external
isturbances are 𝑣𝑖(𝑘) = 0.05 cos(0.87𝑘), (𝑖 = 1, 2,… , 5).

The initial states are set as 𝑥1(0) =
[

0.22 0.23
]T, 𝑥2(0) =

[

0.22 0.13
]T, 𝑥3(0) =

[

0.21 0.12
]T, 𝑥4(0) =

[

0.13 0.23
]T,

[ ]T
8
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Fig. 1. Trajectories of 𝑥1(𝑘) and �̂�1(𝑘).

Fig. 2. Trajectories of 𝑥2(𝑘) and �̂�2(𝑘).

The system state 𝑥(𝑘) and the estimation �̂�(𝑘) are displayed in Figs. 1–3. Fig. 4 plots the output estimation error �̃�(𝑘). In Fig. 5,
he selected nodes under MRAP can be observed. There are a total of five sensor nodes that need to transmit measurement data. At
ach sampling instant, the MRAP randomly selects the measurement outputs of two of these sensor nodes for transmission.

The triggering instants of AFETM are presented in Fig. 6. The estimation errors 𝑒1(𝑘) and 𝑒2(𝑘) are shown in Figs. 7–8,
9

hich indicates that in the majority of moments, AFETM can achieve smaller estimation errors compared to the existing ETM
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Fig. 3. Trajectories of 𝑥3(𝑘) and �̂�3(𝑘).

Fig. 4. Output estimation error �̃�(𝑘).

in [32,33]. The enhanced AFETM demonstrates better overall estimation performance when compared to the conventional ETM.
The aforementioned results provide affirmation that the proposed AFETM is indeed efficacious.

5. Conclusion

This paper investigates the state estimation of CNs subject to ICD under AFETM and MRAP. An AFETM that can adaptively adjust
the threshold to maintain a stable transmission rate is proposed. In order to avoid network conflicts and blockages, MRAP that
10
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Fig. 5. Selected nodes under MRAP.

Fig. 6. Triggering instants of AFETM.

can randomly select and send multiple measuring signals is used to schedule signal transmission in the communication network.
Sufficient conditions for guaranteeing that the dynamic estimation errors satisfy the 𝐻∞ performance are obtained through the
utilization of random analysis techniques. The estimator gain that can make the CNs achieve the expected system performance have
been derived by solving the BDEs. Ultimately, the feasibility of the devised estimator is verified through simulation results. Our
future work would include the privacy-preserving state estimation of resource-constrained CNs subject to eavesdropping attacks.
11
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Fig. 7. Estimation error 𝑒1(𝑘) under AFETM and ETM.

Fig. 8. Estimation error 𝑒2(𝑘) under AFETM and ETM.
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