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A B S T R A C T

This paper is concerned with the security consensus control issue for discrete-time multiagent
systems (MASs) on the basis of a reinforcement learning (RL) approach. Considering the
effects of denial-of-service (DoS) attacks, a novel control protocol is proposed to deal with
the 𝐻∞ consensus problem. Firstly, a 𝑄-learning algorithm is put forward under the directed
graph, which can obtain the target gain matrices without any system dynamics information.
In addition, the obtained gain matrices and Lyapunov function are employed to demonstrate
that the MASs can reach security consensus. Moreover, the proof of 𝐻∞ consensus under
undirected graphs is derived using the designed 𝑄-learning algorithm. In the end, the simulation
experiments are given to verify the correctness of the designed control strategy.

1. Introduction

Recently, multiagent systems (MASs) have been increasingly concerned by many researchers due to the continuous expansion of
their application range [1–6], such as artificial intelligence, biological ecology, and communication control. Especially, consensus
behavior has sparked many valuable discussions as the most basic behavior of MASs [7–11]. The purpose of consensus control
scheme is to achieve the desired consistency among all intelligent agents. To our knowledge, many research issues on consensus
have been conducted in the secure communication environment [12,13]. In practical, there are many unsafe factors in the process
of agents communication, such as cyber attacks, packet loss, and network delay, which will reduce communication quality and even
cause system fluctuations [14]. Therefore, the security consensus problem of MASs suffering from network attacks needs to be paid
attention to ensure normal system communication.

In MASs, network attacks are divided into two situations [15,16]. The first is that when a malicious cyber-attacks assault an agent
in the communication networked diagram, the agent will be deleted, the second case is the communication interruption caused by
cyber-attacks. As a common type of cyber-attacks, denial-of-service (DoS) attacks frequently occur in engineering practice [17–
20]. It should be noticed that the open communication network can be unpredictably blocked under DoS attacks, which lead to
the phenomenon that the signal cannot be normally sent to the controller [21–23]. Therefore, it is requisite to explore a security
control policy for MASs. At present, some achievements have been made to resist the impact of DoS attacks. For example, an
input-based event-triggered control strategy was put forward for MASs against DoS attacks in [24]. Liu et al. [25] concentrated on a
secure leader-following controller design for MASs with replay and DoS attacks. Considering the impact of DoS attacks and actuator
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failures, the authors in [26] investigated a control strategy for nonlinear MASs by utilizing interval Takagi–Sugeno fuzzy model. Li
et al. [27] and Feng et al. [28] discussed the security synchronization problem of discrete-time MASs under DoS attacks.

It is worth mentioning that the specific dynamics (𝐴,𝐵,𝐷) needs to be obtained in the aforementioned results. However, the
accurate system information is usually hard to acquire in the practical implementations. Thus, the aforesaid control schemes are
inapplicable for the system with unknown dynamics. In an effort to solve this difficulty, with the assistance of reinforcement learning
(RL) method [29–31], researchers have proposed several model-free algorithms to achieve the expected system stability of unknown
system dynamics or optimal consensus of MASs [32–35]. The authors in [32] designed a consensus controller for MASs by using RL
method. In [33], Long et al. put forward two 𝑄-learning algorithms for discrete-time MASs to attain state feedback control. And the
consensus issue was investigated for nonlinear MASs with external disturbance in [34]. Based on the 𝑄-learning, the authors in [35]
designed an optimal controller for unknown MASs. Although some effective control methods for the consensus of MASs have been
presented in the above literature, these results did not take the network security into account. Therefore, the consistency of MASs
subject to DoS attacks will be explored in virtue of a RL algorithm, which is the prominent innovation of this article.

Illuminated by the aforesaid investigation, a RL-based security consensus control policy is proposed for MASs subject to DoS
attacks. The significant features of this article are outlined as follows:

(1) The published literature [30] have addressed the consensus control issue for discrete-time MASs. However, the adverse impact
of cyber-attacks has not been taken into account. It is widely noticed that DoS attacks may degrade the system performance
due to its attack manner. Towards this end, we endeavor to develop a secure consensus control scheme for MASs against DoS
attacks.

(2) A model-free 𝑄-learning algorithm is designed to derive the optimal control gain matrices. In contrast to [27], the target gain
matrices can be iteratively acquired without any system dynamics information. With the assistance of the proposed algorithm,
the desired 𝐻∞ consensus for MASs can attain under the negative effect of DoS attacks.

The rest of this work is arranged as follows. In Section 2, considering DoS attacks, a new control protocol is constructed. In
Section 3, the 𝑄-learning method and Lyapunov function are used to derive the optimal controller. In Section 4, simulation results
are given to demonstrate the effectiveness of the proposed approach. Finally, the conclusion is given in Section 5.

2. Problem formulation

2.1. Graph theory knowledges

Consider a graph 𝐺 = (V,E,D) with 𝑛 agents. Define V = {𝑣1, 𝑣2,… , 𝑣𝑛} as the node set, E = {(𝑣𝑖, 𝑣𝑗 ) ∶ 𝑣𝑖, 𝑣𝑗 ∈ V} is edge set, the
row stochastic matrix is denoted as D = [𝑑𝑖𝑗 ] ∈ 𝑛×𝑛, which represents communication between all agents with 𝑑𝑖𝑖 > 0, ∑𝑛

𝑗=1 𝑑𝑖𝑗 = 1
nd

{

𝑑𝑖𝑗 > 0, 𝑖𝑓 (𝑣𝑖, 𝑣𝑗 ) ∈ E
𝑑𝑖𝑗 = 0, 𝑖𝑓 (𝑣𝑖, 𝑣𝑗 ) ≠ E

𝑛 represents the identity matrix. 𝐼𝑛 − D is a particular Laplacian matrix, with

𝑅𝑒(𝜆1(𝐼𝑛 − D)) < 𝑅𝑒(𝜆2(𝐼𝑛 − D)) < ⋯ < 𝑅𝑒(𝜆𝑛(𝐼𝑛 − D)).

