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Abstract
The article concentrates on exploring the issue of privacy-preserving sliding
mode consensus of multi-agent systems (MASs) with disturbance. An encryp-
tion and decryption algorithm has been proposed to address data security and
privacy issues during data transmission. To optimize network resource allo-
cation, a dynamic event-triggering mechanism has been introduced, which
reduces the number of encrypted data while saving the computation cost. The
consensus performance based on the sliding mode control strategy is achieved
when the reachability of the slide-mode surface is guaranteed, and then the
slide-mode controller is developed. Finally, an empirical demonstration through
a numerical example validates the efficacy of the proposed strategy.
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1 INTRODUCTION

The study of multi-agent systems (MASs) has become increasingly important due to their prevalent use in diverse domains
such as sensor networks,1,2 robotic swarms,3 and unmanned aerial vehicle systems.4 In recent years, consensus control
of MASs has attracted significant interest among scholars, playing a crucial role in achieving coordination and coher-
ence among multiple agents.5–8 For example, Li et al.6 studied the consensus problem of MASs with sensor uncertainty.
He et al.9 conducted research on consistent control of linear MASs with actuator saturations. However, these achieve-
ments were all established in a secure network environment without considering the threat of eavesdropping attacks. As
a result, this article investigates consensus control of MASs with encryption and decryption mechanisms to achieve pri-
vacy preservation. Additionally, interference and communication constraints pose substantial challenges to the design of
consensus control strategies for MASs. Therefore, new approaches and strategies are required to address these challenges
and ensure the consensus control of MASs in practical applications.
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Sliding mode control (SMC), in contrast to static control strategies, possesses superior adaptability and robustness,
which can effectively respond to complex environmental changes and uncertainties in the system.10,11 Based on the prin-
ciples of sliding mode theory, SMC leverages the dimension-reducing property of the sliding surface and the fast response
capability of the sliding variable.12 Unlike conventional control methods, SMC does not heavily rely on precise system
models, showcasing its strong adaptability and fault tolerance.13,14 Therefore, SMC has garnered significant attention in
MASs and is widely applied to achieve consensus control. In Reference 15, an adaptive dynamic programming-based inte-
gral SMC approach is employed to achieve optimal consensus control of MASs. A new adaptive pseudo-PID SMC strategy
has been proposed to address the fault-tolerant consensus problem with integral quadratic constraints and unknown
actuator efficiency effects in Reference 16. Guo et al.17 designed a novel fault-tolerant distributed sliding mode con-
troller with fault compensation to address the consensus problem of MASs with actuator faults. Given the impressive
performance of the SMC method and its advantages, it is reasonable to explore the consensus control of MASs via the
SMC strategy.

In practical applications, the event-triggered strategy (ETS) has garnered widespread attention from researchers to
address limited network bandwidth issues.18,19 ETS allows information exchange only when certain events are triggered,
which is advantageous to traditional time-triggered strategies.20,21 By dynamically detecting and responding to events,
ETS can improve overall system performance and reduce bandwidth consumption.22,23 Various ETS have been designed
and discussed in the literature, such as periodic event-triggered mechanism,24 self-triggered mechanism,25,26 and dynamic
event-triggered mechanism (DETM). For achieving the quasi-consensus in MASs, Xie et al.27 presented a novel hybrid
event-triggered impulsive consensus protocol that enforces the occurrence of event pulses by employing proper triggering
strategies. Chen et al.28 proposed a DETM to solve the problem of containment formation control, which realizes dynamic
adjustment of the triggering threshold by introducing an auxiliary variable for each agent. Nonetheless, the research
on dynamic event-triggered consensus control of MASs is still limited while taking network security into consideration,
which deserves further discussion.

