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Dynamic-Memory Event-Triggered Sliding-Mode
Secure Control for Nonlinear Semi-Markov Jump

Systems With Stochastic Cyber Attacks
Yushun Tan , Jiajing Liu , Xiangpeng Xie , Senior Member, IEEE, Engang Tian ,

and Jinliang Liu , Member, IEEE

Abstract— This paper presents an investigation of the sliding-
mode secure control for nonlinear semi-Markov jump systems
in the presence of non-periodic denial-of-service attacks and
false data injection attacks. First of all, we employ Takagi-
Sugeno fuzzy model to describe the nonlinear semi-Markov jump
control systems. In order to optimize transmission efficiency and
control performance, a novel dynamic-memory event-triggered
mechanism is developed by incorporating auxiliary dynamic
variable and historical transmitted data. Then, a memory-based
fuzzy sliding surface is put forward to attenuate the influences
of stochastic cyber attacks with the aid of event-triggered state
information. Moreover, by utilizing Lyapunov stability theory,
sufficient conditions are derived to guarantee the exponentially
mean-square stability of the system with an H∞ performance
index, even in the cases of generally uncertain and unknown
transition rates. Furthermore, a memory-based sliding mode
secure controller is designed to ensure the reachability of the
predefined switching surface and desirable sliding motion within
finite time. Finally, the efficacy of the proposed control scheme
is demonstrated through a tunnel diode circuit model.

Note to Practitioners—This study focuses on the issue of
secure control for nonlinear semi-Markov jump systems, which
holds practical significance across various domains, including
applications in robotic manipulators, circuit models, and DC
motors. We broaden the scope by considering more general
jump parameter matrices to align more closely with the real-
world system environment. Moreover, networked environments
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pose two primary challenges: network bandwidth constraints
and the external network attacks. To tackle these issues,
this paper introduces an innovative dynamic memory event
triggering mechanism to enhance network transmission efficiency
and optimize communication resource utilization. Meanwhile,
to address cyber attacks resulting from the inherent openness
of networks, the current study adopts a defensive sliding mode
control strategy to provide robust protection against network
attacks and disturbances. The effectiveness of the suggested
approach is confirmed through a circuit system model. It is
worth mentioning that the proposed method has the potential
for broader application within real-world engineering scenarios,
particularly those involving network-based nonlinear systems
with various practical constraints.

Index Terms— Sliding mode control, nonlinear semi-
Markovian systems, stochastic cyber-attacks, event-triggered
mechanism.

I. INTRODUCTION

IN RECENT decades, a great deal of literature has emerged
on fuzzy-based control strategies which aim to approximate

complex nonlinear systems by decomposing the input space
into numerous subspaces through a fuzzy blend of local
linear systems associated with each subspace. Various control
methods, such as sliding mode control [1], output feedback
control [2] and finite-time control [3], have been utilized
in the context of Takagi-Sugeno (T-S) fuzzy systems to
effectively address associated control issues. It is noticed that
sliding mode control (SMC) has garnered particular interest
in the field of systems science and control engineering due
to its robustness against external disturbances. SMC has been
employed to address diverse issues through the utilization of
appropriate controller design conditions [4]. Within a finite-
time frame, the attainment of convergence for the sliding-mode
surface can be ensured by designing sufficiently large control
signals, which effectively counteract the adverse influences of
uncertainty and nonlinearity [5], [6]. As the state variable
trajectories reach the predetermined sliding surface, they
exhibit insensitivity towards uncertainties and nonlinearities.
Recently, a few studies on sliding-mode control method for T-S
fuzzy systems have emerged [1], [7]. However, there remain
some worthwhile explorations to further develop, which serves
as the motivation for this study.

Markov jump systems (MJSs) are stochastic systems with
multiple modes and possess a powerful modeling ability for
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practical systems subject to stochastic changes, such as random
system faults or communication failures [6], [8], [9], [10].
However, the MJSs have limitations due to the memoryless
nature of their transition probability, which complies with
an exponential distribution and remains independent of the
sojourn-time. To address this limitation, semi-Markov jump
systems (S-MJSs) with sojourn-time-dependent transition
probabilities have emerged as an extension solution, which has
led to the exploration of various topics [11], [12]. For instance,
the design of SMC for a specific category of nonlinear S-
MJSs is studied in [1], and the issue of model predictive
control concerning discrete-time S-MJSs has been addressed
in [13]. Additionally, the problem of output feedback control
for particular continuous-time hidden S-MJSs incorporating
time delays is investigated in [14].

In addition, the constrained communication resources and
the transmission of extensive data may significantly impact
the performance of S-MJSs. Therefore, the event-triggered
mechanism (ETM) has gained significant traction due to its
simplistic task model and remarkable ability to reduce signal
redundancy [15], [16]. The introduction of event-triggered
scheme has been and became prevalent in control fields
in recent years [17], [18], [19]. For example, the event-
triggered H∞ control problem for nonlinear systems with data
losses was examined in [20]. Additionally, the event-triggered
fault detection for networked fuzzy systems was explored
in [21]. To further reduce energy consumption and enhance
the suitability for dynamic terms and switching modes in
practical systems, several more efficient and universal ETMs
have been proposed. For instance, the authors [22] designed a
dynamic-memory ETM, which was applied to fault detection
problems. The authors [23] investigated an adaptive ETM
for nonlinear systems with network attacks. The authors [24]
addressed the resilient control problem by involving memory-
based ETM for a specific category of networked systems to
deal with deception attacks. Drawing upon the above literature,
we know that it is necessary to use historical trigger data in
the event triggering mechanism to improve the performance
of the system. However, the inclusion of historical packets
results in the release of additional packets, which potentially
leads to resource wastage. Thus, the utilization of the dynamic
variable becomes essential to regulate data transmission.
Prompted by these challenges, this paper introduces a
new dynamic memory-event-triggered mechanism (DMETM)
for S-MJSs, which effectively optimizes the utilization
of communication resources while conserving the limited
bandwidth.

The development of networks has increased the efficiency
of data transmission. For networked control systems, the
communication transmission channels are often subject
to attacks from network hackers. Network security is
particularly important as attacks can significantly degrade
system performance. Therefore, it is necessary to account
for the impact of cyber attacks when modeling and
analyzing networked systems [16]. Recently, researchers have
extensively investigated the security concerns of various
networked systems under cyber attacks. For instance, the
authors in [25] explored the design of secure filters for

switched systems subject to false data injection (FDI) attacks.
The authors in [26] addressed the issue of reliable control
with memory ETM under the threat of deception attacks.
The authors in [27] studied fuzzy-based filter design in
nonlinear systems with deception and denial of service (DoS)
attacks. Up to now, the majority of published research has
focused on single cyber attacks. However, real-world systems
may encounter a wide range of cyber attacks. In order
to accurately represent network environments, this article
incorporates multiple cyber attacks, including FDI attacks
and DoS attacks. It is worth noting that the consideration
of multiple network attacks in S-MJSs has often been
overlooked, which serve as one of the primary motivations of
this paper.