.2. System descriptions

Consider the following MASs with 𝑛 agents

𝑥𝑖(𝑘 + 1) = 𝐴𝑥𝑖(𝑘) + 𝐵𝑢𝑖(𝑘) + 𝐸𝜔𝑖(𝑘) (1)

here 𝑖 = 1, 2,… , 𝑛; 𝑥𝑖(𝑘) ∈ 𝑝 represents the system state, 𝑢𝑖(𝑘) ∈ 𝑞 is the control input, 𝜔𝑖(𝑘) ∈ 𝑠 indicates the external
disturbance of the 𝑖th agent, respectively. 𝐴, 𝐵 and 𝐸 are unknown system matrices with suitable dimensions.

Before proceeding to the main discussions of this article, the assumptions and lemmas are listed as

Assumption 1 ([34]). The (𝐴,𝐵) is stabilizable, (𝐴,𝐶) is observable, and |𝜆𝑖(𝐴)| ≤ 1(𝑖 = 1,… , 𝑛).

Assumption 2 ([36]). 𝐺 is a strongly connected and balanced directed graph or 𝐺 is a connected undirected graph.

Assumption 3 ([37]). The transmission signal will be completely lost if the communication channel is under DoS attacks.

Lemma 1 ([30]). For the directed graph 𝐺 under Assumption 2, 2
𝑛(𝑛−1) ≤ 𝑅𝑒(𝜆2(𝐼𝑛 − D)) holds.

Lemma 2 ([30]). For the undirected graph 𝐺 under Assumption 2, 4 ≤ 𝜆 (𝐼 − D) holds.
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2.3. Problem formulation

In practical implementations, it is difficult to accurately obtain the system dynamics. To overcome this difficulty, a 𝑄-learning
algorithm will be adopted to derive the gain matrices without knowing the system dynamics. In order to obtain the gain matrices,
the following control protocol is proposed

𝑢𝑖(𝑘) = 𝛼(𝑘)𝐾
𝑛
∑

𝑗=1
𝑑𝑖𝑗 (𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘)) (2)

where 𝐾 ∈ 𝑞×𝑝 is the controller gain, 𝛼(𝑘) represents whether the DoS attacks are in presence at instant 𝑘 and the specific meaning
of 𝛼(𝑘) is as follows:

𝛼(𝑘) =

{

0, if DoS attacks are active,
1, otherwise.

(3)

The stochastic variable 𝛼(𝑘) obeys the Bernoulli distribution taking values on {0, 1} and the corresponding probabilities are
{

𝑃𝑟{𝛼(𝑘) = 1} = 𝛼̄,
𝑃 𝑟{𝛼(𝑘) = 0} = 1 − 𝛼̄,

where 𝛼̄ ∈ (0, 1) is a known constant. Apparently, 𝐸{𝛼(𝑘)} = 𝐸{𝛼2(𝑘)} = 𝛼̄.

Remark 1. The control protocol shown in (2) is resultant from the influence of the DoS attacks. Specifically, 𝛼(𝑘) = 1 means the
actuator successfully receives information from the controller and 𝛼(𝑘) = 0 otherwise.

Remark 2. Motivated by [38,39], the randomly occurring DoS attacks are modeled by a Bernoulli stochastic variable 𝛼(𝑘). As stated
in [40,41], some attack detection methods can be utilized to obtain the relevant information of DoS attacks through monitoring the
communication network. Thus, the given probability 𝛼̄ can be acquired accordingly.

In the work, under the impact of DoS attacks, the optimal security consensus control problem is addressed by applying RL
approach. Here, the design goal of this paper is presented as follows:

1. For all 𝑥𝑖(0) and 𝜔𝑖(𝑘) = 0, lim𝑘→+∞ ‖𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘)‖ = 0.
2. For 𝑥𝑖(0) = 0, the following condition is satisfied:

𝐄
{ ∞

∑

𝑘=0
[𝑥(𝑘)𝑇𝑄𝑥(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘)]

}

≤ 𝛾2𝐄
{ ∞

∑

𝑘=0
𝜔(𝑘)𝑇𝜔(𝑘)

}

(4)

where 𝑥(𝑘) = [𝑥𝑇1 (𝑘), 𝑥
𝑇
2 (𝑘),… , 𝑥𝑇𝑛 (𝑘)]

𝑇 , 𝑢(𝑘) = [𝑢𝑇1 (𝑘), 𝑢
𝑇
2 (𝑘),… , 𝑢𝑇𝑛 (𝑘)]

𝑇 , 𝜔(𝑘) = [𝜔𝑇
1 (𝑘), 𝜔

𝑇
2 (𝑘),… , 𝜔𝑇

𝑛 (𝑘)]
𝑇 . Besides, 𝛾 > 0 denotes

performance level and 𝑄 ≥ 0, 𝑅 > 0 are known weighting matrices.
Define a virtual control input 𝜑𝑖(𝑘) = 𝛼(𝑘)𝜑𝑓

𝑖 (𝑘) and a disturbance 𝑓𝑖(𝑘) = 𝐿𝑥𝑖(𝑘), where 𝜑𝑓
𝑖 (𝑘) = 𝑐𝐾𝑥𝑖(𝑘) represents the auxiliary

control variable, 𝑐 is a constant to be determined, and 𝐿 denotes the gain matrix to be devised. Then, the system (1) is expressed
as

𝑥𝑖(𝑘 + 1) = 𝐴𝑥𝑖(𝑘) + 𝐵𝜑𝑖(𝑘) + 𝐸𝑓𝑖(𝑘). (5)

For simplicity, 𝑥𝑖(𝑘), 𝜑𝑖(𝑘), 𝜑
𝑓
𝑖 (𝑘) and 𝑓𝑖(𝑘) are denoted as 𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝜑𝑓

𝑖𝑘 and 𝑓𝑖𝑘 in the following, respectively. The goal of the
work is transformed into obtaining optimal 𝜑∗

𝑖𝑘 and the worst 𝑓 ∗
𝑖𝑘.

