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Reinforcement Learning-Based Decentralized
Control for Networked Interconnected Systems
With Communication and Control Constraints

Jinliang Liu , Member, IEEE, Nan Zhang , Lijuan Zha ,
Xiangpeng Xie , Senior Member, IEEE, and Engang Tian

Abstract— This paper investigates the optimal decentralized
control issue for a class of networked interconnected systems
(NISs) under communication and control constraints. First of
all, the decentralized optimal control problem for NISs is trans-
formed into the optimal control issue for nominal systems. And
then the event-triggered Hamilton-Jacobi-Isaac (HJI) equations
are derived with optimal control theory based on the constructed
cost function and adopted adaptive event-triggered mechanism
(AETM). Furthermore, a Reinforcement Learning (RL) based
event-triggered optimal control algorithm with actor-critic net-
works is proposed to obtain numerical solutions of the HJI
equations and the Uniformly Ultimately Bounded (UUB) stability
of NISs is proved to be guaranteed with Lyapunov stability the-
orem. Eventually, a simulation experiment is conducted to verify
the effectiveness of proposed RL-based optimal decentralized
algorithm with AETM.

Note to Practitioners—Actually, the limitation of communica-
tion resource is one of the key factors leading to performance
degradation of NISs. It is crucial to cope with this issue in the
control of NISs. Employing proper communication protocol is
an effective way to diminish the adverse effects of undesirable
phenomena, such as data loss and out-of-order. In addition, given
the scale is gradually expanded and the structure is gradually
complex for NISs, the operation cost is a problem that cannot be
ignored in the control process of NISs. Thus, it is significant
and challenging to minimize the operation cost on the basis
of ensuring system stability. In view of the communication
constraints and optimization problem, the HJI equations based
on AETM are derived to model the decentralized optimal control
problem for NISs. Moreover, a RL-based iterative algorithm is
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proposed to derive the numerical solutions to HJI equations and
further effectively stabilize the targeted control constrained NISs
in the sense of UUB.

Index Terms— Adaptive event-triggered mechanism, actor-
critic network, control constraints, networked interconnected
systems, reinforcement learning, uniformly ultimately bounded.

I. INTRODUCTION

AS IS well known, networked control systems (NCSs)
have been one of the most focused researching issues

in the robust control field since the special structure that
system components are connected via communication net-
work [1], [2], [3], [4]. With the widespread applications
in diverse environments, networked interconnected systems
(NISs), in which multiple subsystems are geographically
distributed and physically interconnected, gradually attract
more and more attentions [5]. To cost-effectively guarantee
the stable operation of NISs, many researches on studying
decentralized control have been reported [6], [7], [8], [9].
For example, the authors in [6] investigated decentralized
control issue for a class of nonlinear large scale intercon-
nected systems via Echo State Network (ESN). Actually, the
practical control signal is generally constrained by a certain
threshold, which further complicates the decentralized control
problem for NISs [10], [11], [12], [13]. In view of this,
some investigations have been conducted to settle the control
constraints problem for NISs. For instance, a novel distributed
event-triggered H∞ control algorithm was proposed in [11]
to achieve the expected performance for NISs with control
constraints.

It is noteworthy that limited communication resources and
bandwidth cannot meet the large scale data transmission in
complicated NCSs, which is still a challenging issue nowa-
days. The undesirable phenomena and the system performance
degradation are unavoidable if the constrained communica-
tion resources and bandwidth issue are not dealt with well.
To overcome this issue, many researchers devote to design
proper data transport scheme, among which event-triggered
mechanisms have been widely applied [14], [15], [16], [17],
[18], [19]. Under event-triggered mechanisms, the data can
be released into the communication network only while the
fluctuation of system states exceeds a pre-defined thresh-
old. However, it is hard to determine the event-triggering
threshold properly. Thus many researchers propose adaptive
event-triggered mechanism (AETM) with dynamic threshold
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which can be adjusted adaptively according to the real-time
state fluctuation of the system [20], [21], [22], [23], [24].
Based on AETM, many relative investigations have been done.
For instance, the authors in [22] designed an adaptive observer-
based event-triggered fault-tolerant controller to address the
synchronization problem for multi-agents systems. Besides,
the output feedback control problem was settled in [24] under
AETM for nonlinear systems with unknown polynomial-of-
output growth rate. In this paper, an AETM will be adopted
to arrange the data transmission and save the scare communi-
cation resources in NISs.

During the progress of designing proper control strategies
for NCSs, the whole control cost is a nonnegligible problem
as revealed in recent studies. Therefore, the optimal control
with the aim to minimize the whole control cost attracts many
scholars’ attentions [25], [26], [27], [28]. A general method
to tackle the optimal control issue is to transform it into solv-
ing Hamilton-Jacobi-Isaac (HJI) equation for target nonlinear
NCSs. Nevertheless, there is a bottleneck that it is hard to
obtain the closed form solution to the HJI equation directly.
For this, adaptive dynamic programming (ADP) [29], [30] and
reinforcement learning (RL) algorithms [31], [32], [33], [34],
[35], [36] have been proposed to derive the numerical solution
of the HJI equation. For example, the authors in [29] developed
a novel iterative ADP algorithm to solve the optimal impulsive
control problem for discrete-time nonlinear systems. For RL
algorithms, the basic idea is to design proper neural network
and tuning law to obtain a solution to the HJI equation. Up to
now, extensive research results have been achieved by using
RL algorithms. For example, in [34], the actor-critic network
was utilized to solve the optimal fault tolerant control issue for
uncertain nonlinear MIMO system. Nevertheless, to our best
knowledge, the RL-based optimal decentralized control for
constrained input NISs under AETM has not been explored.

Inspired by the analysis above, this paper mainly investi-
gates the optimal decentralized control issue for a class of NISs
under AETM and control constraints. The main contributions
of this paper are summarized as following:

• A RL-based optimal decentralized control algorithm with
AETM is proposed to stabilize the NISs. Compared
with [37], the restrictive condition of the nonlinear sys-
tems with zero equilibrium is removed in this paper,
which makes the proposed RL-based optimal decentral-
ized control algorithm applicable for nonlinear systems
that have non-zero equilibrium points;

• Different from some optimal control algorithms by apply-
ing the static event-triggered scheme [38], the AETM in
this article is adopted to settle communication constraints
for NISs and the triggering threshold can be adaptively
adjusted according to real-time state operation of systems.

• The actor and critic networks are utilized to obtain
numerical solutions of the HJI equations with the help
of gradient descent method and concurrent learning tech-
nique.