In light of the previous discussions, this study examines
the novel dynamic memory-event-triggered SMC for fuzzy
S-MJSs with multiple cyber attacks. The main and innovative
features of this research can be summarized as follows:
(1) Unlike the existing results in [5] and [28], this

paper proposes a novel memory-event triggered strategy for
networked S-MJS incorporating historical errors and the
change of state error, which reduces the burden on the network
more effectively and is also more resistant to the effects of DoS
attacks. Moreover, this approach utilizes mode-dependent and
parameter-dependent Lyapunov-Krasovskii functionals, which
can significantly decrease conservatism.
(2) In contrast to [6], [29], and [30], this paper considers

a new memory-based sliding mode surface along with its
corresponding SMC law to combat network attacks and
exogenous disturbances that are prone to occur in some
real engineering systems such as robot manipulators and DC
motors, while ensuring the finite-time accessibility of the
sliding surface.
(3) The current study takes into account a more realistic

scenario with multiple network attacks, differing from [31]
where a single attack is considered. Furthermore, we propose
a set of sufficient conditions to ensure the globally exponential
stability and H∞ performance of the nonlinear S-MJSs with
general uncertain transition rates, particularly for completely
unknown situations.

The subsequent sections of this paper are structured as
follows. In Section II, we provide a comprehensive exposition
of the fuzzy S-MJSs model under cyber attacks, as well as
constructing a novel switched dynamic fuzzy control system.
Section III focuses on the stability analysis and sliding
mode controller design for networked fuzzy S-MJSs, where
the key findings are presented. In Section IV, an electric
circuit model is introduced to illustrate the effectiveness
of the control method. Finally, we conclude this paper
in Section V.

Notations
∗ Symmetric terms of a matrix
I Identity matrix

AT Transposition of matrix A
A−1 Inversion of matrix A

sym{B} BT
+ B

∥·∥ Euclidean norm of the vector
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II. PROBLEM FORMULATION

A. Model of Nonlinear S-MJSs

Consider a category of nonlinear systems characterized by
parameter uncertainties as Figure 1, which can be precisely
depicted by the subsequent fuzzy model consisting of r fuzzy
rules.

Plant Rule i: IF γ j (t) is Fi j (i = 1, 2 · · · , r;

j = 1, 2, · · · , p), THEN{
ẋ(t) = Aiςt x(t)+ Biςt ū(t)+ Ciςtω(t),
z(t) = Diςt x(t)+ Eiςtω(t),

(1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state and control
input of the system, respectively. The matrices Aiςt , Biςt ,
Ciςt Diςt and Eiςt are well-defined constant matrices, which
possess suitable dimensions. The exogenous disturbance ω(t)
is an element of L2[0,∞). The continuous-time semi-Markov
process {ςt , t ≥ 0} occurs within a space S = {1, 2, · · · s} with
transition probabilities described by:

Pr
{
ςt+µ = c|ςt = v

}
=

{
ψvc(µ)µ+ o(µ), c ̸= v,

1 + ψvc(µ)µ+ o(µ), c = v,

(2)

where µ > 0 represents sojourn time of the current mode
independent of t , and we have limµ→0o(µ)/µ = 0. If c ̸= v,
then ψvc(µ) > 0 and ψvv(µ) = −

∑s
c ̸=v ψvc(µ) < 0.

Supposing that the controller suffers randomly occurring
injection attacks, the control input u(t) would be modeled as
follows

ū(t) = u(t)+ β(t)Hςtχ(x(t), t),

where Hςt is an unknown weighting matrix with a norm of∥∥Hςt

∥∥ < h̄ςt , and ∥χ(x(t), t)∥ ≤ ξςt (x(t), t). The variable
β(t) is a Bernoulli variable with Pr{β(t) = 1} = E{β(t)} = ρ̄

and Pr{β(t) = 0} = 1 − E{β(t)} = 1 − ρ̄, where ρ̄ ∈ [0, 1].
In this paper, we examine the transition rates of the semi-

Markov process, some of which are only partially accessible
or not exactly accessible, and determine the lower and upper
bounds. The values of ψvc(µ) lie in the range of [ψ

vc
, ψvc],

where ψ
vc

and ψvc are known constants. We denote ψvc(µ) =

ψvc +1ψvc(µ), where ψvc =
1
2 (ψvc

+ψvc), and |1ψvc(µ)| ≤

λvc, where λvc =
1
2 (ψvc − ψ

vc
), for brevity, we define

3 = 3v,k ∪3v,uk

3v,k = {k : ψvc is partially accessible, v ∈ s},

3v,uk = {k : ψvc is completely unaccessible, v ∈ s}.

Suppose 3v,k ̸= ∅ and 3v,uk ̸= ∅. The set 3v,k can be
represented as

{
kv,1, kv,2, · · · , kv,q

}
, where 1 < q < s. Using

fuzzy blending, we obtain the following for mode v:

ẋ(t) =

r∑
i=1

qiv(γ (t))(Aivx(t)+ Biv ū(t)+ Civω(t)), (3)

where γ (t) = [γ1(t), γ2(t), · · · γp(t)]T . The function
qi (γ (t)) =

∏p
j=1 ςi j (γ j (t))/

∑r
i=1

∏p
j=1 ςi j (γ j (t)) is the

Fig. 1. The structure of networked S-MJSs.

Fig. 2. Example of DMETM under DoS attacks.

membership function, where ςi j (γ j (t)) denotes the grade
membership of γ j (t) in ςi j . It is noteworthy that
ςi j (γ j (t)) ≥ 0, qi (γ (t)) ∈ [0, 1], and

∑r
i=1 qi (γ (t)) = 1.

B. DoS Attacks

In addition to FDI attacks, this paper explores the impacts of
non-periodic energy-limited DoS attacks on the transmission
network between the actuator and controller, as illustrated in
Figure 2. The energy limitation of the DoS jamming signal
renders it inactive during a specific duration, as it conserves
energy for subsequent attacks. In order to determine the
presence of DoS attacks, a variable υ(t) is introduced.

υ(t) =

{
1, t ∈ [hl , hl + ll),

0, t ∈ [hl + ll , hl+1),
(4)

where hl and hl + ll represent the moments of inactivity and
activity associated with DoS attacks in transmission network.
Therefore, we can determine the starting and ending instants
of the DoS sleeping period as 0 = h1 < h1 + l1 < · · · < hl <

hl + ll < · · · . To simplify analysis, let Gl,1 = [hl , hl + ll) and
Gl,0 = [hl + ll , hl+1).

Assumption 2.1: Assume that the maximum duration of
communication interruption periods in DoS attacks, denoted
as qmax, satisfies qmax ≥ supl∈N {hl+1 − hl − ll}, where the
lower and upper bounds of communication recovery periods
are meet the constraint lmin ≤ ll ≤ lmax.