Driven by the escalating complexity of systems and the mounting demand for security, network-related security has
garnered increasing research interest.29–31 In networked systems, security issues primarily stem from inherent vulner-
abilities in network-based communication technologies, which render signal transmission via shared communication
channels prone to network attacks and information breaches.32–34 Given the significant reliance of MASs on network
communication, it is of paramount importance to ensure the security and integrity of agent interactions in safeguarding
sensitive data against unauthorized access and malicious attacks.35–37 To maximize confidentiality and integrity dur-
ing transmission, sensitive data can be transformed into an incomprehensible format through encryption algorithms.
Only authorized recipients with the proper decryption keys can decode and restore the original data, effectively pro-
tecting it from unauthorized interception, tampering, or eavesdropping.38–40 As a result, research on encryption and
decryption algorithms for MASs has become a widely recognized research topic. In Reference 40, two fault-tolerant
consistent control schemes based on encryption and decryption were proposed to ensure privacy-preserving. Pan
et al.41 employed a dynamic encryption and decryption scheme founded on sampled data to address privacy-preserving
queuing control problems in vehicular network-physical systems. In light of these related findings, it is evident that
the privacy-preserving secure SMC consensus problem of MASs based on encryption–decryption has rarely received
attention.

Taking inspiration from the aforementioned discussions, this article proposes an event-triggered sliding mode con-
sensus control method for MASs with disturbance. Firstly, a DETM is constructed for each agent to decide whether or not
to transmit the sampled state of the agent. Then, an encryption algorithm is introduced to encrypt the triggered data for
transmission. Similarly, a decryption algorithm is applied to decrypt the received ciphertext and recover the actual data.
Moreover, a robust sliding mode control law is established, enabling agents to converge to a consensus state quickly even
in the presence of disturbances. The key contributions of this study encompass the following aspects:

(1) An encryption and decryption algorithm is designed to address data security and privacy issues during transmission.
In comparison with previous works,42–44 the encryption and decryption algorithm in this article employs a dual-key
encryption algorithm to enhance the level of data security while ensuring data accuracy.

(2) An innovative consensus control strategy based on a discrete SMC method is proposed. By designing appropriate
event-trigger conditions and encryption–decryption mechanisms, the constructed SMC scheme can enable rapid
convergence of all agents to a consensus state. Furthermore, sufficient conditions are provided to ensure both the
security consensus of MASs and the reachability of the sliding surface. Finally, the accuracy of the encryption and
decryption is verified through a simulation example.
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Notations: Rm and Rm×n represent the m-dimensional space and the set of m × n real matrices; ⊗ is the Kronecker
product of two matrices; I represents the identity matrix of suitable dimension; To any symmetric matrix X , we define
𝜆max(X) as the maximum eigenvalue and 𝜆min(X) as the minimum eigenvalue. sgn(x) is symbolic function.

2 PROBLEM FORMULATION

Figure 1 presents the block diagram of discrete MASs under DETM and encryption–decryption algorithms. After pass-
ing through the event generator, each agent generates the triggered state, which is then encrypted to generate ciphertext.
The encrypted codewords are then transmitted to neighboring agents through the communication network. Upon receiv-
ing the codewords from neighboring agents, each agent employs a decryption algorithm to decrypt it and utilizes the
decrypted value to update the control law.

2.1 Graph theory

For a system comprising N agents, the data exchange among the agents constructs a connected graph  ≜
(

v, 𝜀,
)
,

where v = {v1, v2, … , vN} denotes the set of nodes, and each node in the graph  represents an agent in MASs. The set of
edges in the graph is denoted by 𝜀 ⊂ v × v and 𝜀ij =

(
vi, vj

)
∈ 𝜀 if there is an information flow from node vi to node vj, and

 =
[
aij
]

N×N is the adjacency matrix. The set of neighbors of node vi is denoted byi =
{

j|j ∈ v, j ≠ i, 𝜀ji ∈ 𝜀
}

and the
cardinality ofi is denoted by di. aij = 1 if and only if 𝜀ji ∈ 𝜀, otherwise aij = 0. In this article, we assume that the graph 
is an undirected graph, hence aij = aji. The Laplacian matrix is denoted by L =

[
lij
]

N×N with lii =
∑N

j=1,j≠iaij, lij = −aij, i ≠ j.