To achieve the goal, the following value function 𝑉 (𝑥𝑖𝑘) is defined:

𝑉 (𝑥𝑖𝑘) = 𝐄
{ ∞

∑

𝑖=𝑘
𝐽 (𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘)

}

(6)

where 𝐽 (⋅) is the performance function with the following form:

𝐽 (𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘) = 𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝜑𝑇
𝑖𝑘𝑅𝜑𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘. (7)

According to [42,43], regarding the virtual control input 𝜑𝑖𝑘 and the disturbance 𝑓𝑖𝑘 as two players, the 𝐻∞ consensus control
problem in this article can be seen as a zero-sum game problem. According to the Bellman optimality principle, we are committed
to solving a minmax problem under DoS attacks as

𝑉 ∗(𝑥𝑖𝑘) = 𝑚𝑖𝑛
𝜑𝑖𝑘

𝑚𝑎𝑥
𝑓𝑖𝑘

𝐄
{

𝐽 (𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘)
}

+ 𝑉 (𝑥𝑖(𝑘+1)). (8)

Referring to the method in [44], the value function (6) has a quadratic form depending on 𝑥𝑖𝑘 as

𝑉 (𝑥𝑖𝑘) = 𝐄
{

𝑥𝑇𝑖𝑘𝑃𝑥𝑖𝑘
}

(9)
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Then, the 𝐻∞ consensus 𝑄-function is given as

𝑄(𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘) = 𝐄
{

𝐽 (𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘)
}

+ 𝑉 (𝑥𝑖(𝑘+1)). (10)

For the simplicity of the formulas, 𝑄(𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘) in the following is represented as Q. Define the augmented vector 𝛯𝑘 =
[

𝑥𝑇𝑖𝑘 (𝜑𝑓
𝑖𝑘)

𝑇 𝑓𝑇
𝑖𝑘

]𝑇
. Combining the conditions (7) and (9), the expression (10) can be derived as

Q =𝐄
{

𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝜑𝑇
𝑖𝑘𝑅𝜑𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘
}

+ 𝐄
{

𝑥𝑇𝑖(𝑘+1)𝑃𝑥𝑖(𝑘+1)
}

=𝐄
{

𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝜑𝑇
𝑖𝑘𝑅𝜑𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘
}

+ 𝐄
{

(𝐴𝑥𝑖𝑘 + 𝐵𝜑𝑖𝑘 + 𝐸𝑓𝑖𝑘)𝑇 𝑃 (𝐴𝑥𝑖𝑘 + 𝐵𝜑𝑖𝑘 + 𝐸𝑓𝑖𝑘)
}

=

⎡

⎢

⎢

⎢

⎣

𝑥𝑖𝑘
𝜑𝑓
𝑖𝑘

𝑓𝑖𝑘

⎤

⎥

⎥

⎥

⎦

𝑇
⎡

⎢

⎢

⎣

𝑁11 𝑁12 𝑁13
𝑁21 𝑁22 𝑁23
𝑁31 𝑁32 𝑁33

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑁

⎡

⎢

⎢

⎢

⎣

𝑥𝑖𝑘
𝜑𝑓
𝑖𝑘

𝑓𝑖𝑘

⎤

⎥

⎥

⎥

⎦

(11)

where 𝑁11 = 𝐴𝑇 𝑃𝐴 + 𝑄, 𝑁12 = 𝛼̄𝐴𝑇 𝑃𝐵, 𝑁13 = 𝐴𝑇 𝑃𝐸, 𝑁21 = 𝛼̄𝐵𝑇 𝑃𝐴, 𝑁22 = 𝛼̄(𝑅 + 𝐵𝑇 𝑃𝐵), 𝑁23 = 𝛼̄𝐵𝑇 𝑃𝐸, 𝑁31 = 𝐸𝑇 𝑃𝐴,
𝑁32 = 𝛼̄𝐸𝑇 𝑃𝐵, and 𝑁33 = 𝐸𝑇 𝑃𝐸 − 𝛾2𝐼 .

Since the 𝑄-function has a bearing on 𝜑𝑖𝑘 and 𝑓𝑖𝑘, target gain matrices 𝐾∗ and 𝐿∗ are solved by 𝜕Q
𝜕𝜑𝑖𝑘

= 0, 𝜕Q
𝜕𝑓𝑖𝑘

= 0. By utilizing
the formula (11), we have

𝐾∗ =𝑚(𝑁22 −𝑁23(𝑁33)
−1𝑁32)−1(𝑁23(𝑁33)

−1𝑁31 −𝑁21)

𝐿∗ =𝑚(𝑁33 −𝑁32(𝑁22)
−1𝑁23)−1(𝑁32(𝑁22)

−1𝑁21 −𝑁31)
(12)

with 𝑚 = 1
4𝑛(𝑛−1) .

Based on the expression of 𝛯𝑘, we have

Q = 𝛯𝑇
𝑘 𝑁𝛯𝑘. (13)

Then, formula (13) is linearly parameterized as

Q(𝛯𝑘) = 𝑁̄𝑇 𝛯̄𝑖𝑘 (14)

here

𝑁̄𝑇 = [𝑛11, 2𝑛12,… , 2𝑛1𝑙 , 𝑛22, 2𝑛23,… , 2𝑛2𝑙 ,… , 𝑛𝑙𝑙]𝑇 (15)

and
𝛯̄𝑘 = [𝛯2

𝑖𝑘(1), 𝛯𝑖𝑘(1)𝛯𝑖𝑘(2),… , 𝛯𝑖𝑘(1)𝛯𝑖𝑘(𝑙),

𝛯2
𝑖𝑘(2), 𝛯𝑖𝑘(2)𝛯𝑖𝑘(3),… , 𝛯𝑖𝑘(2)𝛯𝑖𝑘(𝑙),… , 𝛯2

𝑖𝑘(𝑙)]
𝑇 (16)

in which 𝑛𝑖𝑗 is the element in the 𝑖th row and the 𝑗th column of matrix 𝑁 , 𝑖, 𝑗 = 1,… , 𝑙, 𝑙 = 𝑝+ 𝑞 + 𝑠, 𝛯𝑖𝑘(𝑣) is the 𝑣th component of
vector 𝛯𝑖𝑘.