Assumption 2.2: During the occurrence of DoS attacks, the
cumulative count of communication interruption and recovery
transitions, denoted as χ(t), satisfies χ(t) ≤ b +

t
�a

with b ≥

0 and �a ∈ R≥0.
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C. Dynamic-Memory Event-Triggered Mechanism

To conserve bandwidth resources in S-MJSs, the DMETM
is utilized. Let h and tkh denote the sampling period and the
most recent transmission instant, respectively. The subsequent
triggering instant as tk+1h is determined by the following
equation:

tk+1h = tkh + min
d≥0

{d|F(t, ϑ(t)) > 0},

F(t, ϑ(t)) =

m∑
n=1

µneT
n (t)�ven(t)− σϑ(t)x̃

T
(t)�v x̃(t),

ϑ(t) = d0 + (d1 − d0)ϱ(t),

ϱ(t) = max{e−λ1∥
∑m

n=1 µnen(t)∥, e−λ2∥
∑m

n=1 µn En(t)∥}, (5)

where σ ∈ (0, 1), 0 ≤ d0 ≤ d1 ≤ 1 and λ1, λ2 are
positive values. The matrix �v is a symmetric positive
definite matrix. Additionally, m denotes the number of
packets recently released and stored in the buffer, and∑m

n=1 µn = 1 where µn ∈ [0, 1]. Furthermore, we have
x̃(t) = (1/m)

∑m
n=1 x(tk−n+1h) and en(t) = x(tk−n+1h) −

x(tkh + dh), En(t) = en(t)− en−1(t).
Remark 2.1: The essential role of the state error

change
∥∥∑m

n=1 µn En(t)
∥∥ in event-triggered strategy cannot

be underestimated. It is noteworthy that the event-triggering
parameter ϑ(t) in (5), bounded between d0 and d1, undergoes
adaptive adjustments through the function ϱ(t). The term∥∥∑m

n=1 µnen(t)
∥∥ cleverly improves the system performance by

capturing the historical errors as illustrated in [28]. However,
it is inadequate to adjust the dynamic parameter by relying
solely on historical errors, especially in the case where the
state change errors described above are large and the history
errors are small. To overcome this complexity, the trigger
proposed in (5) incorporates both the state error and the change
of error to modify the dynamic parameter, which leads to a
significant reduction in energy consumption and improves the
suitability for dynamic terms.

Remark 2.2: The DMETM (5) is proposed not only for
its ability to adjust inter-event time flexibly but also for its
better adaptation to DoS attacks, which is superior to other
DMETM constructions described in [5]. In the simulation
example section, we will find that the designed DMETM is
more likely to obtain vertex data of the system state curve due
to the introduction of historical triggered signals. Additionally,
the parameter µn represents the weighting assigned to each
triggered packet. In general, packets closer to the present
are given a more important status, i.e. µn ≥ µn+1(n =

1, . . . ,m − 1). When λ1 = 0, λ2 = 0 and d1 = 1, the
internal dynamic variables ϑ(t) becomes 1, then DMETM (5)
simplifies to the conventional memory-based ETM described
in [24]. Furthermore, the DMETM (5) will be degraded to a
memoryless ETM if m = 1.

In order to mitigate the negative impact of DoS attacks,
we propose an improved DMETM on the basis of (5) as
follows

tk+1,lh = {tk,lh + dh satisfying (5)|
tk,lh + dh ∈ Gl,1, } ∪ {hl} (6)

where d belongs to {1, 2, · · · , d(l)} with d(l) = sup{d ∈

N |tk,lh + dh < hl + ll}. Similar to [23], we divide the event-
triggered interval ℑk,l = [tk,lh + hk,l , tk+1,lh + hk+1,l) into
multiple sub-intervals as follows

ℑk,l =

θk,l⋃
s=1

[tk,lh + (s − 1)h + hk,l , tk,lh + sh + hk,l)

∪ [tk,lh + θk,lh + hk,l , tk+1,lh + hk+1,l), (7)

where θk,l = sup{d ∈ N |tk,lh + dh < tk+1,lh}, hk,l and hk+1,l
are transmission delay of the packets tk,lh and tk+1,lh. Denote

N s
k,l =

θk,l⋃
s=1

[tk,lh + (s − 1)h + hk,l , tk,lh + sh + hk,l),

N θk,l+1
k,l = [tk,lh + θk,lh + hk,l , tk+1,lh + hk+1,l).

Thus, we can express the sleeping interval Gl,1 =⋃k(l)
k=0

⋃θk,l+1
s=1 {N s

k,l ∩ Gl,1} =
⋃k(l)

k=0
⋃θk,l+1

s=1 {h̄s
k.l}. Subsequently,

for t ∈ h̄l
k.l , we introduce the the time delay between the

current instant and the previous triggering instant h(t) as
h(t) = t − tk,lh − lh with

hk,l ≤ h(t) ≤ h + hk,l , t ∈ h̄s
k.l , s = 1, · · · , θk,l

hk,l ≤ h(t) ≤ h + hk+1,l , t ∈ h̄θk,l+1
k.l

It follows that h(t) takes values within the interval
0 ≤ h(t) < h̄ with h̄ = maxl∈n{maxk∈n{hk,l}} + h.
Then, combining with (5), we get en,l(t) = x(tk−n+1,lh) −

x(tk,lh + lh).
Consequently, the memory-based DETM sampled state,

denoted by x(tk−n+1h), can be expressed as x(tk−n+1h) =

x(t − h(t))+ en,l(t) for all t ∈ h̄s
k.l .

Remark 2.3: If the condition in (5) is violated, the sub-
sequent data transmission is initiated. However, since the
attacker aims to disrupt communication, it follows that the
activated data ought not to be situated within the attack active
time interval. In this investigation, focusing on the DoS attack,
we put forward an attack-resilient event-triggered condition
outlined in (6). The time sequences of the triggered events
are located within the attack sleeping interval if no triggered
data satisfies the condition in (6). Additionally, it can be
deduced that the data at instant hl will be compelled to undergo
successful transfer. Consequently, the proposed triggering
mechanism serves to sustain the control performance of the
system, even when the attacks are infrequent or minor.

D. Event-Based SMC Dynamics

The novel nonlinear event-based sliding-mode function is
designed as

s(t) = Gvx(t)−

∫ t

0

∑r

i=1
qi (γ (t))GvAivx(s)ds

−

∑m

n=1
µn

∫ t

0

∑r

i=1
qi (γ (t))GvBiv

× Kv[x(t − h(s))+ en,l(s)]ds, (8)
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where Gv is selected to ensure that
∑r

i=1 qi (γ (t))GvBiv is
nonsingular. Then, solving the derivative of (8), we obtain

ṡ(t) =

r∑
i=1

qi (γ (t))[GvBiv(u(t)+ β(t)Hςtχ(x(t), t))

+ GvCivω(t)−

∑m

n=1
µnGv

× BivKvx(tk+1−nh)]. (9)

Setting s(t) = 0 and ṡ(t) = 0, we obtain the equivalent
control input under memory-based DETM as follows:

ueq =

∑m

n=1
µn Kvx(tk+1−nh)− (GvBiv)

−1

× GvCivω(t)− β(t)Hςtχ(x(t), t). (10)

Substituting the equivalent controller (10) into (3), and
combining the variables h(t) and en,l(t), it yields that

ẋ(t) =

∑r

i=1
qi (γ (t)){Aivx(t)+

∑m

n=1
µn BivKv

× (x(t − h(t)+ en,l(t))+ C̄ ivω(t)}, (11)

where C̄ iv = [I − Biv(GvBiv)
−1Gv]Civ .

Remark 2.4: In conventional event-triggered SMC, only the
current state information and the last released information
are taken into account [1], [6], leaving it susceptible to
inaccuracies and inefficiencies in dynamic environments.
These constraints will reduce the system robustness against
external interference due to insufficient scope of the sampled
signals. Consequently, the memory-based SMC has emerged
as a critical improvement that will be effective in reducing
conservatism by utilizing the abundant historical signals. For
m = 1, the memory-based sliding mode function will be
degraded to conventional integral-type sliding mode function.