2.2 System description

In this article, the dynamics of MASs comprising N agents are expressed by the following:

xi(k + 1) = Axi(k) + B(ui(k) + fi(k)), (1)

where xi(k) ∈ Rn, ui(k) ∈ Rn and fi(k) represent the state variable, the input variable, and the actuator disturbance of
agent i (i ∈ 1, … ,N).

Assumption 1. The nonlinear function fi(k) satisfies the condition:

||f (k)|| ≤ v||x(k)||, (2)

where v ≥ 0 is a known scalar.

F I G U R E 1 Communication structure diagram between agents.
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2.3 Design of DETM and encryption–decryption algorithm

In the considered MASs, the information exchange is via a shared open communication network which is constrained
and vulnerable. To achieve the desired consensus performance, the issues of limited network bandwidth and information
security should be well dealt with. In this article, the DETM is first utilized to alleviate the burden on communication
resources. Then, to bolster the integrity and privacy of transmission data triggered by DETM, a proprietary encryption
and decryption algorithm will be designed. The objective of these measures is to enhance the efficiency of communication
resource utilization while ensuring secure data transmission and protecting agent privacy.

As shown in Figure 1, the transmitted state of agent i is determined by an event generator, and the triggering condition
is set as

1
𝛾
𝜙i(k) + 𝜃1xT

i (k)xi(k) − 𝜃2qT
i (k)qi(k) ≤ 0, (3)

where 𝛾, 𝜃1, and 𝜃2 are given positive scalars, and qi(k) = xi
(

li
n
)
− xi(k), xi(li

n) denote the state of agent i at the li
n trigger

time. Dynamic variable 𝜙i(k) satisfies

𝜙i(k + 1) = 𝛽𝜙i(k) + 𝜃1xT
i (k)xi(k) − 𝜃2qT

i (k)qi(k), (4)

where 𝛽 ∈ (0, 1) is a known constant, 𝜙i(0) ≥ 0 is the initial condition.
The triggering sequence of agent i is described as li

0, l
i
1, … . Thus, based on (3), the triggering sequence at agent i is

denoted as:

li
n+1 = inf

{
k > li

n|satisfying (3)
}
, (5)

with li
0 = 0.
Remark 1. Clearly, the DETM (6) is dependent on the parameters 𝛾, 𝜃1 and 𝜃2. If 𝛾 → ∞, the DETM (6) can
be reduced to the static one. Notice that the threshold 𝜙i(k) can be dynamically adjusted based on the current
state of the agent and the error qi(k). Under DETM (6), we can achieve a better balance between the system
performance and the efficient use of network bandwidth by selecting appropriate parameters.

Considering the potential presence of eavesdroppers and information leakage in the communication network, an
encryption–decryption algorithm will be introduced to ensure data security. As depicted in Figure 1, the transmitted
state of agents will be encrypted by an encryptor before being conveyed over the network to the adjacent agent. Then the
controller is proposed based on the decrypted data obtained from the received information. The encryption algorithm of
agent i is described as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜑i(k) =
xi(li

n)−A𝜉i(k−1)
g(k−1)

+ g(k − 1)1N,

𝜉i(k) = A𝜉i(k − 1) + g(k − 1)(𝜑i(k) − g(k − 1)1N),
𝜉i(0) = 0,
𝜑i(k) = Mk𝜑i(k),

(6)

where the privacy matrix Mk is nonsingular. To obtain the codeword 𝜑i(k) that should be transmitted to neighboring
agents, an auxiliary variable 𝜉i(k) is introduced. It should be noted that 𝜑i(k) cannot be decrypted without knowledge of
the bounded scaling function g(k), which can be considered as a symmetric key ensuring the confidentiality of the received
information. 𝜑i(k) represents the encrypted data from agent i and transmitted into the network for communication.