Then, the formula (14) is presented as

𝑁̄𝑇 𝛯̄𝑖𝑘 = 𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝛼̄(𝜑𝑓
𝑖𝑘)

𝑇𝑅𝜑𝑓
𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘 + 𝑁̄𝑇 𝛯̄𝑖(𝑘+1). (17)

According to the formula (17), Algorithm 1 will be put forward to derive matrix 𝑁 online and obtain the optimal consensus
controller.

Remark 3. Note that many existing available results about consensus control problems drew support from 𝑄-learning algorithm
for different systems on the premise of reliable communication channel, which is unrealistic in some cases. In this article, we aim
to design a security consensus control method using the 𝑄-learning algorithm for discrete-time MASs under DoS attacks, which is
still challenging nowadays.

Remark 4. In Algorithm 1, probing noises 𝑝𝑖𝑘 and 𝑞𝑖𝑘 introduced in control input and external disturbance are inspired by the recent
work [45], which can assure the condition of policy evaluation. Since the probing noises have not any impact on the formulated
𝑄-function, the choice of probing noises is not a key issue. It should be noted that the sinusoidal function and exponential attenuation
function are often used as the probing noises in many literatures [46]. Hence, the similar probing noises are also adopted in this
167
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Algorithm 1 Model-Free Q-Learning Algorithm
procedure System Initialization:

Set the iteration number 𝑗 = 0, maximum iterations 𝑗𝑚.
Start with 𝑁0 > 0, 𝐾0 = 0, 𝐿0 = 0, 𝜑𝑓

𝑖𝑘 = 𝑐𝐾0𝑥𝑖𝑘 + 𝑝𝑖𝑘 and 𝑓𝑖𝑘 = 𝐿0𝑥𝑖𝑘 + 𝑞𝑖𝑘.
procedure Repeat:

1. Record 𝐺 ≥ 𝑞(𝑞+1)
2 groups data of (𝑥𝑖𝑘, 𝜑𝑖𝑘, 𝑓𝑖𝑘, 𝑥𝑖(𝑘+1), 𝜑𝑖(𝑘+1), 𝑓𝑖(𝑘+1)) at time 𝑘 to form the data matrices 𝑀 ∈ 

𝑙(𝑙+1)
2 ×𝐺,

𝑂 ∈ 𝐺×1

⎧

⎪

⎨

⎪

⎩

𝑀 = [𝛯̄1
𝑖𝑘, 𝛯̄

2
𝑖𝑘, ..., 𝛯̄

𝐺
𝑖𝑘],

𝑂 = [𝐽 1 + (𝑁̄ 𝑗−1)𝑇 𝛯̄1
𝑖(𝑘+1), 𝐽

1 + (𝑁̄ 𝑗−1)𝑇 𝛯̄2
𝑖(𝑘+1), ...,

𝐽𝐺 + (𝑁̄ 𝑗−1)𝑇 𝛯̄𝐺
𝑖(𝑘+1)]

𝑇 .

(18)

2. Obtain 𝑁 𝑗 by

(𝑁̄ 𝑗 )𝑇 𝛯̄𝑖𝑘 = 𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝛼̄(𝜑𝑓
𝑖𝑘)

𝑇𝑅𝜑𝑓
𝑖𝑘 − 𝛾2𝑓 𝑇

𝑖𝑘𝑓𝑖𝑘 + (𝑁̄ 𝑗−1)𝑇 𝛯̄𝑖(𝑘+1). (19)

3. Update 𝜑𝑓
𝑖𝑘 = 𝑐𝐾𝑗𝑥𝑖𝑘 + 𝑝𝑖𝑘 and 𝑓𝑖𝑘 = 𝐿𝑗𝑥𝑖𝑘 + 𝑞𝑖𝑘 using

𝐾𝑗 =𝑚(𝑁 𝑗
22 −𝑁 𝑗

23(𝑁
𝑗
33)

−1
𝑁 𝑗

32)
−1(𝑁 𝑗

23(𝑁
𝑗
33)

−1
𝑁 𝑗

31 −𝑁 𝑗
21),

𝐿𝑗 =𝑚(𝑁 𝑗
33 −𝑁 𝑗

32(𝑁
𝑗
22)

−1
𝑁 𝑗

23)
−1(𝑁 𝑗

32(𝑁
𝑗
22)

−1
𝑁 𝑗

21 −𝑁 𝑗
31).

(20)

4. Stop
if 𝑗 > 𝑗𝑚 then

Output the 𝑁 𝑗 , gain matrices 𝐾 and 𝐿.
else

set 𝑗 = 𝑗 + 1 and go to step 1.

