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Secure Recursive State Estimation for Singularly
Perturbed Discrete Sequential Systems Under

Round-Robin-Like Multichannel Access Policy
Yan Li , Lishuang Wei, Jinliang Liu , Xiangpeng Xie , Senior Member, IEEE, and Engang Tian

Abstract— This paper investigates the secure state estima-
tion problem for time-varying singularly perturbed discrete
sequential systems (SPDSSs) under bandwidth-constrained
and multichannel-enabled wireless communication environment.
Firstly, to avoid the potential data collision as well as fully
utilize the available wireless channels, a round-robin-like mul-
tichannel access policy (RRL-MAP) is presented for scheduling
the transmission of measurement signals. The considered SPDSS
is further assumed to be compromised by deception attack,
and then the measurement outputs are updated based on the
RRL-MAP and the attack driven by a Bernoulli process. In light
of the constructed measurement model, distributed recursive
state estimators are designed with the proposing of an algorithm
that determines the estimators’ gains. Finally, the efficiency of the
developed state estimation method for the envisioned SPDSS is
verified by both theoretical analysis and simulation experiments.

Note to Practitioners—State estimation for SPDSSs is critical
given the widespread application of the systems, however it is
challenged by limited communication resource and stochastic
cyber attacks. Traditional RR protocol is viewed as a desirable
method for mitigating the limitation of network bandwidth, but
which becomes inefficient under practical multichannel commu-
nication scenario. In addition, deception attack is acknowledged
as a kind of hardly detected cyber attacks, and will seriously
threaten the data integrity. In view of this, this paper presents the
RRL-MAP to guarantee efficient data transmission by appropri-
ately scheduling the available communication channels, and uses
Bernoulli process to properly describe deception attack. Then,
by further considering the structural characteristics of SPDSSs,
distributed recursive state estimators are designed to achieve
desired system performance. The effectiveness of the estimators
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is also comprehensively evaluated, which validates the practical
applicability of the proposed state estimation method.

Index Terms— Singularly perturbed discrete sequential sys-
tems (SPDSSs), recursive state estimation, round-robin-like
multichannel access policy (RRL-MAP), deception attack.

I. INTRODUCTION

DISCRETE sequential systems (DSSs) are generally com-
posed by a group of subsystems which are orderly

connected based on certain topologies depicted by directed
graphs. Given the structural characteristic of DSSs, many
practical systems, such as multi-state series systems and
biological systems, can be effectively modeled by DSSs,
and thus great attentions have been paid on DSSs [1], [2].
In engineering applications, it is important to obtain accurate
states of DSSs which represent the dynamic information of
the systems. However, the exact state acquiring can hardly
be achieved due to various internal and external limitations,
which raises the problem of state estimation based on available
measurements [3], [4], [5]. In the existed literature, lots of
strategies on state estimation have been reported. For example,
H∞ state estimation issue was addressed for coupled stochastic
complex networks under periodical communication protocol
in [6]; considering the time-varying characteristic of net-
work topology, a quantization-based recursive state estimation
scheme was proposed for discrete stochastic complex networks
with uncertain inner coupling and error-variance constraints
in [7]; focusing on time-varying DSSs, distributed Kalman
filter and recursive filter under different constraints were
developed in [1] and [2], respectively.

Despite the significant contributions of the aforementioned
works to the state estimation problem, but all of them are based
on one-time-scale systems, and thus not suitable for many
practical systems presenting two-time-scale feature. Two-time-
scale systems mean that the systems are governed by both fast
and slow dynamics, and customarily are named as singularly
perturbed systems (SPSs) [8]. For formally depicting SPSs,
a singular perturbation parameter (SPP) with small positive
value is generally introduced to differentiate the two kinds
of dynamics [9], [10]. Up to now, many researches on state
estimation over SPSs have been conducted. For instance, the
authors in [11] proposed an integrated approach to handle
both the exponential synchronization and state estimation
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problems for nonlinear singularly perturbed complex net-
works; an asynchronous proportional-integral observer-based
state estimation scheme was designed for singularly perturbed
complex networks subject to cyber attacks in [12]; state
estimation problem for a class of discrete-time SPSs with
distributed time-delays was investigated in [13]. Nevertheless,
to the best of our knowledge, state estimation over singularly
perturbed DSSs, referred to as SPDSSs, has not been explored
yet. Actually, given the two-time-scale system dynamics and
orderly functional relationship among subsystems, additional
difficulties will be encountered in state estimation for SPDSSs,
which is the primary motivation of this work.

Besides the above mentioned structural challenges, the
potential data collision incurred by limited communication
resource also can not be ignored while conducting state estima-
tion. As we known, multiple sensors are now commonly used
to acquire multidimensional information of a specific subsys-
tem [14], and then data scheduling policy is needed to realize
conflict-free network access under bandwidth-constrained
wireless communication environment [15]. The typical data
scheduling protocols include try-once-discard (TOD) proto-
col [16], [17], stochastic communication (SC) protocol [8],
[18] and round-robin (RR) protocol [19]. From the perspec-
tives of fairness and cost-efficiency, RR protocol is more
favorable, and thus many RR-based state estimation methods
have been proposed by scholars. To mention a few, the
RR-based state estimation problem was studied over nonlinear
dynamical networks with time-varying delays and disturbance
in [20]; taking the effect of SPP into account, a H∞ state
estimation method for discrete-time complex networks with
RR protocol was proposed in [21]; the authors in [22] designed
a recursive state estimator for multirate and multisensor sys-
tems with time-delays based on RR protocol. We notice that
all the discussed works assume that only one communication
channel is available at each time instant and then RR protocol
is employed to avoid potential data collision. However, for
IEEE 802.11 based wireless sensor networks (WSNs), multiple
nonoverlapping channels are generally enabled [23], [24],
under which traditional RR protocol becomes inefficient in
channel utilization. Therefore, this paper will present a RR-like
multichannel access policy (referred to as RRL-MAP) so
as to effectively support state estimation for SPDSSs under
multichannel communication scenario.

Following the RRL-MAP, the measurement signals gener-
ated from sensors can be released into multiple nonoverlapping
wireless channels without data collision, but the signals may
not be safely received for state estimation due to the prevalence
of cyber attacks [25]. It is acknowledged that the common
types of cyber attacks are denial of service (DoS) attack,
replay attack and deception attack [26], [27]. Comparing
with the first two types, deception attack is more difficult
to be detected since that destination terminals can always
receive the real-time updating signals but actually the original
data has been maliciously modified. As such, it is critical
to take deception attack into consideration while studying
state estimation issue, and some efforts have been put into
practice. For example, a multipliers-based distributed state
estimation method for smart grid subject to deception attack

was developed in [28]; considering the influence of both
deception attack and DoS attack, an event-based recursive
state estimation scheme over stochastic complex dynamical
networks was presented in [29]. But so far few works explore
the deception attack tolerant state estimation problem over
SPDSSs, not to mention under the envisioned RRL-MAP.