Then, when agent i receives encrypted data𝜑j(k), the decrypted data can be obtained using the key g(k) and the privacy
matrix Mk. The decryption algorithm of agent i is given by

⎧
⎪
⎨
⎪
⎩

𝜑j(k) = M−1
k 𝜑j(k),

x̂ji(k) = Ax̂ji(k − 1) + g(k − 1)(𝜑j(k) − g(k − 1)1N),
x̂ji(0) = 0, j ∈i,

(7)

where x̂ji(k) is the state obtained after decryption.
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LIU et al. 4791

Remark 2. According to the encryption and decryption algorithm described in this article, the encrypted value
𝜑j(k) of xj(lj

n) is transmitted to agent i. By using algorithm (7), x̂ji(k) can be obtained from 𝜑j(k). Based on
equations (6) and (7), it can be easily derived that x̂ji(k) = 𝜉j(k) = xj(lj

n)

Remark 3. It should be noted that the privacy matrix Mk in (6) and (7) can vary over time and also serve as a
form of a key. Mk can be designed according to the specific requirements of the practical application scenarios,
thereby adjusting the difficulty of the encryption and decryption algorithms. For example, in this article, Mk
is designed as the product of m(k) and M, where the non-singular matrix M serves as a predefined seed, and
the time-varying function m(k) ≠ 0 generates time-varying coefficients.

2.4 Design of SMC law

In this section, we will design an appropriate SMC strategy under DETM and an encryption–decryption scheme for
achieving the consensus of the MASs. The sliding mode surface (SMS) function is selected as:

si(k) = Hzi(k), (8)

where H is a given parameter matrix. zi(k) is is an auxiliary variable defined as follows:

zi(k) =
N∑

j=1
aij
(

xi(k) − xj(k)
)
. (9)

Considering DETM and encryption–decryption algorithm, (9) can be modified to:

z̃i(k) =
N∑

j=1
aij
(

xi(li
n) − x̂ji(k)

)

=
N∑

j=1
aij(xi(li

n) − xi(k) + xi(k) − xj(k) + xj(k) − xj(lj
n))

=
N∑

j=1
aij
(

qi(k) − qj(k) + xi(k) − xj(k)
)
. (10)

The sliding mode control law is designed in the following form:

ui(k) = −Kz̃i(k) − 𝜓i(k) sgn (s̃i(k)), (11)

where s̃i(k) = Hz̃i(k), 𝜓i(k) = 𝜓||z̃i(k)||, 𝜓 is a given scalar, K represents control gains.
For the convenience of subsequent analysis, the following definitions are given:

z(k) ≜ colN{zi(k)}, z̃(k) ≜ colN{z̃i(k)}, q(k) ≜ colN{qi(k)}, x(k) ≜ colN{xi(k)},

s(k) ≜ colN{si(k)}, u(k) ≜ colN{ui(k)}, s̃(k) ≜ colN{s̃i(k)}, 𝜓(k) ≜ colN{𝜓i(k)}

Thus, the global forms of equations (8), (10), and (11) are as follows:

s(k) = (IN ⊗ H)z(k), (12)

z̃(k) = (L ⊗ In)(q(k) + x(k)), (13)

u(k) = −(IN ⊗ K)z̃(k) − 𝜓(k)sgn(s̃(k)). (14)
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4792 LIU et al.

Combining the definition of x(k), (14) and (1), one can derive

x(k + 1) = (IN ⊗ A)x(k) + (IN ⊗ B)u(k) + (IN ⊗ B)f (k)
= (IN ⊗ A − L ⊗ BK)x(k) − (L ⊗ BK)q(k) + (IN ⊗ B)F(k), (15)

where F(k) = f (k) − 𝜓(k)sgn(s̃(k)).

Remark 4. The issue of sliding mode consensus control of MASs has been receiving significant attention in
recent research. In Reference 13, a stochastic communication protocol-based SMC method was introduced to
solve the consensus problem in MASs. In Reference 18, the event-triggered sliding mode tracking consensus
control problem in MASs was investigated. In comparison with these works, this article is the first to consider
the issue of sliding mode privacy-preserving control for MASs under DETM, and the proposed method has
flexibility and security.

Definition 1 (40). The consensus of MASs is achieved if

lim
k→∞

‖‖xi(k) − xj(k)‖‖ = 0, i, j = 1, 2, … ,N. (16)

3 MAIN RESULTS

In this section, a sufficient condition is firstly presented that ensures the stability of the system (15) under the DETM and
encryption–decryption mechanism. Subsequently, the accessibility of the sliding mode surface (12) is discussed. Then,
the gain of the consensus controller is designed based on sufficient conditions.

