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Protocol-Based Distributed Security Fusion
Estimation for Networked Systems With

Unknown Bounded Noise Under Quantization
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Abstract—In this article, a novel distributed fusion es-
timation approach is proposed for time-varying systems
with unknown bounded noises subject to bandwidth-
constrained networks and denial-of-service (DoS) attacks,
where the round-robin scheduling protocol and the quan-
tization scheme are, respectively, employed to ease the
burden of networks. It is assumed that the network con-
necting sensors and local state estimators is vulnerable
to DoS attacks. For resisting the impacts of DoS attacks,
a compensation strategy is adopted. A new method has
been developed to devise the local state estimators. The
innovation signals from local estimators will be quantized
first before entering the network. Gains of the local state es-
timators and the fusion weighting matrices are acquired by
solving a linear matrix inequality. Finally, the effectiveness
of the proposed methods is verified by a target tracking
system.

Index Terms—Denial-of-service (DoS) attacks, fusion es-
timation, networked systems, quantization, round-robin
scheduling protocol (RRSP).
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RRSP Round-robin scheduling protocol.
MSFE Multisensor fusion estimation.
CPS Cyber-physical system.
LSE Local state estimate.
DFE Distributed fusion estimate.
LMI Linear matrix inequality.
MSE Mean square error.

I. INTRODUCTION

R ESEARCH enthusiasm for MSFE has grown rapidly over
the past few decades. The purpose of MSFE is to best

utilize the data gathered by the distributed sensors and improve
the estimation accuracy and reliability. Compared with the tra-
ditional single-sensor estimation, MSFE has higher accuracy
due to its rich sources of information, comprehensive target
perception, and strong fault-tolerant capability [1]. In recent
years, various methods of fusion estimation for multisensor
systems have emerged in an endless stream and have been
applied in many fields, such as system monitoring [2], [3]; target
localization [4]; signal processing [5]; fault detection [6], [7];
CPSs [8]; and multiagent systems [9], [10], [11].

The existing methods about MSFE can be divided into two
categories: 1) centralized fusion estimation and 2) distributed
fusion estimation. In the centralized structure, the measurements
from all of the sensors are directly transmitted to the fusion
center and then extended to high-dimensional measurements for
further processing [12]. In contrast, in the distributed structure,
each sensor sends its LSE to the fusion center, and then the fusion
estimation is performed according to the specific fusion rules.
Compared with the centralized fusion estimation, the distributed
fusion estimation is not optimal, but its parallel structure makes it
robust and flexible [13]. Therefore, many scholars and scientists
have committed themselves to the research of the distributed
fusion estimation and made a lot of achievements. For instance,
for Gaussian white noise with known covariance matrix, a
class of distributed fusion estimation algorithms based on the
Kalman filter has been proposed in [8], [14], and [15]. For
energy-bounded noise, many H∞ fusion algorithms have been
proposed in [3], [5], and [16]. There is still a kind of noise widely
used in practical applications, which is bounded at any time,
but the bound is unknown. Presently, there is not much work
on the distributed fusion estimation for systems with bounded
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noise. How to design a distributed fusion estimation algorithm
for systems with bounded noise is difficult and needs further
exploration.

In MSFE systems, sensors, local estimators, and the fusion
estimator are connected through a shared network, which has
the advantages of convenience for remote operation, simple in-
stallation and maintenance, low cost, and resource sharing [12].
However, in the process of communication, the limited net-
work bandwidth may lead to packet dropouts, disorder, and
transmission delay [17], [18], [19], [20], which will degrade
the performance of fusion estimation. In addition, the number
and value of the state variables of networked systems may be
large, so it is unrealistic to transmit each signal entirely to the
other end of the network over a communication channel with
limited bandwidth. As such, in MSFE systems, it makes practical
sense to introduce quantization and communication protocols in
response to the finite communication bandwidth. The essence
of quantization is to divide the range of continuous variation of
input signal amplitude into finite nonoverlapping subintervals.
Each subinterval is represented by a certain value in the interval,
and the input signal falling into it will be output with this
value. Some results related to quantization have been presented
in [21], [22], [23], and [24]. For example, in [22], the multibit
decentralized detection is tackled for a noise-corrupted unknown
signal parameter in sensor networks, where dumb sensor mea-
surements are quantized before being sent to a fusion center.
Innovation sequences are quantized by logarithmic quantizers
to design local state estimators to overcome the unbounded-
ness of unstable systems in [24]. Different from quantization,
communication protocols are capable of handling the limited
network bandwidth by coordinating the transmission sequence
of the measurements of different sensors, among which RRSP
is a widely implemented one to regulate the transmissions.
Under the RRSP, each sensor node is assigned equal access
to the communication network in terms of a predetermined
periodic order. To date, a wealthy body of work has been
done on the RRSP in [25], [26], [27], and [28]. However, the
existing works either only focus on the distributed fusion esti-
mation under quantization or only study the distributed fusion
estimation under a certain communication protocol, and few
papers unify quantization, communication protocol, and fusion
estimation under a certain framework model, which is still a
challenge.