Taking into account the concurrent impact of FDI attacks
and DoS attacks, the subsequent control law is formulated and
deployed:

ūdos(t) =

{
ū(t) t ∈ Gl,1

0 t ∈ Gl,0

Then, the control systems to counteract DoS attacks under the
event-based SMC protocol can be derived by:

ẋ(t) =


∑r

i=1
qi (γ (t)){Aivx(t)+

∑m

n=1
µn BivKv

×(x(t − h(t))+ en,l(t))+ C̄ ivω(t)}, t ∈ Gl,1,∑r

i=1
qi (γ (t)){Ai (m)x(t)+ Civω(t)}, t ∈ Gl,0,

x(t) = ζ(t), t ∈ [−h̄, 0).

(12)

Definition 2.1 [26]: The system (12) attains global exponential
stability, if there exist constants ϱ > 0 and d > 0
such that ∥x(t)∥ ≤ ϱe−dt∥ζ(0)∥h̄ for t > 0, where
∥ζ(0)∥h̄ = sup−h̄≤~≤0{ζ(~), ζ̇ (~)}.

Definition 2.2 [2]: For given scalar β > 0, the S-MJSs (12)
achieves H∞ performance level β, if the systems is globally
exponentially stable with ω(t) = 0 and ∥z(t)∥2 ≤ β∥ω(t)∥2
holds for any nonzero ω(t) ∈ L2[0,∞).

Lemma 1 ( [16]): Given any real number ρ and square
matrix Y , the inequality ρ(Y + Y T ) ≤ ρ2 R̄ + Y R̄−1Y T holds,
where R̄ is a positive definite matrix.

Lemma 2 ( [29]): For each possible mode ςt = v, if the
linear matrix equalities(LMIs):(

−I 0
ϖ14 −I

)
< 0,

(
E 0
I ϖ2 I

)
> 0, E < ϖ3 I,

√
r(ϖ2 +ϖ3)− 2ω1

√
λmin(BvTBv) < 0

are solvable for (E,ϖ1,ϖ2,ϖ3), then there exists a
nonsingular matrix Gv = (BvT E−1Bv)BvT E−1 such that
Gv

∑r
i=1 qi (υ(t))Biv is nonsingular. Here, 4 = 0.5[(Bv −

B1v), . . . , (Bv − Brv)] is defined, and Bv =
1
r

∑r
i=1 Biv is the

full column rank.
Lemma 3 ( [32]): For h(t) ∈ [0, h̄], if

[
T ∗

Z T

]
≥ 0 for any

constant matrices Z ∈ Rn1×n1 and S ∈ Rn1×n1 , the following
inequality holds

−h̄
∫ t

t−h̄
ẋ

T
(s)T ẋ(s)ds ≤ cT (t)Qc(t),

where

c(t) = [x(t), x(t − h(t)), x(t − h̄)]
T
,

Q =

 −T ∗ ∗

T + Z −2T − sym{Z} ∗

−Z T + Z −T

.
III. MAIN RESULTS

In this section, we present the stability analysis of
system (12) under nonperiodic DoS attacks (4) and memory-
based DETM (5). The proof is divided into two situations:
DoS sleeping and DoS attacking. We provide a set of
sufficient conditions for the global exponential stability of
fuzzy S-MJSs with ω(t) = 0 in Theorem 3.1. Meanwhile,
the disturbance attenuation conditions for H∞ performance
index are presented in Theorem 3.2. Finally, we analyze the
reachability of the sliding surface in Theorem 3.3.

Theorem 3.1: For given scalars h̄ > 0 and σ ∈ [0, 1),
the nonlinear S-MJSs (12) running on the sliding mode
surface s(t) = 0 realizes global exponential stability with
ω(t) = 0, if there exist symmetric positive definite
matrices P f v, Tv,c, Zv,c, Hv,c, �v > 0 such that the
following inequality constraints hold for given positive scalars
φ f , γ f , qmax, lmin and lmax ( f = 1, 2, v ∈ S).

P1v ≤ φ2 P2v, (13)

P2v ≤ e2(γ1+γ2)h P1v, (14)
Q f ≤ φ3− f Q3− f , (15)
R f ≤ φ3− f R3− f , (16)
2γ1lmin − 2(γ1 + γ2)h − 2γ2qmax − ln(γ1γ2)

�a
≥ 0, (17)[

e−2γ f h H f M f

∗ e−2γ f h H f

]
≥ 0, (18)

Case I, if v ∈ 3v,k ,∀l ∈ 3v,uk,3v,k = {kv,1,kv,2, · · · kv,q1},51
f v
6T

f v CT
f 11v

∗ −H f 0
∗ ∗ C12v

 < 0, (19)
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Case II, if v ∈ 3v,uk,∀l ∈ 3v,uk,3v,k = {kv,1,kv,2, · · · kv,q2},

P f v − Pl ≥ 0,52
f v
6T

f v CT
f 21v

∗ −H f 0
∗ ∗ C22v

 < 0, (20)

Case III, if v ∈ 3v,uk,3v,k = ∅, l ̸= k, l ∈ 3l,k,53
f v
6T

f v CT
f 31v

∗ −H f 0
∗ ∗ C32v

 < 0, (21)

where

5 j
1v

=


5 j

111
5112 −M1 5114

∗ 5122 5123 5124
∗ ∗ 5133 0
∗ ∗ ∗ 5144

,
5 j

2v
=

5 j
211
5212 −M1

∗ 5222 5223
∗ ∗ 5233

,
51

f 11
= 2γ f P f v + sym{AT

ivP f v} + R f − e−2γ f h H f

+

∑
c∈3v,k

[
(λvc)

2

4
Tvc + ψvc(P f c − Pl)],

52
f 11

= 2γ f P f v + sym{AT
ivP f v} + R f − e−2γ f h H f

+

∑
c∈3v,k

[
(λvc)

2

4
Zvc + ψvc(P f c − Pl)],

53
f 11

= 2γ f P f v + sym{AT
ivP f v} + R f − e−2γ f h H f

+ av[
(λll)

2

4
Hvv + ψll(P f v − Pl)],

5 f 12 = P f vBivKv + e−2γ f h H f + M f ,

5 f 22 = −2e−2γ f h H f − MT
f − M f + σd1�v,

5 f 23 = e−2γ f h H f + M f ,

5 f 33 = −e−2γ f h R f − e−2γ f h H f ,

5114 = [µ1 P1vBivKv, · · · , µm P1vBivKv],

5124 = [
σd1�v

m
, . . . ,

σd1�v

m︸ ︷︷ ︸
m

],

5144 = [
σd1�v

m2 × Im×m,

+ diag{−µ1�v, . . . ,−µm�v}],

C111v = [[(P f kv,1 − Pl) · · · (Pkv,q1 − Pl)]
T , 0, · · · , 0︸ ︷︷ ︸

m+2

],

C121v = [[(P f kv,1 − Pl) · · · (Pkv,q2 − Pl)]
T , 0, · · · , 0︸ ︷︷ ︸

m+2

],

C131v = [(av(P f v − Pl))
T , 0, · · · , 0︸ ︷︷ ︸

m+2

],

C211v = [[(P f kv,1 − Pl) · · · (Pkv,q1 − Pl)]
T , 0, 0],

C221v = [[(P f kv,1 − Pl) · · · (Pkv,q2 − Pl)]
T , 0, 0],

C231v = [(av(P f v − Pl))
T , 0, 0],

C12v = diag[−Tvkv,1 , · · · ,−Tvkv,q1 ],

C22v = diag[−Zvkv,1 , · · · ,−Zvkv,q2 ],C32v = −avHvv,

61 = h̄[H1 Aiv, H1 BivKv, 0, µ1 H1 BivKv,

· · · , µm H1 BivKv],

62 = h̄[H2 Aiv, 0, 0].