3.1 Secure consensus analysis

To describe the consensus error, the concept of the average state will be defined

x(k) = 1
N

n∑

i=0
xi(k). (17)

Then, the consensus error can be obtained:

x̃(k + 1) = x(k + 1) − x(k + 1)
= (Ñ ⊗ In)x(k + 1)
= (Ñ ⊗ A)x(k) + (Ñ ⊗ B)u(k) + (Ñ ⊗ B)f (k)
= (Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗ BK)q(k) + (Ñ ⊗ B)F(k). (18)

where Ñ = IN − 1
N

1N1T
N.

Next, based on (18), the main result regarding the consensus issue of MASs (1) will be discussed.

Theorem 1. For the MASs (1), by considering the DETM (5) and the distributed sliding mode controller (12),
if the defined DET parameters in (3)–(4) satisfy 𝛽𝛾 ≥ 1, and there exists a symmetric matrix P1 > 0 and a scalar
𝜔1 > 0 satisfying the following matrix inequalities:

(Ñ ⊗ B)TP1(Ñ ⊗ B) ≤ 𝜔1I, (19)

Π =
⎡
⎢
⎢
⎢
⎣

Π11 ∗ ∗
Π21 Π22 ∗

0 0 Π33

⎤
⎥
⎥
⎥
⎦

< 0, (20)
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where

Π11 = 2(A − B)TP1(A − B) + 4𝜔1v2I + 8𝜔1𝜓
2L̃TL̃ + 𝜃1

𝛾
I − (Ñ ⊗ In)TP1(Ñ ⊗ In), Π21 = −2(A − B)TP1B,

Π22 = 2B
TP1B + 8𝜔1𝜓

2L̃TL̃ − 𝜃2

𝛾
I, Π33 = −

1 − 𝛽
𝛾

, A = Ñ ⊗ A, B = ÑL ⊗ BK, L̃ = L ⊗ In,

the consensus error system (18) is asymptotic stable.
Proof. From (3), one can easily get

𝛽𝜙(k) + 𝜃1xT(k)x(k) − 𝜃2qT(k)q(k) ≥ 0.

According to the dynamical equation (4), it can be noticed that

𝜙(k + 1) ≥
(
𝛽 − 𝛾−1)

𝜙(k) ≥ · · · ≥
(
𝛽 − 𝛾−1)k+1

𝜙(0).

It is evident that 𝜙(k) ≥ 0.
Then, consider the Lyapunov function as

V1(k) = x̃T(k)P1x̃(k) + 1
𝛾
𝜙(k). (21)

From (2) and the definition of F(k) in (15), the following inequality can be derived:

||F(k)|| ≤ v||x(k)|| + 𝜓||z̃(k)||. (22)

Furthermore, according to (13), (18), (19), and (22), we can obtain

x̃T(k + 1)P1x̃(k + 1)

=
[
(Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗ BK)q(k) + (Ñ ⊗ B)F(k)

]TP1
[
(Ñ ⊗ A − ÑL ⊗ BK)x(k)

− (ÑL ⊗ BK)q(k) + (Ñ ⊗ B)F(k)
]

≤ 2[(Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗ BK)q(k)]TP1
[
(Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗B K)q(k)

]

+ 2𝜔1FT(k)F(k)

≤ 2
[
(Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗ BK)q(k)

]TP1
[
(Ñ ⊗ A − ÑL ⊗ BK)x(k) − (ÑL ⊗ BK)q(k)

]

+ 4𝜔1v2xT(k)x(k) + 4𝜔1𝜓
2[(q(k) + x(k))T(L ⊗ In)T(L ⊗ In)(q(k) + x(k))

]

≤ 2
[
(A − B)x(k) − Bq(k)

]TP1
[
(A − B)x(k) − Bq(k)

]
+ 4𝜔1v2xT(k)x(k)

+ 8𝜔1𝜓
2[q(k)TL̃TL̃q(k) + x(k)TL̃TL̃x(k)

]
. (23)