In addition, the insertion of the network may make the MSFE
systems exposed to malicious attacks, such as DoS attacks [8],
[29], [30], [31]; deception attacks [32], [33], [34]; and replay
attacks [35]. Among them, DoS attacks are the most harmful.
The purpose of DoS attacks is to interfere with the data transmis-
sion among system components, so that the measurements and
control signals cannot reach the devices at the other end. Over
the past few decades, there has been great research progress on
DoS attacks. For example, a security control approach has been
proposed in [36] to defend against DoS attacks by fully utilizing
the nonattack intervals. Moreover, the risk-sensitive stochastic
control problem under DoS attacks has been considered in [37],
where the enemies randomly held back the data packets by a

hidden Markov model. Furthermore, a distributed framework
has been developed in [38] so as to study the coordination
behavior of multiagent systems when opponents initiated dis-
tributed DoS attacks. Nevertheless, with the consideration of
the effects of RRSP and DoS attacks, the distributed fusion
estimation for MSFE systems becomes more complex, which
has not been adequately addressed and motivates our current
research.

Based on the aforementioned analysis, this article will pay
attention to the secure local state estimation and distributed fu-
sion estimation for MSFE systems with bandwidth-constrained
networks and DoS attacks. The main contributions of this article
can be summarized as follows.

1) The RRSP and the quantization scheme are applied to
decrease the negative impacts induced by the bandwidth-
constrained networks. Different from some existing
works, the signals to be quantized in this article are innova-
tion signals, that is, the differences between measurements
and the estimates of measurements.

2) A new method for designing local state estimators is
proposed to guarantee the stability of dynamics of the
discussed estimation error system.

3) A compensation strategy is employed for the sake of less-
ening the performance degradation caused by DoS attacks.
Once the signals of sensors are blocked by DoS attacks,
the historical data stored in the buffer will be utilized for
compensation.

4) A novel distributed fusion estimation approach is pre-
sented for multisensor systems with unknown bounded
noises under limited network bandwidth and DoS at-
tacks, where the gains of the local state estimators and
fusion weighting matrices are obtained by seeking the
solution of an LMI. Compared to some existing re-
sults on the distributed fusion estimation, such as the
classical distributed Kalman weighted fusion method
in [8], [14], and [15] and some H∞ fusion estima-
tion algorithms in [3], [5], and [16], it reduces the re-
quirement of system noise and has a wider application
range.

The rest of this article is organized as follows. A distributed
fusion estimation model based on the RRSP and the quantization
scheme under DoS attacks is established in Section II. In Section
III, the stable local state estimators and the distributed fusion
estimator are designed. In Section IV, a target tracking system is
used to verify the effectiveness of the proposed methods. Finally,
Section V concludes this article.

Notations: Rn stands for the n-dimensional Euclidean space.
T denotes the transpose of matrix, and E{·} stands for ex-
pectation. I represents the identity matrix with appropriate
dimension. The function mod (a1, a2) indicates the nonnegative
remainder on division for a1 by a2. δ(·) is the Kronecker delta
function, and diag{·} means a block diagonal matrix. Prob{·}
indicates the probability of the event. The symmetric terms
in a symmetric matrix are denoted by ∗, and col{a1, . . . , an}
means a column vector, the elements of which are
a1, . . . , an.
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Fig. 1. Distributed fusion estimation structure.

II. PROBLEM FORMULATION

Consider a time-varying target plant described by the follow-
ing discrete linear model:

x(t+ 1) = A(t)x(t) +B(t)w(t) (1)

zi(t) = Ci(t)x(t) + vi(t), i = 1, 2, . . . , L (2)

where x(t) ∈R
n is the state of system at time t, and zi(t) ∈R

m

is the measurement output of the ith sensor.L is the total number
of sensors.A(t),B(t), andCi(t) are time-varying matrices with
appropriate dimensions. w(t) ∈R

l and vi(t) ∈R
m are bounded

noises satisfying

w(t)Tw(t) ≤ θw, vi(t)
T vi(t) ≤ θvi

(3)

where θw and θvi
are unknown scalars.

Assumption 1 (See [39]): The pairs (A(t), Ci(t)) are
observable.

Remark 1: The bounded noise assumption comes from [40].
Such an assumption is mild. Bounded noise exists in intelligent
vehicle localization systems, target tracking systems, and mobile
robot experiments. Moreover, some current works have also
studied this kind of noise [24], [41].