In this paper, under the scenario that the limited wireless
bandwidth is divided into multiple nonoverlapping channels
and the transmission of measurement signals is affected by
deception attack, we will design distributed recursive state
estimators for SPDSSs to assure systems’ performance. The
major contributions of the study can be highlighted as follows.

• For supporting state estimation over SPDSSs under
bandwidth-limited and multichannel-enabled wireless
communication environment, the RRL-MAP is presented
to realize non-collision and efficient transmission of
measurement signals via appropriately scheduling the
nonoverlapping wireless channels.

• Based on the RRL-MAP and taking stochastic deception
attack into consideration, recursive state estimators are
designed after establishing a new measurement model.

• Under the developed estimators, an upper-bound for each
estimation error covariance is derived, then an algorithm
for determining the estimators’ gains is proposed, which
is followed by the effectiveness analysis of the algorithm.

The rest of the paper is organized as follows. In Section II,
based on the introduction of the considered SPDSS, the envi-
sioned RRL-MAP and deception attack, the studied problem is
formulated as designing distributed recursive state estimators.
The algorithm for deriving appropriate estimators’ parameters
is designed and evaluated in Section III. A simulation example
is conducted in Section IV to further illustrate the performance
of the presented state estimation method. The conclusion of
the paper is given in Section V.

II. PROBLEM STATEMENT

In this section, we firstly demonstrate the structure char-
acteristic of DSSs, and subsequently introduce the model of
the considered SPDSS. Then, the envisioned RRL-MAP and
deception attack are formally described, and the measurement
signals are updated accordingly. Finally, distributed recursive
estimators with desired performance are designed based on the
system model and updated measurements.

A. System Model

As we mentioned before, the subsystems in DSSs are
orderly connected and such relationships can be depicted by
directed graphs. To specifically express the structure feature
of DSSs, an example of a DSS consisting of 9 subsystems is
presented in Fig. 1, where the i-th subsystem is denoted by
Si (1 ≤ i ≤ 9). In the figure, the arc < Si , S j > means that
the local state of S j is directly affected by that of Si , it can
thus be found that the state of each S j can only be influenced
by that of Si (i ≤ j) and can not be affected by that of Sl

(l > j), which is the sequential characteristic of DSSs.
On the basis of the above illustration and introducing the

concept of SPP, a SPDSS composed by N subsystems is

Authorized licensed use limited to: Nanjing University of Information Science and Technology. Downloaded on February 17,2025 at 05:26:04 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: SECURE RECURSIVE STATE ESTIMATION FOR SPDSSs UNDER RRL-MAP 3721

Fig. 1. An example of the structure of DSSs.

considered in this paper. Each subsystem Si (1 ≤ i ≤ N )
is formulated as follows:

xi (k + 1) = Ai (k)Hϵxi (k)+ Ei (k)ωi (k)
+6 j∈Ki Bi, j (k)Hϵx j (k),

ỹi (k) = Ci (k)Hϵxi (k)+ vi (k),
(1)

where xi (k) = col{xs,i (k), x f,i (k)} ∈ Rnx is the state vector of
Si , furthermore, xs,i (k) ∈ Rns and x f,i (k) ∈ Rn f (ns + n f =

nx ) are the system slow and fast state vectors, respectively;
Hϵ = diag{Ins , ϵ In f }, and the constant ϵ (0 < ϵ ≪ 1) is the
SPP; Ki denotes the set of subscripts of the other subsystems
whose states directly affect the state of Si ; ỹi (k) ∈ Rny is
the measurement output of Si , and Ai (k), Bi, j (k),Ci (k), Ei (k)
are known time-varying matrices with appropriate dimensions;
the process noise ωi (k) and the measurement noise vi (k) are
assumed to be zero-mean Gaussian white noises with the
following properties:

E{ωi (k)} = E{vi (k)} = E{ωi (k)vT
i (k)} = 0,

E{ωi (k)ωT
i (k)} = Wi , E{vi (k)vT

i (k)} = Vi ,

where Wi and Vi are positive numbers. Based on the above
illustration, it can be found that the major physical meanings of
the SPDSS can be well demonstrated by Eq. (1). On one hand,
the sequential characteristic of the system can be depicted by
Ki , i.e., j ∈ Ki only if S j is in front of Si and the local state
of Si is directly affected by that of S j ; on the other hand, the
two-time-scale feature of the system is reflected by Hϵ which
is defined based on the SPP ϵ.

Considering that a distributed state estimation method will
be proposed in this paper, i.e., a dedicated state estimator will
be designed for each subsystem, without loss of generality, the
following description and analysis will be focused on Si .

B. The Envisioned RRL-MAP and Deception Attack

For Si , it is supposed that m nonoverlapping channels are
available in the WSN and ny sensors are used for data sensing,
so it has ỹi (k) = col{ỹi,1(k), ỹi,2(k), . . . , ỹi,ny (k)}, where
ỹi,r (k) represents the r -th component of ỹi (k) (1 ≤ r ≤ ny).
Given the limitation of wireless bandwidth, we further assume
that m < ny and then employ the RRL-MAP to arrange the
specific data transmission. Let ε(k) be the set of indexes of
the sensors that are allowed to access the multichannel-enabled
WSN at the time instant k (k = 1, 2, . . .), then the basis idea
of the RRL-MAP can be depicted by the following equation.

ε(k) =

{
mod (m ∗ (k − 1)+ s, ny)+ 1|s = 0, 1, . . . ,m − 1

}
,

(2)

where mod (a, b) represents the remainder of a divided by
b. According to Eq. (2), we have ε(k) ⊆ {1, 2, ..., ny}

and |ε(k)| = m, moreover, it can be found that ε(k) is a
periodic sequence with the cycle of U time instants, where
U = lcm(m, ny)/m and lcm(a, b) denotes the least common
multiple of a and b.

Remark 1: The RRL-MAP is based on traditional RR pro-
tocol, so it is essentially a periodic data scheduling policy
but works for multichannel communication scenario. Under
the RRL-MAP, all sensors will obtain equal opportunities
for data transmission within each U time instants, and the
wireless channels can be fully utilized without data collision
by assigning each authorized sensor with a dedicated channel
at each time instant.

Following the RRL-MAP, the updating on ỹi,r (k) can be
described as:

ȳi,r (k) =

{
ỹi,r (k), r ∈ ε(k),

0, r /∈ ε(k).
(3)

We further define the following matrix:

8o(k) =

∑
r∈ε(k)

φr , (4)

where φr = diag{δ(r −1)I, δ(r −2)I, . . . , δ(r −ny)I }, δ(·) ∈

{0, 1} is a Kronecker delta function, and o(k) = mod ((k −

1),U )+ 1, then it can be gotten that:

ȳi (k) = 8o(k)ỹi (k), (5)

where ȳi (k) = col{ȳi,1(k), ȳi,2(k), . . . , ȳi,ny (k)}.
Remark 2: In this study, zero-input strategy is adopted

for measurements updating of sensors that are not permitted
to access the WSN as shown in Eq. (3). Comparing with
zero-order holder (ZOH) method which uses the stored most
recent signals for data updating, zero-input strategy is more
cost-efficient and mathematically convenient [30]. It is also
worthy noting that zero-input strategy will not necessarily lead
to a worse system performance than ZOH method which has
been validated in [31] and [32].