Proof: Choose the semi-Markovian Lyapunov functional

V f (t) = xT (t)P f vx(t)+

∫ t

t−h̄
xT (s)e(�)R f x(s)ds

+ h
∫ 0

−h

∫ t

t+σ
ẋ

T
(s)e(�)H f ẋ(s)dsdσ ,

where e(�) = e2(−1) f γ f (t−s), f ∈ {1, 2}.
According to the definition of the weak infinitesimal operator
as outlined in [33], we obtain

V̇ 1(t) ≤ −2γ1V1(t)+ 2γ1xT (t)P1vx(t)

+ sym{ẋ
T
(t)P1vx(t)} + xT (t)(

∑s

v=1
ψvc P1v)x(t)

+xT (t)R1x(t)+ h̄2 ẋ
T
(s)H1 ẋ(s)− xT (t − h̄)e−2γ1h

× R1x(t − h̄)− h̄
∫ t

t−h̄
ẋ

T
(s)e−2γ1h H1 ẋ(s)ds (22)

Based on the definition of ϑ(t), it follows that d0 < ϑ(t) ≤ d1
for t ∈ [0,∞). From the event-triggered conditions (5), one
can derive the inequality for intervals [tk,lh + hk,l , tk+1,lh +

hk+1,l),

0 ≤ −(

m∑
n=1

µneT
n,l(t)�ve

T
n,l(t)− σd1 x̃

T
(t)�v x̃(t)) (23)

Based on Lemma 2.3, it can be derived that
−h

∫ t
t−h̄ ẋT

(s)e−2γ1h H1 ẋ(s)ds ≤ϕT (t)Qϕ(t), where
ϕ(t) = [x(t), x(t − h(t)), x(t − h̄)]T and Q is defined
as follows−e−2γ1h H1 −e−2γ1h H1 + M1 −M1

∗ −2e−2γ1h H1 − sym{M1} e−2γ1h H1 + M1
∗ ∗ e−2γ1h H1

.
(24)

Combining (22)-(24), it can be concluded that

V̇ 1(t)+ 2γ1V1(t) ≤

r∑
i=1

qi (γ (t))ψ1
T (t)9̄1ivψ1(t), (25)

where 9̄1iv=[51 + 6T
1 H−1

1 61 + 01], ψ1(t) =

[x(t), x(t − h(t)), x(t − h̄), e1,l(t), · · · , em,l(t)]
T , 01 =

diag{
∑s

c=1 ψvc P1c, 0, . . . , 0︸ ︷︷ ︸
m+2

}, and 91iv = 51 + 6T
1 H−1

1 61

with

51 =


511 5112 −M1 5114
∗ 5122 5123 5124
∗ ∗ 5133 0
∗ ∗ ∗ 5144


and 511 = 2γ1 P1v + sym{AT

ivP1v} + R1 − e−2γ1h H1.
When 9̄1iv < 0, it is evident that V̇ 1(t) < −2γ1V1(t). Next,

we divide the corresponding proof into three distinct cases as
follows:
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Case I: v ∈ 3v,k . Define λv,k as λv,k =
∑

v∈3v,k
ψvc(µ).

Given that 3v,uk ̸= ∅, it follows that λv,k < 0. Furthermore,∑s
c=1 ψvc(µ)P1c is equivalent to the following,
s∑

c=1

ψvc(µ)P1c = (
∑

c∈3v,k

+

∑
c∈3v,uk

)ψvc(µ)P1c

=

∑
c∈3v,k

ψvc(µ)P1c − λv,k
∑

c∈3v,uk

ψvc(µ)

−λv,k
P1c.

(26)

Noticing that 0 ≤ ψvc(µ)/ − λv,k ≤ 1 (c ∈ 3v,k) and∑
c∈3v,uk

ψvc(µ)

−λv,k
= 1, for l ∈ 3v,uk , the inequality 9̄1iv < 0 can

be guaranteed by

91iv + diag{

∑
c∈3v,k

ψvc(µ)(P1c − Pl), 0, . . . , 0︸ ︷︷ ︸
m+2

} < 0. (27)

Referring to (27) and Lemma 2.1, for any Tvc > 0, we obtain∑
c∈3v,k

1ψvc(µ)(P1c − Pl)

≤

∑
c∈3v,k

[
(λvc)

2

4
Tvc + (P1c − Pl)(Tvc)

−1(P1c − Pl)
T
].

(28)

Through the integration of equations (26)-(28) and the
utilization of the Schur complement, the inequality
9̄1iv < 0 can be obtained from the condition (19).

Case II: For v ∈ 3v,uk and 3v,k ̸= ∅. We can define
λv,k =

∑
v∈3v,k

ψvc(µ), which implies that λv,k > 0.
Furthermore, we can express

∑s
c=1 ψvc(µ)P1c as follows:

s∑
c=1

ψvc(µ)P1c =

∑
c∈3v,k

ψvc(µ)P1c + ψvv(µ)P1v

− (ψvv(µ)+ λv,k)
∑

c∈3v,uk
c ̸=v

ψvc(µ)P1c

−(ψvv(µ)+ λv,k)
.

(29)

As with Case I, ∀l ∈ 3v,uk(l ̸= v), the guarantee of 9̄1iv <

0 can be achieved through the following set of inequalities

P1v − Pl ≥ 0,

91iv + diag{

∑
c∈3v,k

ψvc(µ)(P1c − Pl), 0, . . . , 0︸ ︷︷ ︸
m+2

} < 0.

(30)

Therefore, it is established that when Zvc > 0,∑
c∈3v,k

ψvc(µ)(P1c − Pl) ≤

∑
c∈3v,k

ψvc(P1c − Pl)

+

∑
c∈3v,k

[
(λvc)

2

4
Zvc + (P1c − Pl)(Zvc)

−1(P1c − Pl)
T
].

(31)

Combining (29)-(31) and employing the Schur complement,
we can deduce that inequality (20) guarantees 9̄1iv < 0.

Case III: v ∈ 3v,uk,3v,k = ∅. Assume that there exists a
value l ̸= v with l ∈ 3l,k . Following the method described in
literature [30], the parameter av can be determined to estimate
ψvv(µ) as avψll(µ). We denote λv,k as ψvv(µ). The expression∑s

l=1 ψvl(µ)Pl can be represented as:
s∑

l=1

ψvl(µ)Pl = ψvv(µ)P1v − λv,k
∑

l∈3v,uk

ψvc(µ)

−λv,k
Pl .

(32)

Notice that
∑

l∈3v,uk
ψvc(µ) = −ψvv(µ) = −λv,k > 0,

∀l ∈ 3v,uk . Therefore, we can conclude that:

9̄1iv = 91iv + diag{avψll(µ)(P1v − Pl), 0, . . . , 0︸ ︷︷ ︸
m+2

},

(33)

for any Hvv > 0,

1ψll(µ)(P1v − Pl) ≤ [
(λll)

2

4
Hvv + (P1v − Pl)

× (Hvv)
−1(P1v − Pl)

T
]. (34)

Through a combination of equations (32)-(34) and the use
of the Schur complement, we can establish that inequality
9̄1iv < 0 if (21) holds. In summary, V̇ 1(t) < −2γ1V1(t) can
be guaranteed.