Thus, the difference of the Lyapunov function (21) is

ΔV1(k) = x̃T(k + 1)P1x̃(k + 1) + 1
𝛾
(𝜙(k + 1) − 𝜙(k)) − x̃T(k)P1x̃(k)

≤ 2
[
(A − B)x(k) − Bq(k)

]TP1
[
(A − B)x(k) − Bq(k)

]
+ 4𝜔1v2xT(k)x(k)

+ 8𝜔1𝜓
2[q(k)TL̃TL̃q(k) + x(k)TL̃TL̃x(k)] + 𝜃1

𝛾
xT(k)x(k) − 𝜃2

𝛾
qT(k)q(k) + 𝛽 − 1

𝛾
𝜙(k)

− xT(k)(Ñ ⊗ In)TP1(Ñ ⊗ In)x(k)

≤ 𝜂T(k)Π𝜂(k), (24)

where 𝜂(k) = [xT(k), qT(k),
√
𝜙(k)]T.
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4794 LIU et al.

It is evident from (24) that the condition (20) ensures

ΔV1(k) ≤ 𝜂T(k)Π𝜂(k) < 0. (25)

Therefore, the consensus error system is proved to be asymptotically stable, and the proof is concluded. ▪

3.2 Reachability analysis

Theorem 2 examines the accessibility of the designated sliding surface (8). The trajectory of MASs (8) can enter the sliding
domain Θ.

Theorem 2. Considering MASs (1) with the DETM and encryption–decryption mechanism, if there exists a
symmetric matrix P2 > 0, and a scalar 𝜔2 > 0 satisfying the following matrix inequalities:

(L ⊗ HB)TP2(L ⊗ HB) ≤ 𝜔2I, (26)

Π⃗ =
⎡
⎢
⎢
⎢
⎣

Π⃗11 ∗ ∗
Π⃗21 Π⃗22 ∗

0 0 Π33

⎤
⎥
⎥
⎥
⎦

< 0, (27)

where

Π⃗11 = Π11 + 2(Ã − B̃)TP1(Ã − B̃) + 4𝜔2v2I, Π⃗21 = Π21 + 2(Ã − B̃)TP1B̃,

Π⃗22 = Π22 + 2B̃TP1B̃,Ã = L ⊗ HA, B̃ = L2
⊗ HBK,

the state trajectories can be directed toward the subsequent sliding regionΘwhen influenced by the SMC law (14):

Θ ≜

{

s(k)|||s(k)|| ≤
√

4𝜔2

𝜆min(P2)
𝜓||z̃(k)||

}

. (28)

Proof. Take the Lyapunov function as

V2(k) ≜ V1(k) + sT(k)P2s(k). (29)

From the sliding function (12), we can get

s(k + 1) = (IN ⊗ H)z(k + 1)
= (L ⊗ H)x(k + 1)
= (Ã − B̃)x(k) − B̃q(k) + (L ⊗ HB)F(k). (30)

In light of (22) and (26), the following can be deduced

sT(k + 1)P2s(k + 1)
= [(Ã − B̃)x(k) − B̃q(k) + (L ⊗ HB)F(k)]TP2[(Ã − B̃)x(k) − B̃q(k) + (L ⊗ HB)F(k)]
≤ 2[(Ã − B̃)x(k) − B̃q(k)]TP2[(Ã − B̃)x(k) − B̃q(k)] + 2𝜔2FT(k)F(k)

≤ 2[(Ã − B̃)x(k) − B̃q(k)]TP2[(Ã − B̃)x(k) − B̃q(k)] + 4𝜔2v2xT(k)x(k) + 4𝜔2𝜓
2||z̃(k)||2. (31)

Thus, using (24) and (31), it yields

ΔV2(k) = ΔV1(k) + sT(k + 1)P2s(k + 1) − sT(k)P2s(k)
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LIU et al. 4795

≤ 𝜂T(k)Π𝜂(k) + 4𝜔2v2xT(k)x(k) + 2[(Ã − B̃)x(k) − B̃q(k)]TP2[(Ã − B̃)x(k) − B̃q(k)]