As shown in Fig. 1, the measurements of sensors are sent
to a group of remote estimators through a shared network with
limited bandwidth. In order to avoid data congestion and reduce
the occurrence of data collisions, the RRSP is introduced to
regulate the data communication in the channel connecting
sensors and local state estimators. Under the RRSP, only one
sensor’s measurement signal is transmitted in the network at
each moment. Define ht ∈ {1, 2, . . . , L} as the sensor acquiring
the network access at instant t. In other words, ht determines
which sensor is authorized to release packets. Obviously, it is
satisfied that ht = ht+L. ht can be expressed as follows:

ht = mod(t− 1, L) + 1. (4)

In fact, after being scheduled by the RRSP, the signal entering
the network is δ(ht − i)zi(t) (i = 1, 2, . . . , L).

Remark 2: δ(ht − i) indicates whether the measurement
output of sensor i, i.e., zi(t), can enter the network for trans-
mission at time t. If δ(ht − i) = 1, zi(t) will enter the network
for transmission at time t. If δ(ht − i) = 0, zi(t) is not given
access to the network, and the data stored in the buffer will be
utilized.

When the measurements are delivered in the network, we
need to take the security problems brought by the network into
account. Adversaries may launch DoS attacks on the commu-
nication channel between sensors and local state estimators,
resulting in the estimators unable to receive the data in time.
Aiming to reflect the effect of DoS attacks on the system, the
variable rt is used to indicate whether DoS attacks occur or not,
the value of which is either 0 or 1 [42]. Moreover, in response
to the potential DoS attacks, received data at time t− 1 will be
used for compensation once the channel is attacked at time t. Let
yi(t) denote the signal received by the ith local state estimator,
and it can be modeled by

yi(t) = rt[δ(ht − i)zi(t) + (1− δ(ht − i))

× yi(t− 1)] + (1− rt)yi(t− 1)
(5)

where rt is a Bernoulli distributed random variable with Prob
{rt = 1} = α and Prob{rt = 0} = 1− α (0 ≤ α < 1).

Remark 3: Notice that (5) describes the situation that the
transmission channel is under DoS attacks, which are governed
by random variables. When rt = 0, yi(t) = yi(t− 1), which im-
plies that the adversaries have launched DoS attacks, making the
communication data blocked. The measurements at instant t− 1
are used as compensation. When rt = 1, yi(t) = δ(ht − i)zi(t)
+ (1− δ(ht − i))yi(t− 1), which means that the estimators
can normally receive the data conveyed via the network.

Define

Xi(t) =

[
x(t)

yi(t− 1)

]
, Wi(t) =

[
w(t)

vi(t)

]
.

The system model is rewritten as

Xi(t+ 1) = Ai(t)Xi(t) + Bi(t)Wi(t)

+ (rt − α)Ci(t)Xi(t)

+ (rt − α)Di(t)Wi(t)

(6)

yi(t) = Ei(t)Xi(t) + αδ(ht − i)vi(t)

+ (rt − α)Fi(t)Xi(t)

+ (rt − α)δ(ht − i)vi(t)

(7)

where

Ai(t) =

[
A(t) 0

αδ(ht − i)Ci(t) (1− αδ(ht − i))I

]

Bi(t) =

[
B(t) 0

0 αδ(ht − i)I

]
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Ci(t) =

[
0 0

δ(ht − i)Ci(t) −δ(ht − i))I

]

Di(t) =

[
0 0

0 δ(ht − i))I

]

Ei(t) =
[
αδ(ht − i)Ci(t) (1− αδ(ht − i))I

]
Fi(t) =

[
δ(ht − i)Ci(t) −δ(ht − i))I

]
.

Due to the limited network bandwidth, the signals will be
quantized first and then transmitted to the fusion center. It is
required that the signal to be quantized in this article is ỹi(t),
which is defined by ỹi(t) = yi(t)− αδ(ht − i)Ci(t)x̂i(t)−
(1− αδ(ht − i))ŷi(t− 1), where x̂i(t) is the estimate of x(t)
by the ith local estimator and ŷi(t) represents the estimate of
yi(t). The logarithmic quantization scheme, modeled as Qi(·)
= col {qi1(·), qi2(·), . . . , qim(·)} ∈ R

m, is aimed at quantizing
the signal ỹi(t), and qij(·) ∈ R, j ∈ {1, 2, . . . ,m}, is designed
for quantizing the jth part of the signal ỹi(t).

Remark 4: The common quantization strategies are broadly
divided into two categories: one is uniform quantization and
the other is logarithmic quantization. When the input is close
to the origin, the signal-to-noise ratio of uniform quantization
is very small, which will have an unfavorable effect on the
estimation performance. Compared with the uniform quantiza-
tion, logarithmic quantization has better signal-to-noise ratio for
smaller inputs. Consequently, this article adopts the logarithmic
quantization strategy for design.