For the considered deception attack, a Bernoulli variable
ψi (k) with the following probability:

Pr{ψi (k) = 1} = ψ̌ i (Pr{ψi (k) = 0} = 1 − ψ̌ i ),

is adopted to depict the stochastic property of the attack,
where ψ̌ i is a given parameter, then the attack-influenced
measurement signal can be represented as:

yi (k) = ψi (k)ȳi (k)+ (1 − ψi (k))8o(k)ξi (k), (6)

in which ξi (k) is the attack function satisfying ||ξi (k)||2 ≤ ξ ∗

i
[33], yi (k) is the signal that really received by the estimator
of Si .

Remark 3: As revealed by Eq. (6), the deception attack is
launched intermittently, i.e., when ψi (k) = 0, the original data
will be falsified by the attacker, otherwise the measurement
signal will normally be transmitted to the estimator, which
is consistent with the actual situation that the attacker cannot
always obtain system information successfully. Moreover, ψ̌ i

is an empirical value which can be determined by long-term
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monitoring and evaluation [2]. The specific form of the attack
function ξi (k) can be diverse as long as the energy upper-
bound ξ ∗

i is maintained, actually the upper-bound is set
for enhancing the concealment of the attack, and it can be
evaluated by the defender via statistical experiments [34].

C. Recursive State Estimator

Based on the above description on the RRL-MAP and
deception attack, a time-varying recursive estimator for Si is
constructed within the following two steps.
(1) Prediction:

x̂i (k|k − 1) = Ai (k − 1)Hϵ x̂i (k − 1|k − 1)

+6 j∈Ki Bi, j (k − 1)Hϵ x̂ j (k − 1|k − 1),
(7)

where x̂i (k|k − 1) represents the one-step prediction.
(2) Updating:

x̂i (k|k) = x̂i (k|k − 1)+ L i (k)

×

(
yi (k)−8o(k)Ci (k)Hϵ x̂i (k|k − 1)

)
, (8)

where x̂i (k|k) is the estimation for xi (k), and L i (k) is the
estimator gain matrix which will be designed shortly.

According to the above definition, the one-step prediction
error can be represented as:

ei (k|k − 1) = xi (k)− x̂i (k|k − 1), (9)

and the state estimation error can be computed as:

ei (k|k) = xi (k)− x̂i (k|k). (10)

By substituting Eqs. (1) and (7) into Eq. (9), it can be obtained
that:

ei (k|k − 1) = Ai (k − 1)Hϵei (k − 1|k − 1)
+6 j∈Ki Bi, j (k − 1)Hϵe j (k − 1|k − 1)
+ Ei (k − 1)ωi (k − 1). (11)

Similarly, by recurring to Eqs. (1) and (8), Eq. (10) can be
rewritten as:

ei (k|k) =

(
I − L i (k)8o(k)Ci (k)Hϵ

)
ei (k|k − 1)

− L i (k)
(
(ψi (k)− 1)8o(k)Ci (k)Hϵxi (k)

+ ψi (k)8o(k)vi (k)+ (1 − ψi (k))8o(k)ξi (k)
)
. (12)

Furthermore, the covariance matrices of ei (k|k − 1) and
ei (k|k) can be denoted as:

Pi (k|k − 1) = E{ei (k|k − 1)eT
i (k|k − 1)}, (13)

and

Pi (k|k) = E{ei (k|k)eT
i (k|k)}, (14)

respectively.

III. MAIN RESULTS

In this section, an upper-bound for the state estimation error
covariance matrix (i.e., Pi (k|k)) is derived firstly, we then
show that an appropriate estimator gain matrix L i (k) can
be obtained by minimizing the trace of the presented upper-
bound, the performance of the estimator with the designed
parameter L i (k) is finally evaluated by theoretical analysis.

A. Estimator Design

Before proposing the specific algorithm for designing appro-
priate state estimator, i.e., deriving the estimator gain, the
following lemmas are firstly listed.

Lemma 1: [35] For α > 0, matrices B and C with
appropriate dimensions, it has:

BCT
+ CBT

≤ αCCT
+ α−1BBT . (15)

Lemma 2: [29] For any matrices O, M, Z , and Y with
compatible dimensions, the following equations hold.

∂tr
(
(O − ZM)Y(O − ZM)T

)
∂Z

= −2(OMT
+ ZMMT ),

∂tr
(
(OZM)Y(OZM)T

)
∂Z

= 2OTOZMYMT . (16)

Theorem 1: For given positive scalars ϵ, αl (l = 1-4) and
λ, if the following two coupled recursive matrix equations:

ℑi (k|k − 1)
= (1 + λ)Ai (k − 1)Hϵℑi (k − 1|k − 1)

× H T
ϵ AT

i (k − 1)+ (1 + λ−1)6 j∈Ki Bi, j (k − 1)Hϵ

× ℑ j (k − 1|k − 1)6 j∈Ki H T
ϵ BT

i, j (k − 1)

+ Ei (k − 1)Wi ET
i (k − 1), (17)

and

ℑi (k|k) =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
ℑi (k|k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
+ (1 + α1)

×

(
ψ̌ i + α−1

3 + α4 − 1
)

L i (k)8o(k)Ci (k)Hϵ

× ℑi (k|k − 1)H T
ϵ CT

i (k)8
T
o(k)L

T
i (k)+ (1 + α−1

1 )

×

(
ψ̌ i + α−1

3 + α4 − 1
)

L i (k)8o(k)Ci (k)Hϵ

× E{x̂i (k|k − 1)x̂T
i (k|k − 1)}H T

ϵ CT
i (k)8

T
o(k)

× LT
i (k)+

(
1 + α−1

2 + α−1
4

)(
1 − ψ̌ i

)
L i (k)8o(k)

× (ξ ∗

i I )8T
o(k)L

T
i (k)+ ψ̌ i L i (k)8o(k)Vi8

T
o(k)L

T
i (k),

(18)

with initial condition:

0 ≤ Pi (0|0) ≤ ℑi (0|0), (19)

have positive-definite solutions ℑi (k|k − 1) and ℑi (k|k),
respectively, then ℑi (k|k) is an upper-bound of Pi (k|k), i.e.,
Pi (k|k) ≤ ℑi (k|k).
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Proof: Firstly, according to Eqs. (11)-(14), the one-step
prediction error covariance matrix Pi (k|k − 1) and estimation
error covariance matrix Pi (k|k) can be further expressed as:

Pi (k|k − 1)