In the same way, we get

V̇ 2(t)− 2γ2V2(t) ≤

r∑
i=1

qi (γ (t))ψ2
T (t)9̄2ivψ2(t), (35)

where 9̄2iv=[52 + 6T
2 H−1

2 62 + 02],
ψ2(t) = [x(t), x(t − hl(t)), x(t − h̄), ]T , 02 =

diag{
∑s

c=1 ψvc P2c, 0, 0}. It is obvious that

V̇ 2(t)− 2γ2V2(t) < 0, V̇ 1(t) < −2γ1V1(t). (36)

Integrating both sides of equation (36), we obtain

V1(t) ≤ e−2γ1(t−hl )V1(hl), t ∈ [hl , hl + ll),

V2(t) ≤ e2γ1(t−hl−ll )V1(hl + ll), ∈ [hl + ll , hl+1). (37)

Then

V1(hl
+) ≤ φ2V2(hl

−),

V1((hl + ll)
+) ≤ φ1e2(γ1+γ2)h V2((hl + ll)

−). (38)

For t ∈ [hl , hl + ll), we have

V1(t) ≤ e−2γ1(t−hl )φ2V2(hl
−)

≤ e−2γ1(t−hl )+2γ2(hl−hl−1−ll )φ2V2(hl−1 + ll−1)

≤ ec1(t)V1(0), (39)

where c1(t) = (b +
t
�a
)[2((γ1 + γ2)h) + γ2qmax − γ1lmin +

ln(γ1γ2)]. Then, denote d = [γ1lmin − ((γ1 + γ2)h)− γ2qmax −

0.5 ln(γ1γ2)]/�a , we get

V1(t) ≤ em1 e−dt V1(0),

where m1 = b[2((γ1 + γ2)h)+ γ2qmax − γ1lmin + ln(γ1γ2)].
In the same way, we have

V2(t) ≤ em2 e−dt V1(0),
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where m2 = (b+1)[2((γ1+γ2)h)+γ2qmax−γ1lmin+ln(γ1γ2)].

Denoting

M = max{em1 ,
em2

φ2
},

we have

V (t) ≤ Me−dt V1(0).

Give the definition of V (t) as

V (t) ≥ c1∥x(t)∥2, V1(0) ≤ c2∥ζ(t)∥2
h,

where c1 = min{λmin(P f v)}, c2 = max{λmax(P f v) +

hλmax(R1)+
h2

2 λmax(H1)}.

Thus, one gets

∥x(t)∥ ≤

√
Mc2

c1
e−dt

∥ζ(0)∥h̄ .

To summarize, it can be concluded that the system
described by (12) exhibits global exponential stability with a
convergence rate of d under the condition that ω(t) = 0 based
on Definition 2.1.

Theorem 3.2: For given scalars h̄ > 0 and σ ∈ [0, 1), the
resultant nonlinear S-MJSs (12) running on the sliding mode
surface s(t) = 0 realizes global exponential stability with an
H∞ disturbance attenuation level ῑ =

√
(ρ2/ρ2)β, where ρ1 =

min{(1/φ2), 1}, ρ2 = max{(1/φ2)e2γ2lmax , e2γ2qmax}, if there
exist symmetric positive definite matrices P f v, Tv,c, Zv,c, Hv,c,
�v > 0 such that the following inequality constraints hold
for the provided positive scalars φ f , γ f , qmax, lmin, lmax with
(13)-(18) ( f = 1, 2, v ∈ S).

Case I, if v ∈ 3v,k ,∀l ∈ 3v,uk,3v,k = {kv,1,kv,2, · · · kv,q1},5̃ f v
1
6̃T

f v C̃T
f 11v

∗ −H f 0
∗ ∗ C12v

 < 0, (40)

Case II, if v ∈ 3v,uk,∀l ∈ 3v,uk,3v,k = {kv,1,kv,2, · · · kv,q2},

P f v − Pl ≥ 0,5̃ f v
2
6̃T

f v C̃T
f 21v

∗ −H f 0
∗ ∗ C22v

 < 0, (41)

Case III, if v ∈ 3v,uk,3v,k = ∅, l ̸= k, l ∈ 3l,k,5̃ f v
3
6̃T

f v C̃T
f 31v

∗ −H f 0
∗ ∗ C32v

 < 0, (42)

where

5̃2
j
=


5̃211

j
5212 −M1 5̃214

∗ 5222 5223 0
∗ ∗ 5233 0
∗ ∗ ∗ 5̃244

,

5̃1
j
=


5̃111

j
5112 −M1 5̃114 5̃115

∗ 5122 5123 0 5̃125
∗ ∗ 5133 0 0
∗ ∗ ∗ 5̃144 0
∗ ∗ ∗ ∗ 5̃155

,

5̃1
f 11v

= 2γ f P f v + sym{AT
ivP f v} + R f − e−2γ f h H f

+ DT
ivDiv +

∑
c∈3v,k

[
(λvc)

2

4
Tvc + ψvc(P f c − Pl)],

5̃2
f 11v

= 2γ f P f v + sym{AT
ivP f v} + R f − e−2γ f h H f

+ DT
ivDiv +

∑
c∈3v,k

[
(λvc)

2

4
Zvc + ψvc(P f c − Pl)],

5̃3
f 11v

= 2γ f P f v + sym{AT
ivP f v} + R f − e−2γ f h H f

+ DT
ivDiv + av[

(λll)
2

4
Hvv + ψll(P f v − Pl)],

5̃114 = DT
ivEiv + P f vC̄ i (v),

5̃214 = DT
ivEiv + P f vCi (v),

5̃ f 44 = −β2 I + ET
ivEiv,

5̃115 = [µ1 P f vBivKv, · · · , µm P1vBivKv],

5̃125 = [
σd1�v

m
, . . . ,

σd1�v

m︸ ︷︷ ︸
m

],

5̃155 = [
σd1�v

m2 × Im×m

+ diag{−µ1�v, . . . ,−µm�v}],

C̃111v = [[(P f kv,1 − Pl) · · · (P f kv,q1 − Pl)]
T , 0, · · · , 0︸ ︷︷ ︸

m+3

],

C̃121v = [[(P f kv,1 − Pl) · · · (P f kv,q2 − Pl)]
T , 0, · · · , 0︸ ︷︷ ︸

m+3

],

C̃131v = [(av(P f v − Pl))
T , 0, · · · , 0︸ ︷︷ ︸

m+3

],

C̃211v = [[(P f kv,1 − Pl) · · · (P f kv,q1 − Pl)]
T , 0, 0, 0],

C̃221v = [[(P f kv,1 − Pl) · · · (P f kv,q2 − Pl)]
T , 0, 0, 0],

C̃231v = [(av(P f v − Pl))
T , 0, 0, 0]

6̃1 = h̄[H1 Aiv, H1 BivKv, 0, H1C̄ i (v),

µ1 H1 BivKv, · · · , µm H1 BivKv],

6̃2 = h̄[H2 Aiv, 0, 0, H2Civ].

Proof: Similar to the proof presented in Theorem 3.1,
we can deduce the following inequalities if ω(t) ̸= 0.