Define the set of the quantization level of qij(·) as follows:

Uij = {±u
(ij)
h : u

(ij)
h = ρhiju

(ij)
0 , h = 0,±1,±2, . . .} ∪ {0}

(0 < ρij < 1, u
(ij)
0 > 0)

where ρij is the density of quantization. Then, qij(·) is designed
as

qij(ε) =

⎧⎪⎨⎪⎩
u
(ij)
h , if 1

1+ξij
u
(ij)
h < ε ≤ 1

1−ξij
u
(ij)
h

0, if ε = 0

−qij(−ε), if ε < 0

(8)

where ξij = [(1− ρij)/(1 + ρij)](0 < ξij < 1). Similar
to [43], qij(ε) can be rewritten as qij(ε) = (1 + Γij(t))ε for
certain Γij(t), which satisfies | Γij(t) |≤ ξij . It is not difficult
to find that smaller ρij or larger ξij will bring about rough
quantization, and the length of the transmitted packet will
decrease with the increase of ξij , which is prespecified in this
article.

Based on (8), Qi[ỹi(t)] can be expressed as

Qi[ỹi(t)] = (I + Γi(t))ỹi(t) (9)

where

Γi(t) = diag{Γi1(t),Γi2(t), . . . ,Γim(t)}.
After ỹi(t) is quantized and transmitted to the fusion center

through the network, the estimates ofx(t) andyi(t− 1) in fusion

center, expressed as x̂fi(t) and ŷfi(t− 1), are designed as

x̂fi(t+ 1) = A(t)x̂fi(t) +Kx
i (t+ 1)Qi[ỹi(t)] (10)

ŷfi(t) = αδ(ht − i)Ci(t)x̂fi(t)

+ (1− αδ(ht − i))ŷfi(t− 1)

+Ky
i (t)Qi[ỹi(t)]

(11)

where the local estimator gain matrices Kx
i (t+ 1) and Ky

i (t)
are unknown and will be designed to minimize the upper bound
of the estimation error.

Define

X̂fi(t) =

[
x̂fi(t)

ŷfi(t− 1)

]
, Ki(t) =

[
Kx

i (t)

Ky
i (t− 1)

]
.

Then, (10) and (11) can be rewritten as

X̂fi(t+ 1) = Ai(t)X̂fi(t) +Ki(t+ 1)Qi[ỹi(t)] (12)

x̂fi(t) = [I 0] X̂fi(t). (13)

In order to get rid of the quantization impacts, the local estimator
of each sensor is designed as follows:

x̂i(t+ 1) = A(t)x̂i(t) +Kx
i (t+ 1)Qi[ỹi(t)] (14)

ŷi(t) = αδ(ht − i)Ci(t)x̂i(t)

+ (1− αδ(ht − i))ŷi(t− 1)

+Ky
i (t)Qi[ỹi(t)]

(15)

where x̂i(t) is the local estimate of x(t) for sensor i and ŷi(t) is
the estimate of yi(t). Furthermore, it is required that the initial
values of x̂i(t) and ŷi(t− 1) are the same as the initial values
of x̂fi(t) and ŷfi(t− 1), respectively.

Define X̂i(t) =
[
x̂T
i (t) ŷTi (t− 1)

]T
. Then, (14) and (15)

can be rewritten as

X̂i(t+ 1) = Ai(t)X̂i(t) +Ki(t+ 1)Qi[ỹi(t)] (16)

x̂i(t) = [I 0] X̂i(t). (17)

Remark 5: Most previous studies use the local state esti-
mator designed as X̂i(t+ 1) = Ai(t)X̂i(t) + Ki(t+ 1)ỹi(t).
However, the stability of X̂fi(t) at the fusion center cannot be
guaranteed due to the involvement of state-related noises. In
view of this situation, (14) and (15) are presented.

Based on x̂fi(t) in the fusion center, the DFE of x(t) is
expressed as

x̂(t) =

L∑
i=1

Ωi(t)x̂fi(t) (18)

where the sum of the fusion weighting matrix Ωi(t) (i =
1, 2, . . . , L) is I , and Ωi(t) will be devised in the following
section.

Remark 6: Although some distributed fusion estimation
problems have been conducted in [41], [44], and [45], the
addressed issue in this article is different from the existing
ones. In [41], the distributed fusion estimation for nonlinear
systems with unknown noise statistics was investigated. In [44],
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the distributed robust fusion estimation for multisensor systems
with parameter uncertainties was studied. In [45], the distributed
fusion estimation for multisensor multirate systems with cor-
related noises was researched. However, the aforementioned
references are based on the assumption that the network-based
communication resources are not limited, and the addressed
systems work in safe environments, which is actually unrealistic.
Therefore, in order to eliminate the impact of precious network
resources and DoS attacks, a new distributed security fusion
estimation method is proposed in this article for networked
multisensor systems.