3. Main results

In what follows, the secure consensus of the concerned MASs can be ensured to achieve by virtue of the selected Lyapunov
unction from directed and undirected graph.

heorem 1. Under Assumptions 1–2, the MASs (5) under directed graph with formula (2) is able to reach secure consensus, where the
optional control gain 𝐾∗ as well as worst disturbance gain 𝐿∗ are acquired from Algorithm 1 with

4𝑛(𝑛 − 1) + 2
√

4𝑛2(𝑛 − 1)2 − 3 ≤ 𝑐 < 8𝑛(𝑛 − 1). (21)

roof. Substituting the virtual control input 𝜑𝑖𝑘 = 𝑐𝛼(𝑘)𝐾𝑥𝑖𝑘 and the disturbance 𝑓𝑖𝑘 = 𝐿𝑥𝑖𝑘 into the condition (11), we get

Q =𝐄
{

𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝜑𝑇
𝑖𝑘𝑅𝜑𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘 + 𝑥𝑇𝑖(𝑘+1)𝑃𝑥𝑖(𝑘+1)
}

=𝐄
{

𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝜑𝑇
𝑖𝑘𝑅𝜑𝑖𝑘 − 𝛾2𝑓𝑇

𝑖𝑘𝑓𝑖𝑘
}

+ 𝐄{(𝐴𝑥𝑖𝑘 + 𝐵𝜑𝑖𝑘 + 𝐸𝑓𝑖𝑘)𝑇 𝑃 (𝐴𝑥𝑖𝑘
+ 𝐵𝜑𝑖𝑘 + 𝐸𝑓𝑖𝑘)}

=𝐄{𝑥𝑇𝑖𝑘𝑄𝑥𝑖𝑘 + 𝑐2𝛼2(𝑘)𝑥𝑇𝑖𝑘𝐾
𝑇𝑅𝐾𝑥𝑖𝑘 − 𝛾2𝑥𝑇𝑖𝑘𝐿

𝑇𝐿𝑥𝑖𝑘} + 𝐄{(𝐴𝑥𝑖𝑘 + 𝑐𝛼(𝑘)

× 𝐵𝐾𝑥𝑖𝑘 + 𝐸𝐿𝑥𝑖𝑘)𝑇 𝑃 (𝐴𝑥𝑖𝑘 + 𝑐𝛼(𝑘)𝐵𝐾𝑥𝑖𝑘 + 𝐸𝐿𝑥𝑖𝑘)}.

(22)

By calculation, the formula (22) is written as

Q = 𝑥𝑇𝑖𝑘[𝑄 + 𝑐2𝛼̄𝐾𝑇𝑅𝐾 − 𝛾2𝐿𝑇𝐿 +11 + 𝑐𝛼̄12𝐾 +13𝐿 + 𝑐𝛼̄𝐾𝑇21

+ 𝑐2𝛼̄𝐾𝑇22𝐾 + 𝑐𝛼̄𝐾𝑇23𝐿 + 𝐿𝑇 31 + 𝑐𝛼̄𝐿𝑇 32𝐾 + 𝐿𝑇 33𝐿]𝑥𝑖𝑘

= 𝑥𝑇𝑖𝑘B

{

⎡

⎢

⎢

⎣

𝑄
𝑐2𝛼̄𝑅

− 𝛾2𝐼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼 𝑐𝛼̄ 𝐼
𝑐𝛼̄ 𝑐2𝛼̄ 𝑐𝛼̄
𝐼 𝑐𝛼̄ 𝐼

⎤

⎥

⎥

⎦

𝑃

×
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

}

B𝑇 𝑥𝑖𝑘

= 𝑥𝑇𝑖𝑘𝑃𝑥𝑖𝑘

(23)

with B =
[

𝐼 𝐾𝑇 𝐿𝑇 ] , 11 = 𝐴𝑇 𝑃𝐴, 12 = 𝐴𝑇 𝑃𝐵, 13 = 𝐴𝑇 𝑃𝐸, 21 = 𝐵𝑇 𝑃𝐴, 22 = 𝐵𝑇 𝑃𝐵, 23 = 𝐵𝑇 𝑃𝐸, 31 = 𝐸𝑇 𝑃𝐴,
𝑇 𝑇
168
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Then, we can get

𝑥𝑇𝑖𝑘B

{

⎡

⎢

⎢

⎣

𝑄 − 𝑃
𝑐2𝛼̄𝑅

− 𝛾2𝐼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼 𝑐𝛼̄ 𝐼
𝑐𝛼̄ 𝑐2𝛼̄ 𝑐𝛼̄
𝐼 𝑐𝛼̄ 𝐼

⎤

⎥

⎥

⎦

𝑃

×
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

}

B𝑇 𝑥𝑖𝑘 = 0.

(24)

In what follows, the discrete-time MASs will be proven to reach secure consensus with formula (2), where 𝐾 is calculated through
Algorithm 1. First, design an error function 𝑧(𝑘) = (𝛩(𝐼𝑛−D)⊗𝐼𝑛)𝑥(𝑘), and 𝐼𝑛−D = 𝛩−1R𝛩, with R ∈ 𝑅𝑛×𝑛 being an upper-triangular
matrix with 𝜆𝑖(𝐼𝑛−D) as the diagonal terms. Then, the consensus is reached if 𝑧(𝑘) = 0, i.e., 𝑥1(𝑘) = ⋯ = 𝑥𝑛(𝑘). And the error function
𝑧(𝑘) is represented as

𝑧(𝑘 + 1) =(𝛩(𝐼𝑛 − D)⊗ 𝐼𝑛)𝑥(𝑘 + 1)

=(𝛩(𝐼𝑛 − D)⊗ 𝐼𝑛)[𝐼𝑛 ⊗𝐴 + (𝐼𝑛 − D)⊗ 𝛼(𝑘)𝐵𝐾

+ 𝐼𝑛 ⊗𝐸𝐿]𝑥(𝑘)

=[𝐼𝑛 ⊗𝐴 + R⊗ 𝛼(𝑘)𝐵𝐾 + 𝐼𝑛 ⊗𝐸𝐿]𝑧(𝑘).

(25)

Design an auxiliary system

𝑧(𝑘 + 1) = [𝐼𝑛 ⊗𝐴 + R⃗⊗ 𝛼(𝑘)𝐵𝐾 + 𝐼𝑛 ⊗𝐸𝐿]𝑧(𝑘) (26)

with R⃗ = 𝑑𝑖𝑎𝑔{𝜆1(𝐼𝑛 − D),… , 𝜆𝑛(𝐼𝑛 − D)}, 𝑧(𝑘) = 𝑧(𝑘).
When 𝜔𝑖(𝑘) = 0, according to the formula (12), we can derive that 𝐾 = −𝑚𝑁−1

22 𝑁21 = −𝑚(𝑅 + 𝐵𝑇 𝑃𝐵)−1𝐵𝑇 𝑃𝐴. Subsequently, it
is apparently observed from the condition (21) that 𝑐2𝑚2 − 2𝑐𝑚 ≥ −3∕[4𝑛2(𝑛 − 1)2].