= E{ei (k|k − 1)eT
i (k|k − 1)}

= Ai (k − 1)HϵPi (k − 1|k − 1)H T
ϵ AT

i (k − 1)
+6 j∈Ki Bi, j (k − 1)HϵP j (k − 1|k − 1)

×6 j∈Ki H T
ϵ BT

i, j (k − 1)+6 j∈Ki Ai (k − 1)

× HϵPi, j (k − 1|k − 1)H T
ϵ BT

i, j (k − 1)

+6 j∈Ki Bi, j (k − 1)HϵP j,i (k − 1|k − 1)

× H T
ϵ AT

i (k − 1)+ Ei (k − 1)Wi ET
i (k − 1), (20)

Pi (k|k)

= E{ei (k|k)eT
i (k|k)}

=

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Pi (k|k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
+

(
ψ̌ i − 1

)
L i (k)

×8o(k)Ci (k)HϵE{xi (k)xT
i (k)}H T

ϵ CT
i (k)8

T
o(k)

× LT
i (k)+

(
1 − ψ̌ i

)
L i (k)8o(k)E{ξi (k)ξ T

i (k)}8
T
o(k)

× LT
i (k)+ ψ̌ i L i (k)8o(k)Vi8

T
o(k)L

T
i (k)−

(
1 − ψ̌ i

)
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
E{ei (k|k − 1)ξ T

i (k)}8
T
o(k)

× LT
i (k)−

(
1 − ψ̌ i

)
L i (k)8o(k)

× E{ξi (k)eT
i (k|k − 1)}

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

−

(
ψ̌ i − 1

)
L i (k)8o(k)Ci (k)HϵE{xi (k)eT

i (k|k − 1)}

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
−

(
ψ̌ i − 1

)
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
E{ei (k|k − 1)xT

i (k)}

× H T
ϵ CT

i (k)8
T
o(k)L

T
i (k)+

(
1 − ψ̌ i

)
L i (k)8o(k)Ci (k)

× HϵE{xi (k)ξ T
i (k)}8

T
o(k)L

T
i (k)+

(
1 − ψ̌ i

)
L i (k)8o(k)

× E{ξi (k)xT
i (k)}H T

ϵ CT
i (k)8

T
o(k)L

T
i (k), (21)

where Pi, j (k − 1|k − 1) = E{ei (k − 1|k − 1)eT
j (k − 1|k − 1)}

and P j,i (k − 1|k − 1) = E{e j (k − 1|k − 1)eT
i (k − 1|k − 1)}.

Then, the theorem is proved by using mathematical induc-
tion method. Specifically:

• In light of the initial condition given in Eq. (19), it is
obvious that the proposition is valid when k = 0.

• Assuming that Pi (k −1|k −1) ≤ ℑi (k −1|k −1), we then
prove that Pi (k|k) ≤ ℑi (k|k). Firstly, based on Lemma 1,
it has:

6 j∈Ki Ai (k − 1)HϵPi, j (k − 1|k − 1)H T
ϵ BT

i, j (k − 1)

+6 j∈Ki Bi, j (k − 1)HϵP j,i (k − 1|k − 1)H T
ϵ AT

i (k − 1)

≤ λAi (k − 1)HϵPi (k − 1|k − 1)H T
ϵ AT

i (k − 1)

+ λ−16 j∈Ki Bi, j (k − 1)HϵP j (k − 1|k − 1)

× H T
ϵ BT

i, j (k − 1). (22)

Then, according to the assumption, the Eqs. (17) and (20),
it can be concluded that Pi (k|k − 1) ≤ ℑi (k|k − 1).
By applying Lemma 1 and considering the upper-bound
of the deception attack signal, i.e., ||ξi (k)||2 ≤ ξ ∗

i , which
means that ξ T

i (k)ξi (k) ≤ ξ T
i (k)ξi (k)I ≤ ξ ∗

i I , it can be
obtained that:(

1−ψ̌ i

)
L i (k)8o(k)E{ξi (k)ξ T

i (k)}8
T
o(k)L

T
i (k)

≤

(
1 − ψ̌ i

)
L i (k)8o(k)(ξ

∗

i I )8T
o(k)L

T
i (k). (23)

Furthermore, following the similar handling method, the
inequalities below can be easily derived.

E{xi (k)xT
i (k)} = (ei (k|k − 1)+ x̂i (k|k − 1))

× (ei (k|k − 1)+ x̂i (k|k − 1))T

≤ (1 + α1)ei (k|k − 1)eT
i (k|k − 1)

+ (1 + α−1
1 )E{x̂i (k|k − 1)x̂T

i (k|k − 1)}, (24)(
I − L i (k)8o(k)Ci (k)Hϵ

)
E{ei (k|k − 1)ξ T

i (k)}

× LT
i (k)+ L i (k)8o(k)E{ξi (k)eT

i (k|k − 1)}

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

≤ α2

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Pi (k|k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

+ α−1
2 L i (k)8o(k)(ξ

∗

i I )8T
o(k)L

T
i (k), (25)

L i (k)8o(k)Ci (k)HϵE{xi (k)eT
i (k|k − 1)}

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

+

(
I − L i (k)8o(k)Ci (k)Hϵ

)
E{ei (k|k − 1)xT

i (k)}

× H T
ϵ CT

i (k)8
T
o(k)L

T
i (k)

≤ α3

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Pi (k|k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

+ α−1
3 L i (k)8o(k)Ci (k)HϵE{xi (k)xT

i (k)}

× H T
ϵ CT

i (k)8
T
o(k)L

T
i (k), (26)

L i (k)8o(k)Ci (k)HϵE{xi (k)ξ T
i (k)}8

T
o(k)L

T
i (k)

+ L i (k)8o(k)E{ξi (k)xT
i (k)}H T

ϵ CT
i (k)8

T
o(k)L

T
i (k)

≤ α4L i (k)8o(k)Ci (k)HϵE{xi (k)xT
i (k)}H T

ϵ CT
i (k)

×8T
o(k)L

T
i (k)+ α−1

4 L i (k)8o(k)(ξ
∗

i I )8T
o(k)L

T
i (k).

(27)

By summarizing Eqs. (18), (21), and (23)-(27), we can
conclude that Pi (k|k) ≤ ℑi (k|k).

So far, the theorem is proved. □
Remark 4: The upper-bound derived in Theorem 1 is

dependent on some scalars, i.e., ϵ, λ and αl (l = 1-4).
Generally, the SPP ϵ is non-adjustable for a given SPDSS, but
the other parameters can be changed arbitrarily. Although it
is hard to obtain close-form solutions of the optimal values
of these adjustable parameters, the intelligent optimization
algorithms, such as particle swarm algorithm and genetic
algorithm, with the objective minλ,α1,α2,α3,α4ℑi (k|k), can be
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adopted to minimize the upper-bound so as to improve state
estimation performance.