Define ei(t) = x(t) − x̂i(t) as the local estimation error and
Ei(t) = Xi(t)− X̂i(t) as the augmented local estimation error.
Substituting (6), (7), (9), and (16) into the definition of Ei(t)
yields

Ei(t+ 1) = Mi(t+ 1)Ei(t) +Gi(t+ 1)Wi(t)

+ (rt − α)Ni(t+ 1)Xi(t)

+ (rt − α)Hi(t+ 1)Wi(t)

(19)

where

Mi(t) = Ai(t− 1)−Ki(t)(I + Γi(t))Ei(t− 1)

Ni(t) = Ci(t− 1)−Ki(t)(I + Γi(t))Fi(t− 1)

Gi(t) = Bi(t− 1)− αδ(ht−1 − i)Ki(t)(I + Γi(t))�I

Hi(t) = Di(t− 1)− δ(ht−1 − i)Ki(t)(I + Γi(t))�I

�I = [0 I].

Let Êi(t) =
[
ET

i (t) XT
i (t)

]T
. Then, in terms of (6) and

(19), it can be derived that

Êi(t+ 1) = MA
i (t+ 1)Êi(t) +GB

i (t+ 1)Wi(t)

+ (rt − α)NC
i (t+ 1)Êi(t)

+ (rt − α)HD
i (t+ 1)Wi(t)

(20)

where

MA
i (t) =

[
Mi(t) 0

0 Ai(t− 1)

]
, GB

i (t) =

[
Gi(t)

Bi(t− 1)

]

NC
i (t) =

[
0 Ni(t)

0 Ci(t− 1)

]
, HD

i (t) =

[
Hi(t)

Di(t− 1)

]
.

Define the fusion estimation error e(t) = x(t)− x̂(t). From
the definitions of Êi(t), it is easy to get

e(t) =

L∑
i=1

Ωi(t)ÎÊi(t) (21)

where Î = [I 0].
Then, combining (20) and (21), the fusion error system is

constructed as

ÊF (t+ 1) = [M̃(t+ 1) + (rt − α)Ñ(t+ 1)]ÊF (t)

+ [G̃(t+ 1) + (rt − α)H̃(t+ 1)]WF (t)
(22)

e(t) = Ω(t)ÊF (t) (23)

where

ÊF (t) =

⎡⎢⎢⎣
Ê1(t)

...

ÊL(t)

⎤⎥⎥⎦ , WF (t) =

⎡⎢⎢⎣
W1(t)

...

WL(t)

⎤⎥⎥⎦
M̃(t) = diag{MA

1 (t), . . . ,MA
L (t)}

Ñ(t) = diag{NC
1 (t), . . . , NC

L (t)}
G̃(t) = diag{GB

1 (t), . . . , GB
L (t)}

H̃(t) = diag{HD
1 (t), . . . , HD

L (t)}

Ω(t) =
[
Ω1(t)Î , . . . , (I −

∑L−1
i=1 Ωi(t))Î

]
.

The main objectives of this article are as follows.
1) Find out the local estimator gain Ki(t) and the distributed

fusion weighting matrix Ωi(t) such that the fusion error
system (23) is asymptotically stable.

2) Under the zero-initial condition, the fusion error system
satisfies

∞∑
t=0

E{eT (t)e(t)} < η2
∞∑
t=0

E{WT
F (t)WF (t)} (24)

where η is a predetermined H∞ performance level.

III. MAIN RESULTS

Before proceeding further, the following lemma needs to be
given, which will be used in the subsequent sections.

Lemma 1 (See [17]): Suppose that Υ1,Υ2, and Υ3 are given
matrices appropriately dimensioned and Υ1 = ΥT

1 . Then

Υ1 +Υ3Λ(t)Υ2 +ΥT
2 Λ(t)

TΥT
3 < 0

is true for Λ(t), which satisfies Λ(t)TΛ(t) ≤ I if and only if
there exists ζ > 0 such that

Υ1 + ζ−1Υ3Υ
T
3 + ζΥT

2 Υ2 < 0.

Theorem 1: For the given attack probability α(0 ≤ α < 1),
quantization parameter ξij(i = 1, . . . , L; j = 1, . . . ,m), local
estimator gain Ki(t+ 1), and H∞ performance index η, if
there exist a positive scalar τ , positive-definite matrices Ξi1

ht
,

Ξi2
ht

(i = 1, . . . , L), and matrices Ω1(t), . . ., ΩL−1(t) and I −∑L−1
i=1 Ωi(t) with appropriate dimensions such that⎡⎢⎣ −τI ∗ ∗

τΔT
2 (t+ 1) Δ1(t+ 1) ∗
0 ΔT

3 (t+ 1) −τI

⎤⎥⎦ < 0 (25)

where

Δ1(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
−Ξht−1

∗ ∗ ∗ ∗
0 −η2I ∗ ∗ ∗

D(t) P (t) −Ξht
∗ ∗

ᾱR(t) ᾱS(t) 0 −Ξht
∗

Ω(t− 1) 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦
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Δ2(t) = τ−1

[
0 0 −ΦT (t) 0 0

0 0 0 −ᾱΦT (t) 0

]