+ 4𝜔2𝜓
2||z̃(k)||2 − 𝜆min(P2)||s(k)||2

≤ 𝜂T(k)Π⃗𝜂(k) − [𝜆min(P2)||s(k)||2 − 4𝜔2𝜓
2||z̃(k)||2]. (32)

If the system trajectory does not reach the sliding region Θ, then ||s(k)|| ≥
√

4𝜔2
𝜆min(P2)𝜓||z̃(k)||. Otherwise,

the condition (27) causes

ΔV2(k) ≤ 𝜂T(k)Π⃗𝜂(k) < 0, (33)

which indicates that the consensus state trajectory of MASs ultimately converges to the predetermined sliding
region. The SMC reachability proof is finished. ▪

3.3 Controller design

Based on the sufficient conditions for the SMS (8) reachability and consensus of MASs (1) under DETM obtained in
Theorems 1 and 2, the following theorem is derived to obtain the desired controller gains.

Theorem 3. Considering MASs (1) with the DETM and encryption–decryption mechanism, if there exist
matrices P1 > 0,P2 > 0, Y > 0, K, and scalars 𝜔i > 0(i = 1, 2) satisfying the matrix inequalities:

[
−𝜔1I ∗
Ñ ⊗ B −P1

]

< 0, (34)

[
−𝜔2I ∗

L ⊗ HB −P2

]

< 0, (35)

Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 ∗ ∗ ∗
Σ21 Σ22 ∗ ∗
Σ31 0 Σ33 ∗
Σ41 0 0 Σ44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (36)

where

Σ11 =

⎡
⎢
⎢
⎢
⎢
⎣

P1 − Ỹ T(Ñ ⊗ In)T − (Ñ ⊗ In)Ỹ ∗ ∗
0 𝛾

𝜃2
I − Ỹ T − Ỹ ∗

0 0 − 1−𝛽
𝛾

⎤
⎥
⎥
⎥
⎥
⎦

, Σ21 =

[
A⃗1 B⃗1 0
A⃗2 B⃗2 0

]

,

Σ22 =

[
− P1 0

0 −P2

]

, Σ31 =

[
Ỹ 0 0

(L ⊗ In)Ỹ 0 0

]

, Σ41 =
⎡
⎢
⎢
⎢
⎣

Ỹ 0 0
Ỹ 0 0

(L ⊗ In)Ỹ 0 0

⎤
⎥
⎥
⎥
⎦

, Ỹ = IN ⊗ Y ,

A⃗1 ≜
√

2(Ñ ⊗ AY − ÑL ⊗ BK), B⃗1 ≜
√

2(ÑL ⊗ BK), A⃗2 ≜
√

2(L ⊗ HAY − L2
⊗ HBK),

B⃗2 ≜
√

2(L2
⊗ HBK), Σ33 = diag

{

− 1
4𝜔1v2 I,− 1

8𝜔1𝜓
2 I

}

, Σ44 = diag

{

− 𝛾
𝜃1

I,− 1
4𝜔2v2 I,− 1

8𝜔2𝜓
2 I

}

,

the security consensus of MASs and the reachability of the SMS can be guaranteed.
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4796 LIU et al.

Furthermore, the desired controller gain can be denoted by

K = KY−1
. (37)

Proof. Denote P1 = P−1
1 ,P2 = P−1

2 . According to (37) and schur complement, (34) and (35) can be obtained
from (19) and (26). Pre-multiplying and post-multiplying (27) by diag{Ỹ , Ỹ , I} and its transpose, and using
Schur complement, it can be derived

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Σ11 ∗ ∗ ∗
Σ21 Σ22 ∗ ∗
Σ31 0 Σ33 ∗
Σ41 0 0 Σ44

⎤
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (38)

where

Σ11 =
⎡
⎢
⎢
⎢
⎣

− Ỹ T(Ñ ⊗ In)TP1(Ñ ⊗ In)Ỹ ∗ ∗
0 −Ỹ T 𝜃2

𝛾
Ỹ ∗

0 0 𝛽−1
𝛾

⎤
⎥
⎥
⎥
⎦

.