Theorem 2: For given positive scalars ϵ, αl (l = 1-4) and
λ, the upper-bound ℑi (k|k) for the estimation error covariance
can be minimized by designing the estimator parameter as:

L i (k) = 9i (k)5−1
i (k), (28)

where

9i (k) =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ℑi (k|k − 1)

× H T
ϵ CT

i (k)8
T
o(k),

5i (k) =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
8o(k)Ci (k)Hϵ

× ℑi (k|k − 1)H T
ϵ CT

i (k)8
T
o(k) + (1 + α1)

×

(
ψ̌ i + α−1

3 + α4 − 1
)
8o(k)Ci (k)Hϵ

× ℑi (k|k − 1)H T
ϵ CT

i (k)8
T
o(k) + (1 + α−1

1 )

×

(
ψ̌ i + α−1

3 + α4 − 1
)
8o(k)Ci (k)Hϵ

× E{x̂i (k|k − 1)x̂T
i (k|k − 1)}H T

ϵ CT
i (k)8

T
o(k)

+

(
1 + α−1

2 + α−1
4

)(
1 − ψ̌ i

)
8o(k)(ξ

∗

i I )8T
o(k)

+ ψ̌ i8o(k)Vi8
T
o(k).

Proof: By recurring to Lemma 2, and taking partial
derivative of the trace of ℑi (k|k) with respect to L i (k), one
has:

∂tr(ℑi (k|k))
∂L i (k)

= 2
(

1 −

(
α3 − α2

)(
1 − ψ̌ i

))
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
ℑi (k|k − 1)

× H T
ϵ CT

i (k)8
T
o(k) + 2(1 + α1)

(
ψ̌ i + α−1

3 + α4 − 1
)

× L i (k)8o(k)Ci (k)Hϵℑi (k|k − 1)H T
ϵ CT

i (k)8
T
o(k)

+ 2(1 + α−1
1 )

(
ψ̌ i + α−1

3 + α4 − 1
)

L i (k)8o(k)Ci (k)Hϵ

× E{x̂i (k|k − 1)x̂T
i (k|k − 1)}H T

ϵ CT
i (k)8

T
o(k)

+ 2
(

1 + α−1
2 + α−1

4

)(
1 − ψ̌ i

)
L i (k)8o(k)(ξ

∗

i I )8T
o(k)

+ 2ψ̌ i L i (k)8o(k)Vi8
T
o(k). (29)

Letting ∂tr(ℑi (k|k))
∂L i (k)

= 0, we can get L i (k) as presented in
Eq. (28). Thus, the proof is completed. □

On the basis of Theorem 2 which shows that the estimator
gain matrix L i (k) can be obtained by solving ∂tr(ℑi (k|k))

∂L i (k)
= 0,

the proposed algorithm for designing secure recursive state
estimator for Si with a time window T is specifically described
by Algorithm 1.

B. Effectiveness Analysis

In this subsection, the effectiveness of the designed state
estimation algorithm is validated by showing that the estima-
tion error ei (k|k) derived under the algorithm is exponentially
bounded in the mean square. For this, the lemma and assump-
tion below are firstly listed.

Algorithm 1 The Proposed Estimator Design Algorithm
1 Initializing xi (0), x̂i (0|0) and ℑi (0|0);
2 for k = 1; k ≤ T; k = k+1 do
3 xi (k) = Ai (k − 1)Hϵxi (k − 1)+ Ei (k − 1)ωi (k − 1)

+6 j∈Ki Bi, j (k − 1)Hϵx j (k − 1);
4 ỹi (k) = Ci (k)Hϵxi (k)+ vi (k);
5 U = lcm(m, ny)/m; o(k) = mod ((k − 1),U )+ 1;
6 Computing ε(k) and 8o(k) based on Eq. (2) and Eq. (4),

respectively;
7 Calculating yi (k) according to Eq. (6);
8 Deriving x̂i (k|k − 1) and ℑi (k|k − 1) based on Eq. (7) and

Eq. (17), respectively;
9 Obtaining L i (k) according to Eq. (28);

10 Calculating x̂i (k|k) and ℑi (k|k) based on Eq. (8) and
Eq. (18), respectively.

11 end

Lemma 3: [36] If the following two inequalities:

j∗∥ψk∥
2

≤ W (ψk) ≤ j∗
∥ψk∥

2, (30)

and

E{W (ψk+1|ψk)} − W (ψk) ≤ ϒ − f W (ψk), (31)

hold with a stochastic process W (ψk) and scalars j∗, j∗,ϒ >

0, 0 ≤ f ≤ 1, then for any k ≥ 0, it has:

E{∥ψk∥
2
} ≤

j∗

j∗
E{∥ψ0∥

2
}(1 − ϒ)k +

f
j∗

k−1∑
l=1

(1 − ϒ)l . (32)

Assumption 1: [2] There exist positive real scalars a∗, a∗,
b∗, b∗, c∗, c∗, e∗, e∗, h∗, h∗, q∗, q∗, r∗, and r∗ that guarantee:

a2
∗

I ≤ Ai (k)AT
i (k) ≤ (a∗)2 I, h2

∗
≤ HϵH T

ϵ ≤ (h∗)2 I,

c2
∗
I ≤ Ci (k)CT

i (k) ≤ (c∗)2 I, e2
∗
I ≤ Ei (k)ET

i (k) ≤ (e∗)2 I,

b2
∗
I ≤ 6 j∈Ki Bi, j (k)6 j∈Ki BT

i, j (k) ≤ (b∗)2 I,

q∗ I ≤ Wi ≤ q∗ I, r∗ I ≤ Vi ≤ r∗ I.

Theorem 3: With the initial condition φ∗ I ≤ ℑi (0|0) ≤

φ∗ I , Assumption 1, and the given positive scalars ϵ, αl(l =

1-7) and λ, if 1 + α5 + α6 ≤ 1 − (α3 − α2)(1 − ψ̌ i ), η∗ ≥ φ∗,
E{xi (k)xT

i (k)} ≤ (X∗)2 I and η∗
≤ φ∗ are satisfied, then the

estimation error ei (k|k) derived under the proposed algorithm
is exponentially bounded in the mean square, where

η∗ =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ϖ∗(1 − 0∗)2 + (1 + α1)

×

(
ψ̌ i + α−1

3 + α4 − 1
)
ϖ∗0

2
∗
+

((
1 + α−1

2 + α−1
4

)
×

(
1 − ψ̌ i

)
+ ψ̌ ir∗

)
02

∗
,

η∗
=

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ϖ ∗(1 − 0∗)

2
+ (1 + α1)

×

(
ψ̌ i + α−1

3 + α4 − 1
)
ϖ ∗(0∗)2 + (1 + α−1

1 )

×

(
ψ̌ i + α−1

3 + α4 − 1
)(
(1 + α1)(X∗)2

+

(
1 + α−1

1

)
ϖ ∗

)
(0∗)2 +

((
1 + α−1

2 + α−1
4

)
×

(
1 − ψ̌ i

)
+ ψ̌ ir∗

)
(0∗)2,

ϖ∗ = (1 + λ)(h∗a∗)
2φ∗ + (1 + λ−1)(h∗b∗)