Δ3(t) =

[
τZ �E (t− 1) ατZΨht−1

0 0 0

τZ �F (t− 1) τZΨht−1
0 0 0

]T

Ξht
= diag{Ξ1

ht
, . . . ,ΞL

ht
}, Ξi

ht
= diag{Ξi1

ht
,Ξi2

ht
}

ᾱ =
√
α− α2, D(t) = diag{D1(t), . . . , DL(t)}

Di(t) =

[
D1

i (t) 0

0 Ξi2
ht

Ai(t− 1)

]
D1

i (t) = Ξi1
ht

Ai(t− 1)− Ξi1
ht
Ki(t)Ei(t− 1)

P (t) = diag{P1(t), . . . , PL(t)}

Pi(t) =

[
P 1
i (t)

Ξi2
ht

Bi(t− 1)

]
P 1
i (t) = Ξi1

ht
Bi(t− 1)− Ξi1

ht
Ki(t)αδ(ht−1 − i)�I

R(t) = diag{R1(t), . . . , RL(t)}

Ri(t) =

[
0 R1

i (t)

0 Ξi2
ht

Ci(t− 1)

]
R1

i (t) = Ξi1
ht

Ci(t− 1)− Ξi1
ht
Ki(t)Fi(t− 1)

S(t) = diag{S1(t), . . . , SL(t)}

Si(t) =

[
S1
i (t)

Ξi2
ht

Di(t− 1)

]
S1
i (t) = Ξi1

ht
Di(t− 1)− Ξi1

ht
Ki(t)δ(ht−1 − i)�I

Φ(t) = diag{Φ1(t), . . . ,ΦL(t)}

Φi(t) =

[
Ξi1
ht
Ki(t)

0

]
Z = diag{Z1, . . . , ZL}, Zi = diag{ξi1, . . . , ξim}

�E (t) = diag{ �E1(t), . . . , �EL(t)}, �Ei(t) =
[
Ei(t) 0

]
�F (t) = diag{ �F1(t), . . . , �FL(t)}, �Fi(t) =

[
0 Fi(t)

]
Ψht

= diag{δ(ht − 1)�I, . . . , δ(ht − L)�I}

then the fusion error system (23) is asymptotically stable under
the H∞ performance level η. Moreover, the distributed fusion
weighting matrices are Ω1(t), . . . ,ΩL−1(t), I −

∑L−1
i=1 Ωi(t).

Proof: See Appendix A.
Theorem 2: For the given attack probability α(0 ≤ α <

1), quantization parameter ξij(i = 1, . . . , L; j = 1, . . . ,m), and
H∞ performance index η, if there exist a positive scalar τ ,
positive-definite matrices Ξi1

ht
, Ξi2

ht
(i = 1, . . . , L), and matri-

ces Πi(t+ 1), Ω1(t), . . ., ΩL−1(t) and I −∑L−1
i=1 Ωi(t) with

appropriate dimensions such that⎡⎢⎣ −τI ∗ ∗
τΔ̂T

2 (t+ 1) Δ̂1(t+ 1) ∗
0 ΔT

3 (t+ 1) −τI

⎤⎥⎦ < 0 (26)

where

Δ̂1(t) =

⎡⎢⎢⎢⎢⎢⎢⎣
−Ξht−1

∗ ∗ ∗ ∗
0 −η2I ∗ ∗ ∗

D̂(t) P̂ (t) −Ξht
∗ ∗

ᾱR̂(t) ᾱŜ(t) 0 −Ξht
∗

Ω(t− 1) 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦
Δ̂2(t) = τ−1

[
0 0 −Φ̂T (t) 0 0

0 0 0 −ᾱΦ̂T (t) 0

]
D̂(t) = diag{D̂1(t), . . . , D̂L(t)}

D̂i(t) =

[
Ξi1
ht

Ai(t− 1)−Πi(t)Ei(t− 1) 0

0 Ξi2
ht

Ai(t− 1)

]
P̂ (t) = diag{P̂1(t), . . . , P̂L(t)}

P̂i(t) =

[
Ξi1
ht

Bi(t− 1)−Πi(t)αδ(ht−1 − i)�I

Ξi2
ht

Bi(t− 1)

]
R̂(t) = diag{R̂1(t), . . . , R̂L(t)}

R̂i(t) =

[
0 Ξi1

ht
Ci(t− 1)−Πi(t)Fi(t− 1)

0 Ξi2
ht

Ci(t− 1)

]
Ŝ(t) = diag{Ŝ1(t), . . . , ŜL(t)}

Ŝi(t) =

[
Ξi1
ht

Di(t− 1)−Πi(t)δ(ht−1 − i)�I

Ξi2
ht

Di(t− 1)

]
Φ̂(t) = diag{Φ̂1(t), . . . , Φ̂L(t)}

Φ̂i(t) =

[
Πi(t)

0

]
then the fusion error system (23) is asymptotically stable under
the H∞ performance level η. In this case, the local estimator
gain matrices can be obtained by

Ki(t) = (Ξi1
ht
)
−1
Πi(t). (27)

Proof: See Appendix B.