Then, construct a Lyapunov function as

𝑉 (𝑘) = 𝐄
{

𝑧𝐻 (𝑘)(𝐼𝑛 ⊗ 𝑃 )𝑧(𝑘)
}

. (27)

According to the method used in [32], the following condition can be deduced by applying Lemma 1:

𝛥𝑉 (𝑘) =𝑉 (𝑘 + 1) − 𝑉 (𝑘)

≤𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 + (4𝑚2 − 4𝑚
𝑛(𝑛 − 1)

)𝛼̄𝛱]𝑧𝑖(𝑘)

= 𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 − 3
4𝑛2(𝑛 − 1)2

𝛼̄𝛱]𝑧𝑖(𝑘)

≤𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 + (𝑐2𝑚2 − 2𝑐𝑚)𝛼̄𝛱]𝑧𝑖(𝑘)

(28)

where 𝛱 = 𝐴𝑇 𝑃𝐵(𝐵𝑇 𝑃𝐵 + 𝑅)−1𝐵𝑇 𝑃𝐴.
On account of the Eqs. (22) and (24), it is obvious that

11 − 𝑃 + (𝑐2𝑚2 − 2𝑐𝑚)𝛼̄𝛱 < 0 (29)

which implies 𝛥𝑉 (𝑘) < 0. Then, we have lim𝑘→+∞ ‖𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘)‖ = 0, and the consensus control goal for the MASs (5) is attained.
For convenience, we denote the eigenvalue of 𝐼𝑛 − D as 𝜆𝑖. When 𝜔𝑖(𝑘) ≠ 0 and 𝑥𝑖(0) = 0, in terms of condition (4), with

𝑉 (∞) = lim𝑘→+∞ 𝑉 (𝑘) ≥ 0, we can derive that

J =𝐄
{ ∞

∑

𝑘=0
[𝑧𝑇 (𝑘)𝑄𝑧(𝑘) + 𝛼(𝑘)𝑢𝑇 (𝑘)𝑅𝑢(𝑘) − 𝛾2𝜔⃗𝑇 (𝑘)𝜔⃗(𝑘)+ ▵ 𝑉 (𝑘)]

− [𝑉 (∞) − 𝑉 (0)]

}

<𝐄
{ ∞

∑

𝑘=0
[𝑧𝑇 (𝑘)𝑄𝑧(𝑘) + 𝛼(𝑘)𝑢𝑇 (𝑘)𝑅𝑢(𝑘) − 𝛾2𝜔⃗𝑇 (𝑘)𝜔⃗(𝑘)+ ▵ 𝑉 (𝑘)]

}

=𝐄
{ ∞

∑

𝑘=0
[𝑧𝑇 (𝑘)𝑄𝑧(𝑘) + 𝛼(𝑘)𝑢𝑇 (𝑘)𝑅𝑢(𝑘) − 𝛾2𝜔⃗𝑇 (𝑘)𝜔⃗(𝑘) + 𝑧𝐻 (𝑘)A 𝑧(𝑘)]

}

=
∞
∑

𝑘=0

𝑛
∑

𝑖=1

{

𝑧𝑇𝑖 (𝑘)𝑄𝑧𝑖(𝑘) + 𝛼̄𝑢𝑇𝑖 (𝑘)𝑅𝑢𝑖(𝑘) − 𝛾2𝜔⃗𝑇
𝑖 (𝑘)𝜔⃗𝑖(𝑘) + 𝑧𝐻𝑖 (𝑘)(11

+ 𝜆𝑖𝛼̄12𝐾 +13𝐿 + 𝜆𝑖𝛼̄𝐾
𝑇21 + |𝜆𝑖|

2𝛼̄𝐾𝑇22𝐾 + 𝐿𝑇 31 + 𝜆𝑖𝛼̄𝐾
𝑇23𝐿

+ 𝜆𝑖𝛼̄𝐿
𝑇 32𝐾 + 𝐿𝑇 33𝐿 − 𝑃 )𝑧𝑖(𝑘)

}
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P

𝑚

=
∞
∑

𝑘=0

𝑛
∑

𝑖=1

{

𝑧𝑇𝑖 (𝑘)𝑄𝑧𝑖(𝑘) + 𝛼̄𝑢𝑇𝑖 (𝑘)𝑅𝑢𝑖(𝑘) − 𝛾2𝜔⃗𝑇
𝑖 (𝑘)𝜔⃗𝑖(𝑘)

+ 𝑧𝐻𝑖 (𝑘)B

{

⎡

⎢

⎢

⎣

−𝑃
0

0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼 𝜆𝑖𝛼̄ 𝐼
𝜆𝑖𝛼̄ |𝜆𝑖|

2𝛼̄ 𝜆𝑖𝛼̄
𝐼 𝜆𝑖𝛼̄ 𝐼

⎤

⎥

⎥

⎦

× 𝑃
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

}

B𝑇 𝑧𝑖(𝑘)

}

=
∞
∑

𝑘=0

𝑛
∑

𝑖=1

{

𝑧𝐻𝑖 (𝑘)B

{

⎡

⎢

⎢

⎣

𝑄 − 𝑃
|𝜆𝑖|

2𝛼̄𝑅
− 𝛾2𝐼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝐼 𝜆𝑖𝛼̄ 𝐼
𝜆𝑖𝛼̄ |𝜆𝑖|