2φ∗ + e2
∗
q∗,
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ϖ ∗
= (1 + λ)(h∗a∗)2φ∗

+ (1 + λ−1)(h∗b∗)2φ∗
+ (e∗)2q∗,

0∗ =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ϖ∗

(
℘i

π∗

)
,

0∗
=

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ϖ ∗tr

(
(h∗c∗)2

π∗

)
,

π∗ =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

)
+ (1 + α1)

(
ψ̌ i + α−1

3 + α4

− 1
))

c2
∗
ϖ∗ +

(
1 − ψ̌ i

)(
1 + α−1

2 + α−1
4

)
ξ ∗

i + ψ̌ ir∗,

π∗
=

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

)
+ (1 + α1)

(
ψ̌ i + α−1

3 + α4

− 1
)

+

(
ψ̌ i − 1 + α−1

3 + α4

)(
1 + α−1

1

)2)
(c∗)2ϖ ∗

+

(
ψ̌ i − 1 + α−1

3 + α4

)(
1 + α−1

1

)
(1 + α1)(X∗)2

× (c∗)2 +

(
1 − ψ̌ i

)(
1 + α−1

2 + α−1
4

)
ξ ∗

i + ψ̌ ir∗,

℘i = λmin(H T
ϵ CT

i (k)Ci (k)Hϵ).

Proof: The theorem will be proved within the following
two stages.

Stage 1: We prove that φ∗ I ≤ ℑi (k|k) ≤ φ∗ I using
mathematical induction method. Given the initial condition
φ∗ I ≤ ℑi (0|0) ≤ φ∗ I , it is obvious that the proposition holds
when k = 0; then φ∗ I ≤ ℑi (k|k) ≤ φ∗ I will be validated
based on the assumption that φ∗ I ≤ ℑi (k − 1|k − 1) ≤ φ∗ I .

To be specific, according to Eq. (17) and Assumption 1,
we have:

ϖ∗ I ≤ ℑi (k|k − 1) ≤ ϖ ∗ I. (33)

Based on Lemma 1, E{xi (k)xT
i (k)} ≤ (X∗)2 I , and Eq. (33),

it has:

0 ≤ E{x̂i (k|k − 1)x̂T
i (k|k − 1)}

≤ (1 + α1)(X∗)2 I +

(
1 + α−1

1

)
ϖ ∗ I. (34)

Combing Eqs. (33)-(34) with Eq. (28), then in light of
Assumption 1, it can be gotten that:

π∗ I ≤ 5i (k) ≤ π∗ I. (35)

So it can be easily obtained that (1/π∗)I ≤ 5−1
i (k) ≤

(1/π∗)I .
Furthermore, based on the property of trace, one has:

0∗ I ≤ L i (k)8o(k)Ci (k)Hϵ ≤ 0∗ I. (36)

Thus, it can be derived that:

(1 − 0∗)I ≤ I − L i (k)8o(k)Ci (k)Hϵ ≤ (1 − 0∗)I. (37)

According to the expression of L i (k) given in Eq. (28) and
the property of trace, we can get:(

1−

(
α3 − α2

)(
1 − ψ̌ i

))2
ϖ 2

∗

(
℘i

(π∗)2

)
I ≤ L i (k)LT

i (k)

≤

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))2
(ϖ ∗)2tr

(
(h∗c∗)2

π2
∗

)
I.

(38)

Then, it is not hard to obtain that:

η∗ I ≤ ℑi (k|k) ≤ η∗ I.

Thus, if the conditions η∗ ≥ φ∗ and η∗
≤ φ∗ hold, it can be

easily concluded that:

φ∗ I ≤ ℑi (k|k) ≤ φ∗ I. (39)

Stage 2: Based on the result derived in the above stage,
we then dedicate to prove that the estimation error ei (k|k) is
exponentially bounded in mean square. Specifically:

Denoting W (ei (k|k)) = eT
i (k|k)ℑ−1

i (k|k)ei (k|k), then
according to Eq. (39), it has:

(
1
φ∗ I

)∥ei (k|k)∥2
≤ W (ei (k|k)) ≤ (

1
φ∗ I

)∥ei (k|k)∥2.

Substituting Eq. (11) into Eq. (12), we have:

ei (k|k) =

(
I − L i (k)8o(k)Ci (k)Hϵ

)(
Ai (k − 1)Hϵ

× ei (k − 1|k − 1)+ gi (k − 1)
)

− L i (k)ti (k), (40)

where

gi (k − 1) = 6 j∈Ki Bi, j (k − 1)Hϵe j (k − 1|k − 1)
+ Ei (k − 1)ωi (k − 1),

ti (k) =

(
ψi (k)− 1

)
Ci (k)Hϵxi (k)+ ψi (k)vi (k)

+

(
1 − ψi (k)

)
ξi (k).

Then, it can be calculated that:

W (ei (k|k))

= eT
i (k − 1|k − 1)H T

ϵ AT
i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Ai (k − 1)Hϵ

× ei (k − 1|k − 1)+ gT
i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
gi (k − 1)+ ti (k)T LT

i (k)

× ℑ
−1
i (k|k)L i (k)ti (k)+ eT

i (k − 1|k − 1)H T
ϵ

× AT
i (k − 1)

(
I − L i (k)8o(k)Ci (k)Hϵ

)T

× ℑ
−1
i (k|k)

(
I − L i (k)8o(k)Ci (k)Hϵ

)
gi (k − 1)

+ gT
i (k − 1)

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Ai (k − 1)Hϵ

× ei (k − 1|k − 1)− eT
i (k − 1|k − 1)H T

ϵ AT
i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)L i (k)ti (k)

− tT
i (k)L

T
i (k)ℑ

−1
i (k|k)

(
I − L i (k)8o(k)Ci (k)Hϵ

)
× Ai (k − 1)Hϵei (k − 1|k − 1)− gT

i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)L i (k)ti (k)

− tT
i (k)L

T
i (k)ℑ

−1
i (k|k)

(
I − L i (k)8o(k)Ci (k)Hϵ

)
× gi (k − 1). (41)
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By recurring to Lemma 1, it can be further achieved that:

W (ei (k|k))

≤ (1 + α5 + α6)eT
i (k − 1|k − 1)H T

ϵ AT
i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Ai (k − 1)Hϵ

× ei (k − 1|k − 1)+

(
1 + α−1

5 + α7

)
gT

i (k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
gi (k − 1)

+

(
1 + α−1

6 + α−1
7

)
tT
i (k)L

T
i (k)ℑ

−1
i (k|k)L i (k)ti (k). (42)

According to Eq. (18), it is obvious that:

ℑi (k|k) ≥

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
ℑi (k|k − 1)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
, (43)

then substituting Eq. (17) into Eq. (43), we have:

ℑi (k|k) ≥

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
×

(
(1 + λ)Ai (k − 1)Hϵℑi (k − 1|k − 1)

× H T
ϵ AT

i (k − 1)+ χ1 I
)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
, (44)

where χ1 = (1 + λ−1)h2
∗
b2

∗
φ∗ + e2

∗
q∗. Given that ℑi (k − 1|k −

1) ≤ φ∗ I , and pre- and post-multiplying ℑ
−1
i (k|k) by J T and

J , we can get:

H T
ϵ AT

i (k − 1)
(

I − L i (k)8o(k)Ci (k)Hϵ

)T

× ℑ
−1
i (k|k)

(
I − L i (k)8o(k)Ci (k)Hϵ

)
× Ai (k − 1)Hϵℑi (k − 1|k − 1)
× ℑ

−1
i (k − 1|k − 1)

≤

{(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))((
1 + λ

)
φ∗

+
χ1

(h∗a∗)2

)}−1
φ∗

ℑ
−1
i (k − 1|k − 1)

= χ2ℑ
−1
i (k − 1|k − 1), (45)

where

J =

(
I − L i (k)8o(k)Ci (k)Hϵ

)
Ai (k − 1)Hϵ,

χ2 =

{(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))((
1 + λ

)
+

χ1

(h∗a∗)2φ∗

)}−1
. (46)

Then, based on Eq. (44), it has:

gT
i (k − 1)

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
gi (k − 1)

≤

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))−1
gT

i (k − 1)gi (k − 1)

×

((
1 + λ

)
(h∗a∗)2φ∗

+ χ1

)−1
. (47)

Taking the expectation on gT
i (k − 1)gi (k − 1), we can get:

E{gT
i (k − 1)gi (k − 1)}

=

(
6 j∈Ki Bi, j (k − 1)Hϵe j (k − 1|k − 1)+ Ei (k − 1)

× ωi (k − 1)
)T (

6 j∈Ki Bi, j (k − 1)Hϵe j (k − 1|k − 1)

+ Ei (k − 1)ωi (k − 1)
)

≤ (h∗b∗)2φ∗
+ (e∗)2q∗. (48)

Combining Eq. (48) with Eq. (47), one has:

E
{

gT
i (k − 1)

(
I − L i (k)8o(k)Ci (k)Hϵ

)T
ℑ

−1
i (k|k)

×

(
I − L i (k)8o(k)Ci (k)Hϵ

)
gi (k − 1)

}
≤

(
(h∗b∗)2φ∗

+ (e∗)2q∗

){(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
×

((
1 + λ

)
(h∗a∗)2φ∗

+ χ1

)}−1

= µ1. (49)

Following the similar derivation process of Eq. (48), we can
obtain:

E{tT
i (k)ti (k)} ≤

(
ψ̌ i − 1

)
(h∗c∗)2(X∗)2 +

(
1 − ψ̌ i

)
ξ ∗

i . (50)

Thereby, it can be easily gotten that:

E
{

tT
i (k)L

T
i (k)ℑ

−1
i (k|k)L i (k)ti (k)

}
≤ φ−1

∗
3

{(
ψ̌ i − 1

)
(h∗c∗)2(X∗)2 +

(
1 − ψ̌ i

)
ξ ∗

i

}
= µ2. (51)

Substituting Eqs. (33)- (34) into Eq. (28), it can be derived
that:

LT
i (k)L i (k) ≤ 3I, (52)

where

3 =

(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))2
(ϖ ∗)2(h∗c∗)2

×

{(
1 −

(
α3 − α2

)(
1 − ψ̌ i

))
ϖ ∗(h∗c∗)2 + (1 + α1)

×

(
ψ̌ i + α−1

3 + α4 − 1
)
ϖ ∗(h∗c∗)2 + (1 + α−1

1 )

×

(
ψ̌ i + α−1

3 + α4 − 1
)
(h∗c∗)2

(
(1 + α1)(X∗)2

+

(
1 + α−1

1

)
φ∗

)
+

(
1 + α−1

2 + α−1
4

)(
1 − ψ̌ i

)
ξ ∗

i

+ ψ̌ ir∗

}−2
. (53)

In view of the results presented in Eqs. (42), (45), (49),
(51), (52), the conclusion below can be made.

E
{

W (ei (k|k))}

≤ (1 + α5 + α6)χ2W (ei (k − 1|k − 1))

+

(
1 + α−1

5 + α7

)
µ1 +

(
1 + α−1

6 + α−1
7

)
µ2. (54)
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So, if the condition 1 + α5 + α6 ≤ 1 −

(
α3 − α2

)(
1 − ψ̌ i

)
holds, one has:

W (ei (k|k))− W (ei (k − 1|k − 1))
≤ −ρW (ei (k − 1|k − 1))+ µ, (55)

where

ρ = 1 −

(
1 + λ+

χ1

(h∗a∗)2φ∗

)−1
,

µ =

(
1 + α−1

5 + α7

)
µ1 +

(
1 + α−1

6 + α−1
7

)
µ2.

It is apparently that 0 < ρ ≤ 1 and µ > 0. Then, according
to Lemma 3, we have:

E{∥ei (k|k)∥2
}

≤
φ∗

φ∗

E{∥ei (0|0)∥2
}(1 − µ)k + ρφ∗

k−1∑
l=1

(1 − µ)l . (56)

So, the theorem is proved. □
Remark 5: We would like to emphasize that the declaimed

efficient state estimators mean that the designed estimators
can achieve minor estimation errors even under the influence
of deception attack and limited communication bandwidth.
Furthermore, given that stability is the prerequisite for system
operation [37], [38], based on the proposed state estimation
method which can effectively observe unavailable system state,
the control strategy for the SPDSS with the aim to achieve the
balanced security and stability will be studied in future.

Remark 6: In the paper, RRL-MAP-based secure state esti-
mators are designed for SPDSSs, and some recent researches
are related to our work. Focusing on DSSs, Kalman fil-
tering and recursive filtering have been explored in [1]
and [2], respectively, but the works are based on one-time-
scale systems, which is different with our study. Taking
the two-time-scale dynamics into account, protocol-based
output feedback control for singularly perturbed fuzzy sys-
tems [8] and state estimation for singularly perturbed complex
networks [21], [39] have been specifically investigated,
comparing to these works which consider attack-free single-
channel communication scenario, however, the state estimation
method under attack-affected multichannel communication
environment is explored in this study; although cyber attacks
are considered while designing state estimation strategy for
singularly perturbed complex networks in [12], nevertheless,
the work did not employ communication protocol for prevent-
ing potential data collision. We also notice that the similar
framework for the devising of recursive state estimator has
been widely used [7], [22], [40], but due to the distinctive
features of the considered system, differentiated measurement
signals and derivation process, the unique design and analysis
of the state estimation method are presented in this paper.