IV. SIMULATION EXAMPLES

In this section, a linear target tracking system composed of
two sensors is considered.

Denote the state x(t) = col {x1(t), x2(t), x3(t), x4(t)}, and
all the parameters used in the simulation are given in Table I.
Set the initial values x(0)= col {0.7,−0.7, 0.7,−0.7}, x̂1(0) =
x̂f1(0) = col {0.85,−0.85, 0.85,−0.85}, and x̂2(0) =
x̂f2(0) = col{0.45,−0.45, 0.45,−0.45}. Since w(t) and vi(t)
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TABLE I
PARAMETER NAMES AND CORRESPONDING VALUES

are bounded noises, the values of them can be generated by the
function “rand” of MATLAB.1

By means of the LMI toolbox of MATLAB, the distributed
fusion weighting matrix Ωi(t) can be obtained, some of which
are listed in Table II.

In total, 50 tests have been conducted in order to avoid one-
time occasionality. The trajectories in each dimension of the
system state x(t) and the corresponding DFE x̂(t) subject to
DoS attacks and RRSP are, respectively, depicted in Figs. 2–5.
It can be observed that no matter in which dimension the fusion
estimation errors are very small and hardly exceed 0.2.

In order to better reflect the estimation performance of the
two local state estimators and the fusion estimator, an MSE as
an evaluation index is introduced. The MSE for LSE is defined
by

�ei(t) = E{(x(t)− x̂i(t))
T (x(t)− x̂i(t))}. (28)

Similarly, the MSE for DFE is given by

�e(t) = E{(x(t)− x̂(t))T (x(t)− x̂(t))}. (29)

MSEs for the two local estimates and DFE are shown in Fig. 6.
It is not difficult to see that the MSEs for the two local estimated
values and DFE are consistently lower than 0.07. When t ∈
[0, 10], there is a significant difference in the MSE between the

1Considering the role of “rand” function, the bounded noises
in the system are set as w(t) = 0.02(rand() + sin(t)), v1(t) =
col{0.025(rand() + sin(t)), 0.025(rand() + sin(t))} and v2(t) =
col{−0.025(rand() + sin(t)),−0.025(rand() + sin(t))}.

Fig. 2. Trajectories of the state x1(t) and DFE for x1(t).

Fig. 3. Trajectories of the state x2(t) and DFE for x2(t).

Fig. 4. Trajectories of the state x3(t) and DFE for x3(t).

two local estimates, and the MSE for DFE is smaller than that
for any LSE, which verifies the validity of the distributed fusion
estimation method put forward in this article. When t ∈ [11, 50],
the MSEs of both the local estimates are very small, and they
are basically consistent at each moment, so the MSE of DFE
is roughly the same as both. In fact, the MSE for DFE may
sometimes be slightly larger than that for a certain LSE. This is
because the distributed fusion estimation is usually not optimal,
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TABLE II
FUSION WEIGHTING MATRICES

Fig. 5. Trajectories of the state x4(t) and DFE for x4(t).

Fig. 6. MSE for LSE of Sensor 1, LSE of Sensor 2, and DFE.

but its structure makes it flexible and robust, which is one of the
reasons why the distributed fusion estimation has been popular
in recent years.

V. CONCLUSION

In this article, a distributed fusion estimation design ap-
proach for networked multisenor systems with bandwidth con-
straints has been proposed. The RRSP and the quantization
scheme have been introduced to alleviate the communication
pressure. Aiming at mitigating the impacts of DoS attacks
on the estimation performance, a compensation strategy has
been adopted. A new method has been developed to devise
the local state estimators so that the stability of the discussed
fusion error system can be guaranteed. Based on a certain
LMI, the local estimator gains and fusion weighting matri-
ces have been obtained. Eventually, an object tracking sys-
tem has been used to prove the effectiveness of the proposed
method.

What is noteworthy is that different types of attacks may occur
in sensor networks, affecting the security of sensor networks.
Therefore, the secure MSFE for bandwidth-constrained sensor
networks under hybrid attacks and the FlexRay protocol is one
of our future works.

APPENDIX A
PROOF OF THEOREM 1

Construct the following Lyapunov function:

L (t) = ÊT
F (t)Ξht

ÊF (t). (30)

The difference of L (t) can be computed by

ΔL (t) = ÊT
F (t+ 1)Ξht+1

ÊF (t+ 1)− ÊT
F (t)Ξht

ÊF (t).
(31)
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Define Sκ =
∑κ

t=0 E{eT (t)e(t)− η2WT
F (t)WF (t)}. Then,

one has

Sκ =

κ∑
t=0

E{eT (t)e(t)− η2WT
F (t)WF (t) + ΔL (t)}

−
κ∑

t=0

E{ΔL (t)}

=

κ∑
t=0

E{eT (t)e(t)− η2WT
F (t)WF (t) + ΔL (t)}

− E{L (κ+ 1)− L (0)}.