The remaining paper is organized as follows. In Section II,
based on the formulated NISs, the optimal decentralized
control problem is transformed into optimal control problems
of nominal subsystems. Then the event-based HJI equations

are derived with adopted AETM. In Section III, a RL-based
event-triggered iterative algorithm is designed to derive the
numerical solutions of the HJI equations and the effectiveness
of which is proved. The performance of proposed RL-based
algorithm is testified by a experiment in Section IV and
Section V summaries this paper.

II. PROBLEM STATEMENT

In this section, the considered NISs with control constraints
is described firstly. Then, based on the established nominal
systems and the designed AETM, the studied distributed
optimal control problem is transformed into solving a set of
event-triggered HJI equations.

A. System Description

We consider a continuous time NISs consisting of N sub-
systems and the i th subsystem Si (i = 1, 2, . . . , N ) can be
depicted as following:

ẋ i (t) = fi (xi (t))+ gi (xi (t))ui (t)+ hi (xi (t))ωi (x(t)), (1)

in which xi (t) ∈ Rn and ui (t) ∈ Rm denote the system
state and the control input of Si , respectively; ωi (x(t)) ∈ Rq

is the nonlinear interconnected term with other subsystems.
Besides, fi (xi (t)) : Rn

→ Rn , gi (xi (t)) : Rn
→ Rn×m

and hi (xi (t)) : Rn
→ Rn×q are known nonlinear smooth

mappings, respectively.
Remark 1: As is illustrated in [39], in order to simulate the

actual situation, this paper mainly investigates the unmatched
interconnection with gi (xi (t)) ̸= hi (xi (t)).

Assumption 1: [35]: For each Si , the nonlinear intercon-
nected coupled term ωi (x(t)) is set to be bounded as:

||ωi (x(t))|| ≤

N∑
j=1

ai j Pi j (x j (t)), (2)

in which ai j > 0 and positive function Pi j (x j (t)) ∈ R
represent the coupled interconnections.

Denote Pi (xi (t)) = max{P1i (xi (t)), . . . , PNi (xi (t))}, then
condition (2) can be represented as:

||ωi (x(t))|| ≤

N∑
j=1

bi j Pj (x j (t)), (3)

where bi j ≥ ai j Pi j (x j (t))/Pj (x j (t)).
Given that the control constraint is considered in this study,

the following non-quadratic function is introduced to depict
the constrained input [35]:

5i (ui (t)) = 2λi

∫ ui (t)

0
0−T (v/λi )Ri dv, (4)

where ui (t) is the feedback control of Si with |ui (t)| ≤ λi ;
Ri = diag{ri1, . . . , rim} is the positive definite matrix
and 0(·) = tanh(·) is the hyperbolic tangent function.
Then according to the integral calculation result and using
the similar methods in [40] and [41], the Eq. (4) can be
transformed into:

5i (ui (t)) = 2λi uT
i (t)Ri0

−1(ui (t)/λi )

+ λ2
i R̃i ln(1 − (ui (t)/λi )

2), (5)
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where 1 = [1, . . . , 1]
T

∈ Rm×1 and R̃i = [ri1, . . . , rim] ∈

R1×m .
Definition 1 [42]: The system state x(t) is said to be stable

in the sense of Uniformly Ultimately Bounded (UUB), if there
exists a compact set � ⊂ Rn , a constant θ and a time instant
t f = T(θ, z0) such that ||x(t)|| ≤ θ for all t ≥ t0 + t f with
initial value x(t0) = x0 ∈ �, in which x0 denotes the initial
state of the system.

Based on the formulated system, the main objective is to
design an optimal state-feedback decentralized control strategy
to guarantee that the NISs is stable in the sense of UUB. Nev-
ertheless, the aim is hard to be achieved due to the existence of
interconnected term. In view of this, by referring to [43] and
[44], we then transform the decentralized stabilization problem
into solving N optimal control subproblems over nominal
subsystems corresponding to the NISs (1).

B. Problem Formulation

Given that the N subsystems in the NISs are homogeneous,
without loss of generality, the following introduction in the
subsection is focused on Si (i = 1, 2, . . . , N ). The continuous
time nonlinear nominal subsystem S′

i corresponding to Si can
be formulated as:

ẋ i (t) = fi (xi (t))+ gi (xi (t))ui (t), (6)

then the infinite-horizon cost function for S′

i under control
input constraint is defined as:

Vi (xi (t)) =

∫
∞

t
[e−αi (τ−t)(xi (t)T Qi xi (t)

+5i (ui (t))+ ηi P2
i (xi (t)))]dτ, (7)

where αi is the given discount factor which is designed to
be bounded by a constant a, i.e., αi < a, and ηi > 0 is the
adjusting parameter; Qi ∈ Rn×n is the known positive-definite
matrix.

Based on the above cost function, the optimal control cost
V ∗

i (xi (t)) is described as:

V ∗

i (xi (t)) = min
ui (t)∈�(8i )

Vi (xi (t)), (8)

in which �(8i ) denotes the set of all admissible control
policies designed on 8i .

According to optimal control theory, V ∗

i (xi (t)) can be
derived by solving the following HJI equations:

min
ui (t)∈�(8i )

Hi (xi (t), V ∗

i (xi (t)), ui (t)) = 0, (9)

in which Hi (xi (t), V ∗

i (xi (t)), ui (t)) denotes the Hamilton
function for S′

i and can be specifically presented as:

Hi (xi (t), V ∗

i (xi (t)), ui (t))

= (∇V ∗

i (xi (t)))T ( fi (xi (t))+ gi (xi (t))ui (t))+ ηi P2
i (xi (t))

+ xi (t)T Qi xi (t)+5i (ui (t))− αi V ∗

i (xi (t)), (10)

where ∇V ∗

i (xi (t)) denotes the partial differential of V ∗

i (xi (t))
with respect to xi (t). Then according to stationarity condi-
tion, i.e., ∂Hi (xi (t), V ∗

i (xi (t)), ui (t))/∂ui (t) = 0, the optimal
control input u∗

i (xi (t)) can be computed as:

u∗

i (xi (t)) = −λi0(
1

2λi
R−1

i gT
i (xi (t))∇V ∗

i (xi (t))). (11)

As is mentioned before, an AETM is adopted to effectively
schedule data transmission in the communication network,
under which the sampled data in S′

i can be released only when
the following condition holds [45]:

zT
i,k9i zi,k > ζi (t i

kh + li h)xT
i (t

i
kh + li h)9i xi (t i

kh + li h), (12)

where zi,k = xi (t i
kh + li h) − xi (t i

kh) with li = {1, 2, 3, . . .}.
h is the sampling period. xi (t i

kh) and xi (t i
kh + li h) denote the

transmitted data at the last event-triggering instant t i
kh and the

current sampling instant t i
kh + li h, respectively. Moreover, the

adaptive parameter ζi (t i
kh + li h) is designed as:

ζi (t i
kh + li h) = ζi + (ζ̄i − ζi )e−εi (zT

i,k9i zi,k ), (13)

in which εi > 0 is adopted to adjust the sensitivity of the
adaptive threshold ζi (t i

kh+li h) to zi,k ; ζ̄i and ζi are pre-defined
upper and lower bounds of ζi (t i

kh + li h), i.e., ζi ≤ ζi (t i
kh +

li h) ≤ ζ̄i .
Based on the above AETM Eq. (12), the next

event-triggering instant t i
k+1h can be rewritten as:

t i
k+1h = t i

kh + min
li ≥1

{li h | li satisfies condition Eq. (12)}.