V̇ 1(t)+ 2γ1V1(t)+ zT (t)z(t)− β2ωT (t)ω(t)

≤

r∑
i=1

qi (γ (t))ψ̃1
T
(t)[5̃1 + 6̃T

1 H−1
1 6̃1 + 0̃1]ψ̃1(t),

V̇ 2(t)− 2γ2V2(t)+ zT (t)z(t)− β2ωT (t)ω(t)

≤

r∑
i=1

qi (γ (t))ψ̃2
T
(t)[5̃2 + 6̃T

2 H−1
2 6̃2 + 0̃2]ψ̃2(t),

where 0̃1 = diag{
∑s

c=1 ψvc P1c, 0, . . . , 0},
0̃2 = diag{

∑s
c=1 ψvc P2c, 0, 0, 0}, ψ̃1(t) =

[x(t), x(t − h(t)), x(t − h̄), ω(t), e1,l(t), · · · , em,l(t)]
T ,

ψ̃2(t) = [x(t), x(t − hl(t)), x(t − h̄), ω(t)] and 5̃1 and 5̃2
have been designed in a manner that is similar to Theorem 3.1.

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on January 14,2025 at 02:30:49 UTC from IEEE Xplore.  Restrictions apply. 



210 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

On basis of the conditions (40)-(42) outlined in
Theorem 3.2, it follows that

V̇ 1(t)+ 2γ1V1(t)+ zT (t)z(t)− β2ωT (t)ω(t) < 0, t ∈ Gl,1,

V̇ 2(t)− 2γ2V2(t)+ zT (t)z(t)− β2ωT (t)ω(t) < 0, t ∈ Gl,0.

(43)

For t ∈ [0, hl+1), define v1l(t) = (1/φ2)e−2γ1(hl−t), v2l(t) =

e2γ2(hl+1−t), ϑk = 2[(γ1 + γ2)h + γ2(hk+1 − hk − lk)].
l∑

k=0

∫ hk+lk

hk

[v1l(t)(V̇ 1(t)+ 2γ1V1(t))dt

+

∫ hk+1

hk+lk

v2l(t)(V̇ 2(t)− 2γ2V2(t))dt]

≥

l∑
k=0

[
1
φ2

e2γ1lk V1(hk + lk)−
1
φ2

V1(hk)

+
1
φ2

V1(hk+1)− φ1eϑk V1(hk + lk)]

=
1
φ2

[V1(lk+1)− V1(0)] +

l∑
k=0

[
1
φ2

e2γ1lk − φ1eϑk ]V1(hk + lk).

We can obtain 1
φ2

e2γ1lk − φ1eϑk ≥ 0 from (17) and V1(0) =

0, V1(t) ≥ 0. It can be concluded that
l∑

k=0

∫ hk+lk

hk

[v1l(t)(V1(t)+ 2γ1V1(t))dt

+

∫ hk+1

hk+lk

v2l(t)(V2(t)− 2γ2V2(t))dt] > 0. (44)

One has
l∑

k=0

∫ hk+lk

hk

[v1l(t)zT (t)z(t)dt +

∫ hk+1

hk+lk

v2l(t)zT (t)z(t)dt]

≤

l∑
k=0

∫ hk+lk

hk

[v1l(t)β2ωT (t)ω(t)dt

+

∫ hk+1

hk+lk

v2l(t)β2ωT (t)ω(t)dt], (45)

which means that
l∑

k=0

∫ hk+1

hk

ρ1zT (t)z(t)dt

≤

l∑
k=0

∫ hk+lk

hk

[v1l(t)zT (t)z(t)dt +

∫ hk+1

hk+lk

v2l(t)zT (t)z(t)dt]

≤

l∑
k=0

∫ hk+1

hk

ρ2β
2ωT (t)ω(t)dt, (46)

where ρ1 = min{(1/φ2), 1}, ρ2 = max{(1/φ2)e2γ2lmax , e2γ2qmax}.
We have∫ hl+1

0
zT (t)z(t)dt ≤

ρ2

ρ1
β2

∫ hl+1

0
ωT (t)ω(t)dt.

Then, letting l → ∞(hl+1 → ∞), we get∫ hl+1

0
zT (t)z(t)dt ≤ β̄

2
∫ hl+1

0
ωT (t)ω(t)dt. (47)

Based on Definition 2.2, it follows that ∥z(t)∥2 ≤ β̄∥ω(t)∥2

with β̄ = β
√
ρ2
ρ1

for ω(t) ∈ l2[0,∞). This completes
the proof.

Remark 3.1: Regarding the above the stability analysis of
systems with time-varying transfer probabilities, the technical
approach introduced in this paper is superior to those
proposed in literature [33]. We focus on completely unknown
situations, specifically Case III of Theorem 3.1, and adopt
the procedure explained in [30] to estimate transition rates
by utilizing other diagonal components of the transition
rate matrix. Subsequently, we suggest an optimal algorithm
that can be executed using the MATLAB toolbox, outlined
as follows:

max av > 0, s.t,LMIs (13)− (18), (40)− (42)
with feasible P f v, Tv,c, Zv,c and Hv,c. (48)

Theorem 3.3: The SMC law is formulated to ascertain the
attainability of the designed integral sliding-mode surface,
which ensures the state trajectories can converge to the sliding
mode surface in finite time. As a consequence, the achievement
of finite-time attractiveness can be attained by

u(t) =

∑m

n=1
µn Kvx(tk+1−nh)− ρ̄h̄vξ(v)(x(t), t)

− [ϖ
∥∥sT (t)

∥∥∥GvCiv∥ + ρ⋆][Gv B̄(v)]
−1 s(t)

∥s(t)∥
,

(49)

Proof: For Lyapunov function

V (t) =
1
2

sT (t)s(t),

we have

V̇ (t) = sT (t)ṡ(t) = sT (t)
r∑

i=1

qi (γ (t))[GvBiv(u(t)

+ β(t)Hςtχ(x(t), t))+ GvCivω(t)

−

∑m

n=1
GvBivµn Kvx(tk+1−nh)]

≤ ϖ
∥∥sT (t)

∥∥∥GvCiv∥ − sT (t)Gv B̄(v)

×

∑m

n=1
µn Kvx(tk+1−nh)+ sT (t)Gv B̄(v)(u(t)

+ ρ̄h̄vξ(v)(x(t), t)), (50)

where
∑r

i=1 qi (γ (t))GvBiv = Gv B̄v . Based on Lemma 2.2,
there exists Gv such that the nonsingularity of GvB̄v can be
attained. Substituting (49) into (50), we have

V̇ (t) ≤ −ρ⋆∥s(t)∥ = −
√

2ρ⋆V
1
2 (t). (51)

Apply Dynkin’s formula√
V (t⋆)−

√
V (0) ≤ −

√
2ρ⋆

2
t⋆, (52)

Furthermore, there exists

t⋆ ≤

√
2V (0)
ρ⋆

. (53)

By analyzing (53), it can be deduced that
||(s(t))|| = 0 holds for t ≥ t⋆, which implies the guaranteed
satisfaction of s(t) = 0. Thus, the proof is completed.
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Fig. 3. State response of the system without control.

Remark 3.2: Chattering effect is a widely recognized
phenomenon which arises from the utilization of the symbolic
function sgn(s(t)), as noted in [34]. This phenomenon has
the potential to undermine system performance and impose
additional strain on the actuator. To effectively reduce the
chattering phenomenon, we propose substituting sgn(s(t))
with s(t)/(|s(t)| + ι), where ι is a small constant. In the
following simulation example, we demonstrate the efficacy of
our proposed design method.