IV. SIMULATION RESULTS

In this section, experiments based on a practical example
are conducted to evaluate the performance of the proposed
state estimation method. To be specific, the SPDSS formulated
by Eq. (1) is applied to model a 2D maneuvering targets
system with 3 targets (i.e., N = 3) [1]. The sequential

Fig. 2. Trajectories of x1(k) and its estimation.

relationship among the 3 targets (subsystems) is depicted
as K1 = ∅, K2 = {1} and K3 = {1, 2}. Each target Si

(1 ≤ i ≤ N ) employs 4 sensors for data sensing and the
corresponding WSN contains 2 nonoverlapping channels for
data transmission, i.e., ny = 4 and m = 2, which further
imply that U = 2. The system state of Si is denoted as
xi (k) = col{X p

i (k), Xv
i (k), Y p

i (k), Y v
i (k)} (i.e., nx = 4), where

X p
i (k) and Xv

i (k) are respectively the position coordinate and
corresponding velocity of Si along X-axe, while Y p

i (k) and
Y v

i (k) are respectively the position coordinate and correspond-
ing velocity of Si along Y-axe.

The system parameters are set as below according to [41].

Ai (k) =


1 sin(rk Tk )

rk
0 −

1−cos(rk Tk )

rk

0 cos(rk Tk) 0 −sin(rk Tk)

0 1−cos(rk Tk )

rk
1 sin(rk Tk )

rk

0 sin(rk Tk) 0 cos(rk Tk)

,

Ci (k) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, Ei (k) =


T 2

k /2
Tk

T 2
k /2
Tk

,
B2,1(k) = diag{0, bX

2,1, 0, bY
2,1}, bX

2,1 = 0.05, bY
2,1 = 0.02,

B3,1(k) = diag{0, bX
3,1, 0, bY

3,1}, bX
3,1 = 0.06, bY

3,1 = 0.07,

B3,2(k) = diag{0, bX
3,2, 0, bY

3,2}, bX
3,2 = 0.05, bY

3,2 = 0.09,

where Tk and rk denote the time-varying sampling period and
turn rate, and are set to be Tk = 0.8tanh(k) and rk = 0.1 +

0.3tanh(k), respectively; bX
2,1, bY

2,1, bX
3,1, bY

3,1, bX
3,2, bY

3,2 indicate
different secure influence coefficients.

By further setting ns = 2 and n f = 2, the initial system
states and estimation states are given as [42]:

x1(0) = x̂1(0|0) = [σ11; 1 + σ12; σ13; 1 + σ14],

x2(0) = x̂2(0|0) = [2 + σ21; 1 + σ22; 2 + σ23; 1 + σ24],

x3(0) = x̂3(0|0) = [2 + σ31; 2 + σ32; 2 + σ33; 2 + σ34],

where σi j (i = 1, 2, 3; j = 1, 2, 3, 4) are random numbers
chosen among (0,1).

The upper-bound for the estimation error covariance is
initialized as ℑi (0|0) = I , the SPP is set to be ϵ = 0.05
[39]. For the considered deception attack, we set ξ ∗

i = 0.3,
ψ̌1 = 0.7, ψ̌2 = 0.5 and ψ̌3 = 0.3. The process noise ωi (k)
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Fig. 3. Trajectories of x2(k) and its estimation.

Fig. 4. Trajectories of x3(k) and its estimation.

Fig. 5. The deception attack signals and estimation errors.

and the measurement noise vi (k) with known covariances
Wi = 0.03 and Vi = 0.03 are generated for simulation.

Based on the above simulation settings, the time-varying
estimators’ gains are calculated by recurring to Algorithm 1,
then the specific simulation results are presented by Figs. 2-8.

As shown in Figs. 2-4, each target’s estimated positions
and velocities well match its real positions and velocities,
which validates the efficiency of the proposed state estimation
method. The occurrence of the deception attack on each
target and the corresponding estimation errors are integratedly
depicted by Fig. 5. It further confirms that the designed estima-
tors can achieve desirable performance even under deception

Fig. 6. The deception attack signals and estimation errors under ZOH
strategy.

Fig. 7. M SEi (k) and the minimum upper-bounds.

Fig. 8. ∥ei (k|k)∥2 and U Bi (k).

attack scenario. The estimation errors derived under ZOH
strategy is shown in Fig. 6, it can be found that ZOH method
did not lead to the improvement of state estimation perfor-
mance, which validates the statement presented in Remark 2.

As introduced in Theorem 2, the minimum upper-bound for
each estimation error covariance can be obtained based on the
designed estimator parameter, so we define the mean square
error for each Si as follows:

M SEi (k) =
1
F

F∑
f =1

4∑
j=1

(x( f )
i, j (k)− x̂( f )

i, j (k|k))2,
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where F is set to be 100, which means that the experiment
is independently conducted 100 times, xi,1(k) = X p

i (k),
xi,2(k) = Xv

i (k), xi,3(k) = Y p
i (k), xi,4(k) = Y v

i (k), and
x̂i, j (k|k) is the estimation of xi, j (k). Based on the definition,
the comparison between M SEi (k) and the corresponding
minimum upper-bound is given in Fig. 7. As shown, M SEi (k)
is always below its minimum upper-bound, which verifies the
correctness of the approach for deriving the upper-bound.

Theorem 3 reveals that the estimation errors derived under
the proposed algorithm can be proved to be exponentially
bounded in the mean square, i.e., Eq. (56) can be achieved,
if the listed conditions are satisfied. To verify this, we let
U Bi (k) =

φ∗

φ∗

E{∥ei (0|0)∥2
}(1 − µ)k + ρφ∗

∑k−1
l=1 (1 − µ)l

and select eligible parameters as claimed in Theorem 3, then
show the change curves of U Bi (k) and ∥ei (k|k)∥2 in Fig. 8.
It can be found that each ∥ei (k|k)∥2 is always smaller than
corresponding U Bi (k), which confirms the result presented in
Theorem 3.

V. CONCLUSION

In this paper, for a SPDSS suffers from limited communi-
cation resource and deception attack, a distributed recursive
state estimation approach has been proposed to effectively
estimate system states based on available measurements. To be
specific, considering that multiple nonoverlapping channels
are now generally enabled in WSN, the RRL-MAP has been
adopted to arrange the data transmission within each sub-
system of the SPDSS. The RRL-MAP can not only realize
fair and conflict-free data transmission, but also guarantee
efficient channel utilization. Then, by using Bernoulli variables
to depict the dynamic behavior of the considered decep-
tion attack, recursive state estimators have been designed
for the attack-affected SPDSS with the RRL-MAP. Follow-
ing the presented state estimation framework, upper-bounds
for the estimation error covariances have been derived, and
the algorithm for obtaining desirable estimators’ gains has
been proposed based on minimizing the achieved upper-
bounds. The effectiveness of the designed algorithm has been
validated by showing that the corresponding estimation errors
are exponentially bounded in the mean square. By conducting
experiments and analyzing simulation results, the performance
of the developed state estimation method has been further
demonstrated.
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