(14)

Remark 2: It is noted that the AETM (12) will reduce to the
traditional static ETM when ζi = ζ̄i . Besides, the adaptive trig-
gering law ζi (t i

kh + li h) is designed to be state-dependent, i.e.,
the large state fluctuation zi,k results in the small ζi (t i

kh + li h),
then the adaptive event-triggering condition Eq. (12) is more
easily to be satisfied, and vice versa. Moreover, the parameter
εi denotes the gradient of exponential function which can
adjust the sensitivity of ζi (t i

kh + li h) to the state fluctuation
zi,k .

Under the AETM, the control input will be updated at
each event-triggering instant. Then the optimal event-triggered
control law can be represented as:

u∗

i (xi (t)) = u∗

i (xi (t i
kh))

= −λi0(
1

2λi
R−1

i gT
i (xi (t i

kh))∇V ∗

i (xi (t i
kh))). (15)

Consequently, the event-triggered HJI equations can be
given as:

Hi (xi (t), V ∗

i (xi (t)), u∗

i (xi (t i
kh)))

= (∇V ∗

i (xi (t)))T ( fi (xi (t))+ gi (xi (t))u∗

i (xi (t i
kh)))

+ ηi P2
i (xi (t))+ xi (t)T Qi xi (t)

+5i (u∗

i (xi (t i
kh)))− αi V ∗

i (xi (t))

= 0. (16)

III. MAIN RESULTS

In this section, the stability of the NISs under the envisioned
optimal control strategy is analyzed firstly. Then, a RL-based
algorithm is designed to obtain an appropriate solution to the
studied control problem. The effectiveness of the algorithm is
finally validated based on Lyapunov theorem.1

1For convenience of the further analysis, denoting xi (t), xi (t i
k h), V ∗

i (xi (t)),
∇V ∗

i (xi (t)) as xi , xi,k , V ∗

i , V ∗
xi

, respectively.
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A. Stability Analysis

Before giving the specific analysis, we would like to intro-
duce the following assumptions.

Assumption 2 [35]: ||gi (xi )|| < gim and ||hi (xi )|| < him ,
where gim and him are positive constants.

Assumption 3 [46]: V ∗

i and V ∗
xi

are bounded by positive
constants Vim and Vxm , i.e., ||V ∗

i || < Vim and ||V ∗
xi
|| < Vxm .

Assumption 4 [47]: D∗

i is assumed to be Lipschitz contin-
uous on �i and satisfy:

||D∗

i (xi )−D∗

i (xi,k)|| ≤ Li ||xi − xi,k || ≜ Li ||zi,k ||, (17)

where D∗

i (xi,k) =
1

2λi
R−1

i gT
i (xi,k)V ∗

xi,k
and Li is a positive real

constant.
Remark 3: In Assumption 2, fi (xi ) and gi (xi ) are assumed

to have the upper bounds, which is motivated by [35]. This
assumption makes the proposed algorithm more general than
that used in the existing work.

Remark 4: Assumption 3 implies that V ∗

i and V ∗
xi

are
bounded. Actually, it should be noted that the optimal value
function V ∗

i is continuously differentiable on its admissible set
according to literature [46], which means that both V ∗

i and V ∗
xi

are bounded on their admissible sets.
Remark 5: The nonlinear term D∗

i is assumed be Lipschitz
continuous in Assumption 4, which is usually used in litera-
tures such as [47], i.e., lots of nonlinear models of practical
systems can be described as Lipschitz. For example, the
sinusoidal functions are globally Lipschitz and often appear
in robotic systems [35].

Then, based on the analysis above and Assumptions 1-4,
the UUB stability of considered NISs under proposed optimal
control strategies is proved by the following theorem.

Theorem 1: Given the optimal cost functions V ∗

i (i =

1, 2, . . . , N ) designed with Eq. (8), the considered NISs can
be stabilized in the sense of UUB under optimal control laws
u∗

i (xi,k) depicted by Eq. (15) and Assumptions 1-4, if there
exist positive constants η∗

i such that ηi > η∗

i , and the following
conditions hold:

λmin(Qi )− 2λ2
i L2

i ||Ri ||ζ̄ i
λmax(9i )

λmin(9i )
≥ 0. (18)

Proof: The following Lyapunov function is constructed:

L(x) =

N∑
i=1

V ∗

i . (19)

Then differentiating L(x) with respect to time t under
system equations: ẋ i = fi (xi ) + gi (xi )u∗

i (xi,k) + hi (xi )ωi (x),
it can be gotten that:

L̇(x) =

N∑
i=1

{(V ∗

xi
)T ( fi (xi )+ gi (xi )u∗

i (xi,k)+ hi (xi )ωi (x))}.

(20)

According to Eq. (10), it is obtained that:

(V ∗

xi
)T fi (xi ) = αi V ∗

i − xT
i Qi xi − ηi P2

i (xi )

− (V ∗

xi
)T gi (xi )u∗

i (xi )−5i (u∗

i (xi )).