(32)

Under the zero-initial condition

Sκ =
κ∑

t=0

E{eT (t)e(t)− η2WT
F (t)WF (t) + ΔL (t)}

− E{L (κ+ 1)}.
(33)

Due to L (κ+ 1) > 0, it can be easily derived that

Sκ <
κ∑

t=0

E{eT (t)e(t)− η2WT
F (t)WF (t) + ΔL (t)}. (34)

Based on (22), (23), and (31), we obtain

E{eT (t)e(t)− η2WT
F (t)WF (t) + ΔL (t)}

=

[
ÊF (t)

WF (t)

]T [
U1(t+ 1) ∗
U2(t+ 1) U3(t+ 1)

]
︸ ︷︷ ︸

U (t+1)

[
ÊF (t)

WF (t)

]
(35)

where

U1(t+ 1) = M̃T (t+ 1)Ξht+1
M̃(t+ 1)− Ξht

+ΩT (t)Ω(t)

+ ᾱ2ÑT (t+ 1)Ξht+1
Ñ(t+ 1)

U2(t+ 1) = G̃T (t+ 1)Ξht+1
M̃(t+ 1)

+ ᾱ2H̃T (t+ 1)Ξht+1
Ñ(t+ 1)

U3(t+ 1) = G̃T (t+ 1)Ξht+1
G̃(t+ 1)− η2I

+ ᾱ2H̃T (t+ 1)Ξht+1
H̃(t+ 1).

According to (34) and (35),U (t+ 1) < 0will lead toSκ < 0.
Using the Schur’s complement lemma, U (t+ 1) < 0 implies
that⎡⎢⎢⎢⎢⎢⎢⎣

−Ξht
∗ ∗ ∗ ∗

0 −η2I ∗ ∗ ∗
M̂(t+ 1) Ĝ(t+ 1) −Ξht+1

∗ ∗
N̂(t+ 1) Ĥ(t+ 1) 0 −Ξht+1

∗
Ω(t) 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (36)

where

M̂(t) = Ξht
M̃(t), Ĝ(t) = Ξht

G̃(t)

N̂(t) = ᾱΞht
Ñ(t), Ĥ(t) = ᾱΞht

H̃(t).

Let

Oi(t) = diag

{
Γi1(t)

ξi1
, . . . ,

Γim(t)

ξim

}

O(t) = diag{O1(t), . . . , OL(t)}

Õ(t) = diag{O(t), O(t)}.

Then, combining the definitions in Theorem 1, (36) can be
converted to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ξht
∗ ∗ ∗ ∗

0 −η2I ∗ ∗ ∗
D(t+ 1) P (t+ 1) −Ξht+1

∗ ∗
ᾱR(t+ 1) ᾱS(t+ 1) 0 −Ξht+1

∗
Ω(t) 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

−Φ(t+ 1) 0

0 −ᾱΦ(t+ 1)

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Õ(t+ 1)

×
⎡⎣Z �E (t) αZΨht

0 0 0

Z �F (t) ZΨht
0 0 0

⎤⎦

+

⎡⎣Z �E (t) αZΨht
0 0 0

Z �F (t) ZΨht
0 0 0

⎤⎦T

ÕT (t+ 1)

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

−Φ(t+ 1) 0

0 −ᾱΦ(t+ 1)

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

< 0.

(37)

There is no doubt that Γi(t) = Oi(t)Zi. Because of | Γij |≤
ξij , it can be inferred that ÕT (t)Õ(t) ≤ I . In terms of Lemma 1,
there is a positive scalar τ such that (37) is equivalent to the
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following equation:⎡⎢⎢⎢⎢⎢⎢⎣
−Ξht

∗ ∗ ∗ ∗
0 −η2I ∗ ∗ ∗

D(t+ 1) P (t+ 1) −Ξht+1
∗ ∗

ᾱR(t+ 1) ᾱS(t+ 1) 0 −Ξht+1
∗

Ω(t) 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎦

+ τ−1

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

−Φ(t+ 1) 0

0 −ᾱΦ(t+ 1)

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

−Φ(t+ 1) 0

0 −ᾱΦ(t+ 1)

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

T

+ τ

[
Z �E (t) αZΨht

0 0 0

Z �F (t) ZΨht
0 0 0

]T

×
[
Z �E (t) αZΨht

0 0 0

Z �F (t) ZΨht
0 0 0

]
< 0.

(38)

Applying the Schur’s complement lemma to (38), the inequal-
ity (25) in Theorem 1 can be obtained. That is the end of the
proof. �

APPENDIX B
PROOF OF THEOREM 2

Define Πi(t) = Ξi1
ht
Ki(t), and (26) in Theorem 2 can be ob-

tained from (25) in Theorem 1. In addition, according toΠi(t) =

Ξi1
ht
Ki(t), it can be easily derived that Ki(t) = (Ξi1

ht
)
−1
Πi(t),

which is (30). That is the end of the proof. �
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