Based on the same method as Reference 19, we can get−Ỹ T(Ñ ⊗ In)TP1(Ñ ⊗ In)Ỹ ≤ P1 − Ỹ T(Ñ ⊗ In)T − (Ñ ⊗

In)Ỹ , −Ỹ T 𝜃2
𝛾

Ỹ ≤ ( 𝜃2
𝛾
)−1I − Ỹ T − Ỹ , and then (36) can be exactly derived. Therefore, the proof of Theorem 3 is

completed. ▪

4 ILLUSTRATIVE EXAMPLES

In this section, the feasibility of the suggested algorithm is illustrated through a numerical example. Consider MASs (1)
with parameters as follows

A =

[
−0.2 0.4
−0.1 0.3

]

, B =

[
− 0.03
− 0.02

]

, H =
[
0.5 −0.1

]
.

The communication topology network of MASs is displayed in Figure 2. The Laplace matrix of the graph is

L =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 −1 −1 0
−1 1 0 0
−1 0 2 −1
0 0 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

F I G U R E 2 Communication graph.
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LIU et al. 4797

F I G U R E 3 Responses of xi(k).

F I G U R E 4 Event-triggered instants.

The matrix Mk in (6) is selected as:

m(k) = 2 + sin(−0.5k), Mk = m(k) ×

[
1 1
0 1

]

,

and the disturbance is fi(k) = 0.5sin(xi1(k) + xi2(k)). The scaling function is chosen as g(k) = 2 + sin(−0.8k). The ini-
tial state of the MASs are set as x1(0) = [0.2,−0.25]T, x2(0) = [0.7,−1.3]T, x3(0) = [0.5,−0.13]T, x4(0) = [0.2,−0.1]T.
For given parameters 𝛾 = 1.8, 𝛽 = 0.6, 𝜃1 = 78.1, 𝜃2 = 12.7, according to Theorem 3, the controller gain is obtained as
K =

[
0.1209 0.1039

]
.

Figures 3–8 display the simulation results of this article. The response of state x(k), as shown in Figure 3, indicates
that the state of agents achieves fast convergence under the DETM and encryption–decryption mechanism. Figure 4

 10991239, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7232 by N

anjing U
niversity O

f, W
iley O

nline L
ibrary on [03/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4798 LIU et al.

F I G U R E 5 The control input ui(k).

F I G U R E 6 The sliding mode variables si(k).

F I G U R E 7 Encrypting 𝜑i(k) and state xi(li
n) for agent 1.
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LIU et al. 4799

F I G U R E 8 Decrypting x̂ij(k) and state xi(li
n) for agent 1.

depicts the triggering instants and intervals of the four agents. The sliding variable s(k) and the control inputs u(k) for
the SMC are given in Figures 5 and 6. Figure 7 presents the variations between the encrypted data transmitted over the
network and the original data. The significant changes in Figure 7 indicate that this encryption–decryption mechanism
has the capability to mitigate eavesdropping and information leakage issues in the network. Figure 8 demonstrates that
the decrypted data precisely matches the original transferred data, confirming the encryption algorithm does not alter
the values of the transmitted data. Based on the simulation results, it can be concluded that the proposed method in this
article is able to achieve consensus of MASs while ensuring data confidentiality and integrity through encryption and
decryption algorithms.

5 CONCLUSION

This article investigates the privacy-preserving security consensus problem of perturbed MASs under DETM and SMC.
To alleviate network bandwidth pressure, a DETM is employed to transmit data selectively. Moreover, an encryption and
decryption algorithm is devised to safeguard the confidentiality and integrity of the transmitted information. Further-
more, a sliding mode controller is formulated based on the data signals received from adjacent agents, and sufficient
conditions are established to guarantee consensus and reachability. Finally, the simulation results demonstrate the effec-
tiveness of the proposed strategy. Future research directions may include privacy protection methods in multi-agent
systems under more complex constraint conditions, especially in scenarios involving network attacks. These methods
may involve different encryption and decryption techniques, as well as differential privacy methods that utilize noise for
protection.
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