(21)

Based on Eq. (5), 5i (u∗

i (xi )) can be rewritten as:

5i (u∗

i (xi )) = 2λi (u∗

i (xi ))
T Ri0

−1(u∗

i (xi )/λi )

+ λ2
i R̃i ln(1 − (u∗

i (xi )/λi )
2). (22)

Moreover, according to the event-triggered optimal control
law (15) and referring to the similar method in [35], the
Eq. (20) can be rewritten as:

L̇(x) =

N∑
i=1

{αi V ∗

i − xT
i Qi xi − ηi P2

i (xi )

+

∫ u∗

i (xi,k )

u∗

i (xi )

2λi [0
−1(v/λi )+D∗

i (xi )]
T Ri dv

−5i (u∗

i (xi,k))+ (V ∗

xi
)T hi (xi )ωi (x)}. (23)

Defining υ = −λi0(ϖ), it can be obtained that:∫ u∗

i (xi,k )

u∗

i (xi )

2λi [0
−1(v/λi )+D∗

i (xi )]
T Ri dv

≤

∫ D∗

i (xi,k )

D∗

i (xi )

4λ2
i (υ −D∗

i (xi ))
T Ri dv

= 2λ2
i (D∗

i (xi,k)−D∗

i (xi ))
T Ri (D∗

i (xi,k)−D∗

i (xi ))

≤ 2λ2
i L2

i ||Ri ||||zi,k ||
2. (24)

Then with the help of Young’s inequality, Eq. (23) can be
rewritten as:

L̇(x)

≤

N∑
i=1

{αi V ∗

i − xT
i Qi xi + 2λ2

i L2
i ||Ri ||||zi,k ||

2

−5i (u∗

i (xi,k))+
1
2

V 2
xmh2

im − (ηi P2
i (xi )−

1
2
ωT

i (x)ωi (x))}.

(25)

In order to handle the interconnected term in Eq. (25),
we define the following items:

η̃ = diag{η1, η2, · · · , ηN }

1̃ = diag{11, 12, · · · , 1N }

y(x) = [−P1(x1),−P2(x2), · · · ,−PN (xN ),

11, 12, · · · , 1N ]
T

(26)

Then Eq. (25) yields that:

L̇(x) ≤

N∑
i=1

{αi V ∗

i − xT
i Qi xi + 2λ2

i L2
i ||Ri ||||zi,k ||

2

−5i (u∗

i (xi,k))+
1
2

V 2
xmh2

im} − yT (x)S̃ y(x)− N ,

(27)

where

S̃ =

 η̃
1
4

B BT

1
4

BT B 1̃

 and B =

b11 b12 · · · b1N
...

...
. . .

...

bN1 bN2 · · · bN N

.

According to the definition of S̃, it can be found that S̃
is positive definite if the values of ηi (i = 1, 2, . . . , N ) are
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properly selected. In other words, if there exist N positive
constants η∗

i such that ηi > η∗

i , then we have yT (x)S̃ y(x) > 0.
In addition, based on the AETM (12), and the adap-

tive parameters ζi (t i
kh + li h), it can be derived that (t ∈

[t i
kh, t i

k+1h)):

λmin(9i )||zi,k ||
2

≤ ζ̄ iλmax(9i )||xi (t i
kh + li h)||2. (28)

Based on the analysis above, it yields that:

L̇(x) ≤

N∑
i=1

{αi V ∗

i − xT
i Qi xi −5i (u∗

i (xi,k))+
1
2

V 2
xmh2

im

+ 2λ2
i L2

i ||Ri ||ζ̄ i
λmax(9i )

λmin(9i )
||xi (t i

kh + li h)||2}

≤

N∑
i=1

{aVim +
1
2

V 2
xmh2

im

+ (2λ2
i L2

i ||Ri ||ζ̄ i
λmax(9i )

λmin(9i )
− λmin(Qi ))||xi ||

2
}. (29)

It can be found that L̇(x) < 0 when the conditions (18)
hold and xi /∈ Qxi , where Qxi is defined as:

Qxi =

xi : ||xi || ≤

√√√√ aVim +
1
2 V 2

xmh2
im

λmin(Qi )− 2λ2
i L2

i ||Ri ||ζ̄ i
λmax(9i )

λmin(9i )

.
(30)

Thus, it implies that with the holding of conditions (18),
there exists a time instant t f such that xi can converge to a
certain bound when t > t0 + t f . So the NISs (1) is stable in
the sense of UUB according to Definition 1. ■

Remark 6: In terms of time complexity of the algorithm
proposed in this paper, considering that the RL-based
algorithm uses two NNs, namely the actor NN and the critic
NN, the time complexity is O(n2) with n denoting the number
of iterations. Moreover, given that the algorithm computation
depends on dynamics information of the systems and the
hyperbolic tangent function, then the overall time complexity
of the algorithm proposed in this paper is O(mn3), with m
denoting the dimension of system vector.

B. Actor-Critic RL Algorithm

Given that it is hard to obtain the close-form solutions of
the event-triggered HJI equations (16), then in this subsection,
a RL algorithm is proposed to derive the approximated solu-
tions to the HJI equations. In the algorithm, a critic and
an actor networks are utilized to model each optimal value
function V ∗

i (i = 1, 2, . . . , N ) and optimal constrained control
input u∗

i (xi,k), respectively. The following description and
analysis for the algorithm is focused on t ∈ [t i

kh, t i
k+1h) unless

noted otherwise.
1) Critic Network Design: The optimal cost function V ∗

i
can be represented by the following critic network:

V ∗

i = W T
ciφci (xi )+ εci (xi ), (31)

in which Wci ∈ Rnci is the optimal weight vector to be
designed (nci denotes the number of the hidden neurons);
φci (xi ) = col{φci (xi p)}, (p = 1, 2, . . . nci ) is the pre-defined

activation function, and φci (xi p) (i = 1, 2, . . . , N ) are inde-
pendent with each other; εci (xi ) is the critic residual error.
Then the partial derivative of V ∗

i (xi ) with respect to xi can be
computed as:

V ∗

xi
= ∇φT

ci (xi )Wci + ∇εci (xi ). (32)

In practice, considering that Wci is hardly available, we then
use an estimated value Ŵ ci to replace Wci , and thereby get the
approximation of V ∗

i as:

V̂ i = Ŵ T
ciφci (xi ). (33)

Consequently, the partial derivative of V̂ i with respect to xi

can be calculated as:

V̂ xi = ∇φT
ci (xi )Ŵ ci . (34)

On the basis of Eqs. (31)-(34), the approximated Hamilton
function Ĥ i (xi , V̂ i (xi ), ûi (xi,k)) can be written as:

Ĥ i (xi , V̂ i (xi ), ûi (xi,k))

= Ŵ T
ci∇φci (xi )( fi (xi )+ gi (xi )ûi (xi,k))

+ ηi P2
i (xi )+ xT

i Qi xi +5i (ûi (xi,k))

− αi Ŵ T
ciφci (xi ). (35)

Denoting the error between Hi (xi , V ∗

i (xi ), u∗

i (xi,k)) and
Ĥ i (xi , V̂ i (xi ), ûi (xi,k)) as ϕci , then it can be obtained that:

ϕci = Ĥ i (xi , V̂ i (xi ), ûi (xi,k))− Hi (xi , V ∗

i (xi ), u∗

i (xi,k))

= Ŵ T
ciϑi + ψci , (36)

where{
ϑi = ∇φci (xi )( fi (xi )+ gi (xi )ûi (xi,k))− αiφci (xi ),

ψci = ηi P2
i (xi )+ xT

i Qi xi +5i (ûi (xi,k)).