IV. SIMULATION EXAMPLE

To establish the validity and practicality of the proposed
control scheme, we will present a simulation example of the
tunnel diode circuit in this section. Following the approach
taken in literature [35], the dynamic equation governing the
system is expressed as follows:

ẋ1(t) = −0.1x1(t)+
αi

C0
x3

1(t)+ 10x2(t)

L0 ẋ2(t) = −x1(t)− R0x2(t)+ 0.1ω(t)
z(t) = J0x(t)+ 0.1ω(t)

The values of the parameters C0, L0, R0 and J0 are provided
in [35]. We assume that the parameters αi are selected as
α1 = 0.01, α2 = 0.02, and α3 = 0.03. The transitions
between modes are following a semi-Markov process. The
corresponding transition probability matrix is presented as−1.5 +1ψ11(µ) ? ?

? ? 2.5 +1ψ23(µ)

? ? ?

.
where ? represents the completely unknown transition
probability.

Assume that |x1(t)| ≤ 3, x(t) = [xT
1 (t) xT

2 (t)]
T .

Consequence, the fuzzy membership functions are as follows:

q1(x1(t)) =


(x1(t)+ 3)/3 −3 ≤ x1(t) ≤ 0
−(x1(t)− 3)/3 0 ≤ x1(t) ≤ 3
0 others

q2(x1(t)) = 1 − q1(x1(t))

Then, the parameters of the tunnel diode circuit system can
be formulated as:

A1(1) =

[
−0.1 10
−1 −10

]
,A1(2) =

[
−4.6 10
−1 −10

]
,

Fig. 4. State response of the system under SMC.

Fig. 5. The mode of semi-Markov jumping systems.

Fig. 6. The instants of network attack.

Fig. 7. The auxiliary function trajectory of DMETM.

A1(3) =

[
−9.1 10
−1 −10

]
,A2(1) =

[
−0.1 10
−1 −10

]
,

A2(2) =

[
−4.6 10
−1 −10

]
,A2(3) =

[
−13.6 10
−1 −10

]
,

Bi (1) =

[
0
1

]
, Bi (2) =

[
0

0.75

]
, Bi (3) =

[
0

0.8

]
,

K(v) =
[
1.2 −0.9

]
, Div = [1 0], Eiv = 0.1,

(i = 1, 2, v = 1, 2, 3).

The sample time is h = 0.02, and disturbance is supposed
to be:

ω(t) =


2 0 ≤ t < 2
1 2 ≤ t < 4
0 other

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on January 14,2025 at 02:30:49 UTC from IEEE Xplore.  Restrictions apply. 



212 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

Fig. 8. Control input u(t).

Fig. 9. Sliding surface function s(t).

Fig. 10. Release instants and intervals for DETM.

Fig. 11. Release instants and intervals for METM.

Fig. 12. Release instants and intervals for DMETM.

The parameters about FDI attacks are given as:
ρ̄ = 0.35, h̄(1) = e−0.5t cos(t), h̄(2) = e−0.5t sin(t),
h̄(3) = e−0.5t , ξ(1)(x(t), t) = 2

√
x2

1
(t)+ x2

2(t)+ 0.1 cos(t),

ξ(2)(x(t), t) = 2
√

x2
1
(t)+ x2

2(t)+ 0.1 sin(t), ξ(3)(x(t), t) =

2
√

x2
1
(t)+ x2

2(t)+ 0.1.
Furthermore, the remaining parameters of the examined

system are as follows: h = 0.02, γ1 = 0.02, γ2 = 0.5,
µ1 = 0.3, µ2 = 0.7, φ1 = φ2 = 1.04, σ = 0.5, b = 0.5,
G(1) = [0 1], d0 = 0.2, d1 = 0.8, h(x(t), t) = 0.4 cos x(t),
1ψkl(µ) ≤ |0.2 ∗ ψkl |, h̄ = 0.03, λ1 = 0.9, λ2 = 0.8,
G(1) = [0 1], G(2) = [0 1.33], G(3) = [0 1.25], ρ⋆ = 0.01.
ι in s(t)/(|s(t)| + ι) is 0.001. Notice that ψ3l(µ)(l = 1, 2, 3)
are completely inaccessible. To obtain the feasible solutions,
we solve the optimization algorithm (48) using the Matlab
tool-box to get the following solutions:

a3 = 11.1078,

�1 =

(
22.2903 −1.5190
−1.5190 22.5978

)
, �2 =

(
21.9990 −0.3615
−0.3615 22.8333

)
,

�3 =

(
21.3431 −0.7911
−0.7911 46.6073

)
, T11 =

(
9.5158 0.0721
0.0721 9.4712

)
,

Z23 =

(
9.4478 0.0030
0.0030 9.3909

)
, H33 =

(
9.5303 0.0930
0.0930 9.3715

)
.

We initialize the system with the state vector
x0 = [π/2 -1]

T . Additionally, as portrayed in Fig. 6,
the nonperiodic DoS attacks (4) intervals and the
FDI attacks are randomly initiated, whereby Gl,0=
{[0.48, 0.76), [1.42, 1.62), [1.82,1.94), [2.52,2.62), [3.42, 3.72),
[5.32,5.44),[6.04,6.22),[7.12,7.24),[7.82,7.91)}.

Furthermore, we present the simulation results in
Figs. 3-12. Fig. 3 and Fig. 4 depict the state response
of S-MJSs with free of control and SMC, respectively.
In Fig. 5, the semi-Markovian switching states are illustrated.
Additionally, Figs. 7-9 demonstrate the curve of the auxiliary
variable function in dynamic METM, the control input, and
the sliding surface function s(t), respectively. Figs. 3-9 reveal
that the performance of the system is significantly influenced
by both DoS attacks and FDI attacks. It can be obtained
the control strategy presented in this paper demonstrates
remarkable robustness, which enables it to effectively address
the impact of cyber attacks and ensure the stability of the
system. Moreover, the trajectories of system states and
control input u(t) illustrate the effectiveness of the control
strategy. Figs. 10-12 display the data-releasing instants and
intervals for DETM, METM and DMETM, respectively.
Simple statistics shows that the triggering times of DMETM
are inferior to METM and DETM, which is consistent with
the original idea of design, and also shows the effectiveness
of the design method.

V. CONCLUSION

The paper has explored the event-based secure sliding-
mode control for S-MJSs subject to multiple cyber attacks
and uncertain TRs. To enhance transmission efficiency and
minimize network bandwidth consumption, a new DMETM
is implemented. Additionally, the influence of DMETM
and multiple cyber attacks are discussed. Next, a memory-
based sliding mode surface is designed to handle restrictive
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conditions, and a new switched fuzzy dynamical system is
modeled. Furthermore, sufficient conditions are derived to
ensure the attainment of mean-square exponential stability
for S-MJSs with an H∞ performance index in the presence
of generally uncertain and unknown TRs. In addition,
a based-memory SMC law is developed to achieve finite-
time reachability of the designed sliding surface. Finally,
simulation results are presented to validate the theoretical
findings by employing a tunnel diode circuit model. The
proposed SMC strategy can be used in other practical systems
such as robotic manipulators [6]. Moreover, the observer-
based SMC for S-MJSs with a deterministic switching
signal subject to hybrid cyber-attacks is significant in
future works.
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