2𝛼̄ 𝜆𝑖𝛼̄
𝐼 𝜆𝑖𝛼̄ 𝐼

⎤

⎥

⎥

⎦

𝑃
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

}

B𝑇 𝑧𝑖(𝑘)

}

(30)

where A = [𝐼𝑛 ⊗𝐴 + R⃗⊗ 𝛼(𝑘)𝐵𝐾 + 𝐼𝑛 ⊗𝐸𝐿]𝑇 (𝐼𝑛 ⊗ 𝑃 )[𝐼𝑛 ⊗𝐴 + R⃗⊗ 𝛼(𝑘)𝐵𝐾 + 𝐼𝑛 ⊗𝐸𝐿] − 𝐼𝑛 ⊗ 𝑃 , 𝑢(𝑘) = (R⃗⊗𝐾)𝑧(𝑘), 𝜔⃗(𝑘) = 𝐿𝑧(𝑘).
From the formula (4), one can obtain

𝐄
{ ∞

∑

𝑘=0
[𝑧(𝑘)𝑇𝑄𝑧(𝑘) + 𝑢(𝑘)𝑇𝑅𝑢(𝑘)]

}

≤ 𝛾2𝐄
{ ∞

∑

𝑘=0
𝜔⃗(𝑘)𝑇 𝜔⃗(𝑘)

}

. (31)

Based on (24), one has

⎡

⎢

⎢

⎣

0
− 𝑐2𝛼̄𝑅

𝛾2𝐼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

−𝐼 −𝑐𝛼̄ −𝐼
−𝑐𝛼̄ −𝑐2𝛼̄ −𝑐𝛼̄
−𝐼 −𝑐𝛼̄ −𝐼

⎤

⎥

⎥

⎦

𝑃
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑄 − 𝑃
0

0

⎤

⎥

⎥

⎦

.

(32)

Substituting the formula (32) into (30), we get

J <
∞
∑

𝑘=0

𝑛
∑

𝑖=1
𝑧𝐻𝑖 (𝑘)B

{

⎡

⎢

⎢

⎣

0
(|𝜆𝑖|

2 − 𝑐2)𝛼̄𝑅
0

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐴𝑇

𝐵𝑇

𝐸𝑇

⎤

⎥

⎥

⎦

×
⎡

⎢

⎢

⎣

0 (𝜆𝑖 − 𝑐)𝛼̄ 0
(𝜆𝑖 − 𝑐)𝛼̄ (|𝜆𝑖|

2 − 𝑐2)𝛼̄ (𝜆𝑖 − 𝑐)𝛼̄
0 (𝜆𝑖 − 𝑐)𝛼̄ 0

⎤

⎥

⎥

⎦

𝑃
⎡

⎢

⎢

⎣

𝐴
𝐵

𝐸

⎤

⎥

⎥

⎦

}

B𝑇 𝑧𝑖(𝑘).

(33)

Let

𝑆 =
⎡

⎢

⎢

⎣

0 (𝜆𝑖 − 𝑐)𝛼̄ 0
(𝜆𝑖 − 𝑐)𝛼̄ (|𝜆𝑖|

2 − 𝑐2)𝛼̄ (𝜆𝑖 − 𝑐)𝛼̄
0 (𝜆𝑖 − 𝑐)𝛼̄ 0

⎤

⎥

⎥

⎦

. (34)

Obviously, the matrix 𝑆 is negative definite and |𝜆𝑖|
2−𝑐2 < 0 with |𝜆𝑖| < 1, thus, J < 0. Then, the MASs (5) can achieve consensus

control, which completes the proof. ■

In what follows, we will discuss the case of the undirected graph. Using Algorithm 1 to compute the gain matrix 𝐾, the value
of 𝑚 needs to be changed. The relevant results and proof are presented as follows:

Theorem 2. Under Assumptions 1–2, the MASs (5) under undirected graph with formula (2) can get secure consensus, where the optimal
control gain 𝐾∗ as well as worst disturbance gain 𝐿∗ are acquired from Algorithm 1 with

4𝑛(𝑛 − 1) + 2
√

4𝑛2(𝑛 − 1)2 − 7 ≤ 𝑐 < 8𝑛(𝑛 − 1). (35)

roof. Choose a Lyapunov function as

𝑉 (𝑘) = 𝐄
{

𝑧𝐻 (𝑘)(𝐼𝑛 ⊗ 𝑃 )𝑧(𝑘)
}

. (36)

Based on Eq. (12), we can derive that 𝐾 = −𝑚𝑁−1
22 𝑁21 = −𝑚(𝑅 + 𝐵𝑇 𝑃𝐵)−1𝐵𝑇 𝑃𝐴 when 𝜔𝑖(𝑘) = 0. With formula (32) and

1 , we can deduce 𝑐2𝑚2 − 2𝑐𝑚 ≥ −7∕[4𝑛2(𝑛 − 1)2].
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Fig. 1. Directed topology.

In light of the approach in [32,34], the following results can be obtained:

𝛥𝑉 (𝑘) =𝑉 (𝑘 + 1) − 𝑉 (𝑘)

≤
𝑛
∑

𝑖=1
𝑧𝐻𝑖 (𝑘)[11 + 𝛼̄𝑚2

|𝜆𝑖|
2𝛱 − 2𝛼̄𝑚𝜆𝑖𝛱 − 𝑃 ]𝑧𝑖(𝑘).

(37)

On the basis of Lemma 2 and the demonstration given in [32], it is evidently concluded that 𝜆𝑖 ≥ 4∕[𝑛(𝑛−1)] and |𝜆𝑖| ≤ 2. Then,
𝛥𝑉 (𝑘) is represented by

𝛥𝑉 (𝑘) ≤ 𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 + (4𝑚2 − 8𝑚
𝑛(𝑛 − 1)

)𝛼̄𝛱]𝑧𝑖(𝑘)

= 𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 − 7
4𝑛2(𝑛 − 1)2

𝛼̄𝛱]𝑧𝑖(𝑘)

≤ 𝑛𝑧𝐻𝑖 (𝑘)[11 − 𝑃 + (𝑐2𝑚2 − 2𝑐𝑚)𝛼̄𝛱]𝑧𝑖(𝑘).