The main objective of the paper is to make ûi (xi,k) →

u∗

i (xi,k), i.e., to make ϕci → 0. Towards this end, one
general method is to minimize the target function Eci . In order
to achieve a high efficiency in utilizing the historical state
data [35], we then design the following target function:

Eci = Eci +

Ni (t)∑
s=1

et i
s h−t Eci,s

=
1
2
ϕT

ciϕci +
1
2

Ni (t)∑
s=1

et i
s h−tϕT

ci,sϕci,s, , (37)

where Ni (t) is the number of event-triggering instants for S′

i
in time interval [0, t], and ϕci,s denotes the historical data at
time t i

s h:

ϕci,s = Ŵ T
ciϑi,s + ψci,s, (38)

where{
ϑi,s = ∇φci (xi,s)( fi (xi,s)+ gi (xi,s)ûi (xi,k))− αiφci (xi,s),

ψci,s = ηi P2
i (xi,s)+ xT

i,s Qi xi,s +5i (ûi (xi,k)).

Then the tuning law of the approximated weight vector Ŵ ci

is designed as:

˙̂W ci = −
ιci

(1 + ϑT
i ϑi )2

∂Eci

∂Ŵ ci
−

Ni (t)∑
s=1

ιci

(1 + ϑT
i,sϑi,s)2

∂Eci,s

∂Ŵ ci
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= −
ιciϑi

(1 + ϑT
i ϑi )2

ϕci −

Ni (t)∑
s=1

ιciϑi,set i
s h−t

(1 + ϑT
i,sϑi,s)2

ϕci,s, (39)

in which ιci ∈ (0, 1) implies the learning rate which will affect
the convergence of Ŵ ci . Defining W̃ ci = Wci − Ŵ ci , then it
can be gotten:

˙̃W ci = −ιci (
ϑiϑ

T
i

(1 + ϑT
i ϑi )2

+

Ni (t)∑
s=1

ϑi,sϑ
T
i,set i

s h−t

(1 + ϑT
i,sϑi,s)2

)W̃ ci

+
ιciϑi

(1 + ϑT
i ϑi )2

ϱci +

Ni (t)∑
s=1

ιciϑi,set i
s h−t

(1 + ϑT
i,sϑi,s)2

ϱci,s, (40)

where ϱci and ϱci,s are the residual errors which can be
represented as:

ϱci = −∇εT
ci (xi )( fi (xi )+ gi (xi )ûi (xi,k))+ αiεci (xi ),

ϱci,s = −∇εT
ci (xi,s)( fi (xi,s)+ gi (xi,s)ûi (xi,k))

+αiεci (xi,s).

Remark 7: Motivated by the work of [35], the concurrent
learning technique and gradient decent method are adopted
in designing the updating policy of Ŵ ci . But different from
the referred literature, the decry term et i

s h−t is introduced in
Eq. (37), then the newer historical system states will play more
important role in the designed objective function Eci .

2) Actor Network Design: In this paper, an actor network
is utilized to depict each optimal event-triggered control input
u∗

i (xi,k), to be specific:

u∗

i (xi,k) = W T
uiφui (xi,k)+ εui (xi,k), (41)

in which Wui ∈ Rnui and φui (xi ) = col{φui (xi p)}, (p =

1, 2, . . . nui ) are the optimal weight vector and basis function,
respectively; εui (xi ) is the actor residual error. Similar to the
analysis above, u∗

i (xi,k) can be approximated as:

ûi (xi,k) = Ŵ T
uiφui (xi,k), (42)

where Ŵ ui ∈ Rnui denotes the estimated value of Wui .
Inspired by [47], the actor critic error ϕui is then designed

as follows:

ϕui = û(xi,k)− uŴ ci
= Ŵ T

uiφui (xi,k)

+ λi0(
1

2λi
R−1

i gT
i (xi,k)∇φ

T
ci (xi,k)Ŵ ci ), (43)

in which uŴ ci
is the control policy (15) approximated by the

evaluation of critic weight Ŵ ci in Eq.(34), that is to say:

uŴ ci
= −λi0(

1
2λi

R−1
i gT

i (xi,k)V̂ xi,k )

= −λi0(
1

2λi
R−1

i gT
i (xi,k)∇φ

T
ci (xi,k)Ŵ ci ), (44)

then Eq. (43) can be obtained.
To achieve ϕui → 0, the actor network weight vector Ŵ ui

is generally selected with the aim to minimize the squared
error performance Eui =

1
2ϕ

T
uiϕui . Moreover, considering that

the control inputs are only updated at event-triggering instants

with the employed AETM, the tuning law for Ŵ ui is thereby
designed as:

˙̂W ui = 0, t ∈ [t i
kh, t i

k+1h),

Ŵ +

ui = Ŵ ui − ιui
∂Eui

∂Ŵ ui
= Ŵ ui − ιuiφui (xi,k)

[Ŵ T
uiφui (xi,k)+ λi0(

1
2λi

R−1
i gT

i (xi,k)

∇φT
ci (xi,k)Ŵ ci )]

T , t = t i
k+1h.

(45)

where ιui ∈ (0, 1) is the learning rate of the actor network.
Denoting W̃ ui = Wui − Ŵ ui , then it can be obtained:

˙̃W ui = 0, t ∈ [t i
kh, t i

k+1h),
W̃ +

ui = W̃ ui − ιuiφui (xi,k)ε
T
ui (xi,k)

−ιuiφui (xi,k)φ
T
ui (xi,k)W̃ ui

−λi ιuiφui (xi,k)[0(D̂i (xi,k))− 0(D∗

i (xi,k))],

t = t i
k+1h.

(46)

The workflow of the RL-based optimal control algorithm is
depicted in Fig. 1. First of all, whether the current sampled
data can be released is determined by the event-triggered
condition in Eq. (12). If the newly sampled data is transmitted,
then update ûi (t) based on Eq. (42) with Ŵ ui (t), Ŵ ci (t)
and the historical data collection. If not, then update û(t) =

û(t−h). Secondly, compute Ŵ ci (t+h) and xi (t+h) according
to Eqs. (39) and (6), respectively. Finally, it is to judge whether
the time t + h exceeds the given time window T . If it is, then
terminate the whole progress. If not, then return to the first
step.

C. The Effectiveness of The Proposed RL-Based Algorithm

In this subsection, in order to testify the effectiveness of
the proposed RL-based algorithm, the state xi of S′

i (i =

1, 2, . . . , N ), the estimated error W̃ ci and W̃ ui are proved to
be stable in the sense of UUB under the proposed algorithm
at first. Besides, the following assumption is proposed for the
further analysis.

Assumption 5 [47]: Supposing that there exist positive
constants ∇φcim , ∇εcim , φuim , εuim and ϱim satisfying the
following inequalities ||∇φci || < ∇φcim , ||∇εci || < ∇εcim ,
||φui || < φuim , ||εui || < εuim , ||ϱci || < ϱim and ||ϱci,k || < ϱim .

Accordingly, combining with the designed Actor-Critic net-
work and Assumptions 1-5, the UUB stability of estimated
weight errors W̃ ci and W̃ ui under proposed RL-based iterative
algorithm are proved via the following theorem.

Theorem 2: Given the estimated optimal control input
ûi (xi,k) in Eq. (42), the tuning laws of Ŵ ci in Eq. (39) and
Ŵ ui in Eq. (45), respectively, then the system states xi for S′

i
and the estimated weight errors W̃ ci and W̃ ui are considered
to be stable in the sense of UUB if Assumptions 1-5 and the
following conditions hold:

λmin(Qi )− 2λ2
i L2

i (1 + 1/γi )||Ri ||
ζ̄ iλmax(9i )

λmin(9i )
> 0,

ιci

2
λmin(Hi )− 2λ2

i
(1 + γi )

2

4γiλ
2
i

||Ri ||
−1g2

im∇φ2
cim > 0.

(47)
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Fig. 1. The detailed workflow of RL-based algorithm.

Proof: Construct the following Lynapunov candidates for
each nonlinear interconnected subsystem:

L i = L ia(xi )+ L ib(xi,k)+ L ic + L iu

= V ∗

i (xi )+ V ∗

i (xi,k)+
1
2

tr{W̃ T
ci W̃ ci } +

1
2

tr{W̃ T
ui W̃ ui }.

(48)

As is mentioned above, S′

i includes two parts: continuous
time systems and discrete time systems. Therefore, the analysis
of stability is divided into two situations according to whether
the event is triggered.

Situation I: when the event is not triggered, that is t ∈

[t i
kh, t i

k+1h). Then it has:

L̇ i = L̇ ia(xi )+ L̇ ic. (49)

First of all, differentiating L i (xi ) in Eq. (49) with respect to
time t based on the S′

i : ẋ i (t) = fi (xi )+ gi (xi )ûi (xi,k). It can
be obtained:

L̇ ia(xi ) = (V ∗

xi
)T ( fi (xi )+ gi (xi )ûi (xi,k)). (50)

According to the Eqs. (22)-(23), it has:

L̇ ia(xi ) ≤ αi V ∗

i − xT
i Qi xi − ηi P2

i (xi )

− 2λi (u∗

i (xi ))
T Ri0

−1(u∗

i (xi )/λi )

+ (V ∗

xi
)T gi (xi )ûi (xi,k). (51)

Meanwhile, using the similar method [35], it can be
obtained that:

L̇ ia(xi ) ≤ αi V ∗

i − xT
i Qi xi − ηi P2

i (xi )

×

∫ ûi (xi,k )

u∗

i (xi )

2λi (0
−1(v/λi )+D∗

i (xi ))
T Ri dv. (52)

Denoting υ = −λi0(ϖ), from Eq. (52), we can derive:∫ ûi (xi,k )

u∗

i (xi )

2λi (0
−1(v/λi )+D∗

i (xi ))
T Ri dv

≤

∫ D̂i (xi,k )

D∗

i (xi )

4λ2
i (υ −D∗

i (xi,k))
T Ri dυ

= 2λ2
i ||D∗

i (xi )− D̂i (xi,k)||
2
||Ri ||

= 2λ2
i ||Ri ||||D∗

i (xi )−D∗

i (xi,k)+D∗

i (xi,k)− D̂i(xi,k)||
2

≤ 2λ2
i ||Ri ||((1 +

1
γi
)L2

i ||zi,k ||
2

+ (1 + γi )||D∗

i (xi,k)− D̂i (xi,k)||
2), (53)

where γi ∈ (0, 1).
Then it implies:

||D∗

i (xi,k)− D̂i (xi,k)||
2

= ||
1

2λi
R−1

i gT
i (xi,k)∇φ

T
ci (xi,k)W̃ ci

+
1

2λi
R−1

i gT
i (xi,k)∇εci (xi,k)||

2

≤
1 + 1/γi

4λ2
i

||Ri ||
−2g2

im∇φ2
cim ||W̃ ci ||

2

+
1 + γi

4λ2
i

||Ri ||
−2g2

im∇ε2
cim . (54)

Based on the Eqs. (51)-(54), L̇ ia(xi ) can be transformed
into:

L̇ ia(xi ) ≤ αi V ∗

i − xT
i Qi xi − ηi P2

i (xi )

+ 2λ2
i ||Ri ||(1 +

1
γi
)L2

i ||zi,k ||
2

+ 2λ2
i
(1 + γi )

2

4γiλ
2
i

||Ri ||
−1g2

im∇φ2
cim ||W̃ ci ||

2

+ 2λ2
i
(1 + γi )

2

4λ2
i

||Ri ||
−1g2

im∇ε2
cim . (55)

On the other hand, according to the Eqs. (39)-(40), L̇ ic can
be rewritten as:

L̇ ic = −ιci W̃ T
ci (

ϑiϑ
T
i

(1 + ϑT
i ϑi )2

+

Ni (t)∑
s=1

ϑi,sϑ
T
i,set i

s h−t

(1 + ϑT
i,sϑi,s)2

)W̃ ci

+
ιci W̃ T

ciϑi

(1 + ϑT
i ϑi )2

ϱci +

Ni (t)∑
s=1

ιci et i
s h−t W̃ T

ciϑi,s

(1 + ϑT
i,sϑi,s)2

ϱci,s .