(38)

From (22) and (24), we have

11 − 𝑃 + (𝑐2𝑚2 − 2𝑐𝑚)𝛼̄𝛱 < 0 (39)

which implies 𝛥𝑉 (𝑘) < 0. Then, lim𝑘→+∞ ‖𝑥𝑖(𝑘) − 𝑥𝑗 (𝑘)‖ = 0 can be obtained, that is the MASs (5) can achieve consensus control.
On the other hand, for the situation that 𝜔𝑖(𝑘) ≠ 0, the relevant proof can also be finished similar to the proof of Theorem 1.

Thus, the consensus control for MASs (5) under undirected graph can be achieved, which completes the proof. ■

4. Simulation examples

In the section, simulation results are shown to illustrate the validity of the designed secure consensus control method. In addition,
the directed graph and the undirected graph are considered respectively.

Consider the MASs with five agents, the system matrices are

𝐴 =
[

0.95 0.1
−0.8 0.3

]

, 𝐵 =
[

0
−1

]

, 𝐸 =
[

0.15
−0.4

]

which satisfies Assumption 1.
Case 1. As shown in Fig. 1, 𝐺 is a directed graph, where

D =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.8 0 0 0 0.2
0.1 0.8 0 0.1 0
0.1 0 0.9 0 0
0 0 0.1 0.9 0
0 0.2 0 0 0.8

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The original states are selected as 𝑥1(0) = [−3.1,−3.2]𝑇 , 𝑥2(0) = [−2.1, 2.2]𝑇 , 𝑥3(0) = [1.1,−4.3]𝑇 , 𝑥4(0) = [2.1,−2.5]𝑇 , 𝑥5(0) =
[−1.0,−3.4]𝑇 . Set initial parameters as 𝛾 = 0.95, 𝑚 = 1

80 , 𝑐 = 159.94, 𝑄 = 100, 𝑅 = 10, 𝐾0 = [0, 0], 𝐿0 = [0, 0]. The occurrence
probability of DoS attacks are set as 1 − 𝛼̄ = 0.2.

By Algorithm 1, the gain matrices 𝐾 and 𝐿 are eventually computed as

𝐾 =
[

0.0207 0.0067
]

, 𝐿 =
[

−0.0808 −0.0084
]

.
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Fig. 2. The responses of 𝑥𝑖 in Case 1.

Fig. 3. Control input 𝑢𝑖 in Case 1.

Fig. 4. Convergence of gain matrices 𝐾 and 𝐿 in Case 1.

Using the above control policy generated by 𝑄-learning algorithm, Fig. 2 shows the responses of system states 𝑥𝑖 in Case 1, which

illustrates that the system can gradually reach consensus through our designed method. Fig. 3 describes the control input 𝑢 in the
172
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i
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o

5
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Fig. 5. Undirected topology.

Fig. 6. The responses of 𝑥𝑖 in Case 2.

presence of DoS attacks. Moreover, the convergence process of gain matrices 𝐾 and 𝐿 are depicted in Fig. 4. Based on the above
observations, it is evident to conclude that the designed security consensus control strategy is effective under the directed graph.

Case 2. In this case, 𝐺 is undirected as Fig. 5, where

D =

⎡

⎢

⎢

⎢

⎢

⎣

0.2 0.5 0.2 0.1
0.5 0.5 0 0
0.2 0 0.3 0.5
0.1 0 0.5 0.4

⎤

⎥

⎥

⎥

⎥

⎦

.

Then, the original states are selected as 𝑥1(0) = [−1.1, 3.2]𝑇 , 𝑥2(0) = [−3.0,−2.8]𝑇 , 𝑥3(0) = [1.8,−2.3]𝑇 , 𝑥4(0) = [1,−2.5]𝑇 . Other
nitial parameters are selected to be 𝛾 = 0.95, 𝑚 = 1

48 , 𝑐 = 95.8, 𝑄 = 100, 𝑅 = 10, 𝐾0 = [0, 0], 𝐿0 = [0, 0]. The occurrence probability of
DoS attacks is 1 − 𝛼̄ = 0.2.

According to Algorithm 1, the matrices 𝐾 and 𝐿 are computed as follows:

𝐾 =
[

0.0345 0.0112
]

, 𝐿 =
[

−0.1347 −0.0140
]

.

In the following, we will present the case where the topology is an undirected graph. The system states 𝑥𝑖 and the control input
𝑢𝑖 are plotted in Figs. 6 and 7, respectively. It can be observed from Fig. 6 that consensus performance of the MASs can be satisfied
gradually despite the DoS attacks. Fig. 8 represents the learning process of control gain 𝐾 and the disturbance gain 𝐿, respectively.

pparently, when the malicious DoS attacks occur, the data transmission can be blocked such that the control input 𝑢𝑖 becomes zero.
nder such a negative impact, the proposed security consensus goal can still be achieved according to Fig. 6. Thus, the effectiveness
f the applied control scheme is validated from the undirected graph.

. Conclusion

In the article, the issue of security consensus control has been discussed for the MASs under DoS attacks using RL methods.
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Fig. 7. Control input 𝑢𝑖 in Case 2.

Fig. 8. Convergence of gain matrices 𝐾 and 𝐿 in Case 2.

structure of graphs, a 𝑄-learning algorithm for the system has been put forward, which can obtain the optimal gain matrices without
any system dynamics information. In the end, the simulation experiments have been given to demonstrate the correctness of the
designed strategy. Further research directions will include the security controller design for MASs subject to multiple cyber attacks,
which are consisted of DoS attacks, deception attacks and so on. Meanwhile, taking the restricted communication resource into
account, the secure event-triggered control scheme will be investigated for MASs.
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