(56)

Utilizing the Young’s inequality, it yields that:

L̇ ic ≤ −
ιci

2
W̃ T

ci (
ϑiϑ

T
i

(1 + ϑT
i ϑi )2

+

Ni (t)∑
s=1

ϑi,sϑ
T
i,set i

s h−t

(1 + ϑT
i,sϑi,s)2

)W̃ ci
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+
ιciϱ

T
ciϱci

2(1 + ϑT
i ϑi )2

+

Ni (t)∑
s=1

ιciϱ
T
ci,sϱci,set i

s h−t

2(1 + ϑT
i,sϑi,s)2

≤ −
ιci

2
λmin(Hi )||W̃ ci ||

2
+
ιci (Ni (t)+ 1)

2
ϱ2

im, (57)

where Hi =
ϑiϑ

T
i

(1+ϑT
i ϑi )2

+
∑Ni (t)

s=1
ϑi,sϑ

T
i,s etis h−t

(1+ϑT
i,sϑi,s )2

. Summarizing the
analysis above and combining with the event-triggered mech-
anism (28), L̇ i can be transformed as:

L̇ i ≤ αi V ∗

im + 2λ2
i
(1 + γi )

2

4λ2
i

||Ri ||
−1g2

im∇ε2
cim

+
ιci (Ni (t)+ 1)

2
ϱ2

im − (λmin(Qi )− 2λ2
i L2

i

(1 + 1/γi )||Ri ||
ζ̄ iλmax(9i )

λmin(9i )
)||xi ||

2
− (

ιci

2
λmin(Hi )

− 2λ2
i
(1 + γi )

2

4γiλ
2
i

||Ri ||
−1g2

im∇φ2
cim)||W̃ ci ||

2

≤ τi1 − τi x ||xi ||
2
− τiwc||W̃ ci ||

2, (58)

where

τi1 = αi V ∗

im + 2λ2
i
(1 + γi )

2

4λ2
i

||Ri ||
−1g2

im∇ε2
cim

+
ιci (Ni (t)+ 1)

2
ϱ2

im,

τi x = λmin(Qi )− 2λ2
i L2

i (1 + 1/γi )||Ri ||
ζ̄ iλmax(9i )

λmin(9i )
,

τiwc =
ιci

2
λmin(Hi )− 2λ2

i
(1 + γi )

2

4γiλ
2
i

||Ri ||
−1g2

im∇φ2
cim .

(59)

Then it implies that L̇ i < 0 when t ∈ [t i
kh, t i

k+1h),
if condition (47) holds, xi /∈ Vxi and W̃ ci /∈ VW̃ ci

, respectively,
in which Vxi and VW̃ ci

are defined as:
Vxi =

{
xi : ||xi || ≤

√
τi1

τi x

}
VW̃ ci

=

{
W̃ ci : ||W̃ ci || ≤

√
τi1

τiwc

} (60)

According to the Definition 1, the UUB stability of i th
subsystem xi and weight vector estimation error of critic
network W̃ ci is guaranteed based on Lyapunov extension
theorem. In addition, the ultimate bound of them are derived
in Eq. (60).

Situation II: When the event is triggered, which means
t = t i

k+1h. The the difference of L i with respect to t can
be described as:

1L i = V ∗

i (x
+

i,k)− V ∗

i (xi,k)+ V ∗

i (xi,k+1)− V ∗

i (xi,k)

+
1
2

tr{W̃ T
ci (x

+

i,k)W̃ ci (x+

i,k)} −
1
2

tr{W̃ T
ci (xi,k)W̃ ci (xi,k)}

+
1
2

tr{W̃ T
ui (x

+

i,k)W̃ ui (x+

i,k)} −
1
2
{W̃ T

ui (xi,k)W̃ ui (xi,k)},

(61)

where x+

i (t) = limκ→0+ xi (t i
k + κ).

Moreover, it implies that L̇ i < 0 for t ∈ [t i
kh, t i

k+1h) if
xi /∈ Vxi and W̃ ci /∈ Viwc hold, which means that L ia(xi )+ L ic

is strictly monotonically decreasing over t ∈ [t i
kh, t i

k+1h). That
is to say:

L ia(xi,k)+ L ic(xi,k) > L ia(xi (t i
k + κ))+ L ic(t i

k + κ),

κ ∈ [0, (t i
k+1 − t i

k)h). (62)

Let κ → 0+, then Eq. (62) can be transformed as:

L ia(xi,k)+ L ic(xi,k) > lim
κ→0+

L ia(xi (t i
k + κ))+ L ic(t i

k + κ)

= L ia(x+

i,k)+ L ic(x+

i,k). (63)

Furthermore, according to the UUB stability for xi and W̃ ci

proved in Situation I when t ∈ [t i
kh, t i

k+1h), it yields that

V ∗

i (xi,k+1) ≤ V ∗

i (xi,k). (64)

Next, the term 1L iu can be dealt with:

1L iu ≤
1
2

tr{W̃ T
ui (x

+

i,k)W̃ ui (x+

i,k)}

−
1
2

tr{W̃ T
ui (xi,k)W̃ ui (xi,k)}

= −ιui tr{W̃ T
uiφui (xi,k)ε

T
ui (xi,k) (65)

+ W̃ T
uiφui (xi,k)φ

T
ui
(xi,k)W̃ ui

+ W̃ T
uiφui (xi,k)λi [0(D̂i (xi,k))− 0(D∗

i (xi,k))]}

+
ι2ui

2
tr{(φui (xi,k))

2
[(εT

ui (xi,k))
2
+ (φT

ui
(xi,k)W̃ ui )

2

+ (λi [0(D̂i (xi,k))− 0(D∗

i (xi,k))])
2

+ 2φT
ui
(xi,k)W̃ uiεui (xi,k)

+ 2φT
ui
(xi,k)W̃ uiλi [0(D̂i (xi,k))− 0(D∗

i (xi,k))]

+ 2εT
ui (xi,k)λi [0(D̂i (xi,k))− 0(D∗

i (xi,k))]}.

Besides, considering the control constraint |ui | < λi , then
it has:

tr{λi |0(D̂i (xi,k))− 0(D∗

i (xi,k))|} < ϒim . (66)

Based on the property of function tanh(·), Young’s inequal-
ity and Assumptions, then the Eq. (65) can be transformed
into:

1L iu ≤ ιui (−φ
2
uim

+ 1 +
ι2ui

2
φ4

uim)||W̃ ui ||
2

+ (ι2uiφ
3
uimεuim + ι2uiφ

3
uimλiϒim

+ ι2uiφ
2
uimεuimλiϒim)||W̃ ui ||

+ (
1
2
φ2

uimε
2
uim +

ι2ui

2
φ2

uimε
2
uim

+
ι2ui

2
λ2

iϒ
2
im +

1
2
φ2

uimλ
2
iϒ

2
im)

= −ρi1||W̃ ui ||
2
+ ρi2||W̃ ui || + ρi3, (67)

where 

ρi1 = φ2
uim

− 1 −
ι2ui

2
φ4

uim

ρi2 = ι2uiφ
3
uimεuim + ι2uiφ

3
uimλiϒim

+ι2uiφ
2
uimεuimλiϒim

ρi3 =
1
2
φ2

uimε
2
uim +

ι2ui

2
φ2

uimε
2
uim

+
ι2ui

2
λ2

iϒ
2
im +

1
2
φ2

uimλ
2
iϒ

2
im

(68)
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Thus it can be concluded that 1L iu < 0 when W̃ ui lies in
the set VW̃ ui

:

VW̃ ui
= {W̃ ui : ||W̃ ui || >

ρi2 +

√
ρ2

i2 + 4ρi1ρi3

2ρi1
}. (69)

According to the analysis above, the UUB stability of
system states xi , estimation error of Wci and Wui can be
guaranteed based on the Lyapunov extension theorem. ■

IV. SIMULATION RESULT

In order to validate the effectiveness of the proposed
RL-based optimal decentralized control policy, a simulation
test for the NISs consisting two subsystems is conducted with
the following parameters:

f1(x1) =

[
x12

−1.905sin(x11)− 2.18sin(x12)

]
,

f2(x2) =

[
2.2x22

−3.905sin(x21)− 1.02sin(x22)

]
,

g1(x1) =

[
−1.2
1.1

]
, g2(x2) =

[
−1.8
1.2

]
,

h1(x1) =

[
−0.5
0.4

]
, h2(x2) =

[
0.5

−0.5

]
.

with x1 = [x11, x12]
T , x2 = [x21, x22]

T being the state vectors
of the considered NISs.

Meanwhile, the relative parameters in value function are
designed: Q1 = diag{400, 600}, Q2 = diag{500, 500}, R1 =

0.5, R2 = 0.5, η1 = 0.9, η2 = 1.25, α1 = 0.36, α2 = 0.42.
Besides, the upper constraints of control input is set as

λ1 = 0.4, λ2 = 0.4, and the triggering matrix of AETM
is designed as 91 = diag{0.4, 0.6}, 92 = diag{1.5, 0.6}.
Moreover, the upper bound of adaptive parameter is given as
ζ

1
= 0.001, ζ

2
= 0.01, ζ̄ 1 = 0.005, ζ̄ 2 = 0.05, ε1 = ε2 =

0.02.
Besides, the activation function in actor-critic network is

designed as the following form:φci =

[
x2

i1 xi1xi2 x2
i2

]T

φui =

[
x3

i1 x2
i1xi2 xi1xi2 xi1x2

i2 x3
i2

]T i = 1, 2,

and the learning rate is given ιc1 = 0.01, ιc2 = 0.03, ιu1 =

0.02, ιu2 = 0.02.
In addition, the initial state of subsystems are given as

x1 =
[
0.6 −2.2

]T , x2 =
[
−0.2 0.2

]T . Moreover, a small
exploratory signal oi (t) is added to ûi :

oi (t) = 1000e−t sin(t)5cos(t)+ sin(t)cos(t)5, i = 1, 2.
(70)

Then the simulation results are shown in Figs. 2-6.
As shown in the systems fluctuation in Fig. 2, it is eas-

ily seen that the RL-based optimal adaptive event-triggered
decentralized control method can successfully stabilize NISs
in the sense of UUB under control constraints. Moreover, both
of actor and critic network vectors can converge to the certain
value under proposed RL-based iterative algorithm, which are
represented in Figs.4-5. Moreover, the actual control input

Fig. 2. The states response of whole NISs.

Fig. 3. The values of constrained control input û1 and û2.

Fig. 4. The values of Ŵ c1 and Ŵ c2.

value are depicted in Fig. 3 under control constraints. Besides,
the event-triggered instants are shown in Fig. 6, which further
validates the effectiveness of proposed optimal decentralized
control strategies.
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Fig. 5. The values of Ŵ u1 and Ŵ u2.

Fig. 6. The data releasing instants in nominal subsystem 1 and subsystem 2.

To validate the advantages of the AETM-based RL
algorithm proposed in this paper, we then compare some
results obtained under the designed algorithm and relative
algorithm proposed in the reference [35]. The event-triggered
mechanism in [35] is derived during the operation of prov-
ing the control performance of NISs, which is designed
to assist the stabilization of the considered NISs. Whereas
the event-triggered mechanism in this paper is pre-designed
to save the network bandwidth. Specifically, for the opti-
mal decentralized control problem of nonlinear NISs with
control and communication constraints in this paper, the
event-triggering condition designed according to [35] is:

||zi,k ||
2

≤
(1 − q2

i )λmin(Qi )||xi ||
2

2λ2
i L2

i ||Ri ||(1 + 1/γi )
, (71)

where qi ∈ (0, 1) is a given constant and Li > 0 is the
pre-given parameter which are then set to be qi = 0.34 and
Li = 21 in the simulation. With the triggering condition, the
ultimate bounds of the system state xi and approximate weight
error W̃ ci are:

Vxi =

{
xi : ||xi || ≤

√
τi1a

piλmin(Qi )

}
,

VW̃ ci
=

{
W̃ ci : ||W̃ ci || ≤

√
τi1a

τiwca

}
,

(72)

Fig. 7. The event-triggered instants of nominal subsystem 1 and subsystem 2
under the algorithm proposed in [35].

where

τi1a = αi V ∗

im + 2λ2
i
(1 + γi )

2

4λ2
i

||Ri ||
−1g2

im∇ε2
cim

+
ιci (Ni (t)+ 1)

2
ϱ2

im,

τiwca =
ιci

2
λmin(Hi )− 2λ2

i
(1 + γi )

2

4γiλ
2
i

||Ri ||
−1g2

im∇φ2
cim .

(73)

In Fig. 7, the triggering instants for the subsystems are
presented and the system stability can also be ensured (owing
to page limitation, the system states operations are omitted).
From Fig. 6 and Fig. 7, it can be found that less triggering
instants are generated with the algorithm proposed in this
paper (actually, the numbers of the triggering instants in
this paper are 277 and 214, with the triggering instants are
492 and 834 under the referred algorithm [35] within 15s,
respectively.). Obviously, under the AETM proposed in this
paper, the bandwidth pressure can be effectively alleviated.

V. CONCLUSION

This paper has addressed the AETM-based decentralized
optimal control problem for a class of NISs with control
constraints. Firstly, the decentralized optimal problem was
transformed into the optimal control for corresponding relative
nominal subsystems and the HJI equations were established
via the optimal control theory. Meanwhile, the UUB stability
of NISs was proved under optimal control strategies. In order
to solve the HJI equations, an actor-critic network structure
was utilized to obtain the numerical solutions of the HJI
equations and the tuning law of weight vectors were designed
with the collocation of historical system sates. By means of
Lyapunov stability theorem and optimal control theory, the
estimation error of weight vectors in actor-critic network and
system states were guaranteed to be stable in the sense of UUB
under proposed RL-based control strategies. Eventually, a sim-
ulation test was conducted to further validate the effectiveness
of control methods.
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